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Summary

In the present thesis we investigate three different families of posets: the m-Tamari lattices,
the Cambrian semilattices, and the posets of m-divisible noncrossing partitions. These families
of posets have two crucial properties in common: on the one hand the cardinalities of their
members are given by a generalized Catalan number, and on the other hand they arise in
the context of reflection groups. We are mainly interested in topological properties of these
posets, i.e. we want to understand the nature of a certain topological space associated with
these posets. A very helpful combinatorial tool for this kind of investigation is a so-called EL-
labeling of these posets. The existence of such a labeling implies that the associated topological
space is a wedge of spheres. Moreover, we can compute the values of the Möbius function
(and hence the number and the dimension of these spheres) from this labeling. For each
of the considered families of posets we use a uniform labeling that does not depend on the
parameters of the poset, but only on the membership of the poset in the corresponding family.
Subsequently we show that this labeling has the desired properties, and we compute the
values of the Möbius function.

Moreover, we investigate the m-Tamari lattices and the Cambrian semilattices from a
structural point of view. It is well known that both of these families have common mem-
bers, namely the Tamari lattices. Throughout the last decades the Tamari lattices have been
well studied, and many nice structural and enumerative properties have been found. We
prove for several of these properties that they hold analogously in both generalizations of the
Tamari lattices. In particular, we provide results on the breadth, the length, the number of
irreducibles and the left-modularity of these posets. Moreover, we define another labeling of
the Cambrian semilattices, with which we show that these posets are bounded-homomorphic
images of free lattices. We also present a first approach to unify both generalizations. The
goal of this approach is to define a generalization of the Tamari lattice that is parametrized
by a positive integer m and a reflection group W such that for m = 1 we obtain the corre-
sponding Cambrian semilattice, and in the case where W is the symmetric group we obtain
the m-Tamari lattice. For this we define the so-called m-cover poset of a given poset. Our
construction works nicely for the symmetric group and for the dihedral groups, however it
cannot be extended directly to the other reflection groups.
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Zusammenfassung

In der vorliegenden Dissertation untersuchen wir drei verschiedene Familien von geord-
neten Mengen: die m-Tamariverbände, die kambrischen Halbverbände und die Ordnungen
der m-teilbaren nichtkreuzenden Partitionen. Diese Familien haben zwei grundlegende Eigen-
schaften gemein: zum Einen sind die Kardinalitäten ihrer Elemente durch verallgemeinerte
Catalanzahlen gegeben, und zum Anderen entstehen sie im Zusammenhang mit Spiegelungs-
gruppen. Wir sind hauptsächlich an topologischen Eigenschaften dieser Ordnungen inter-
essiert, d.h. wir möchten die Natur eines bestimmten topologischen Raumes verstehen, der
mit diesen Ordnungen fest verknüpft ist. Ein äußerst hilfreiches, kombinatorisches Werkzeug
für diese Art von Untersuchung ist eine sogenannte EL-Beschriftung dieser Ordnungen. Die
Existenz einer solchen Beschriftung impliziert, dass der zugehörige topologische Raum ein
Sphärenkeil ist. Darüber hinaus können wir die Werte der Möbiusfunktion (und damit die
Anzahl und Dimension der vorkommenden Sphären) mit Hilfe einer solchen Beschriftung
berechnen. Wir verwenden für jede der betrachteten Familien von Ordnungen eine spezielle
Beschriftung, die nicht von der Parametrisierung der verwendeten Ordnung abhängt, son-
dern nur von der Zugehörigkeit der Ordnung zu der entsprechenden Familie. Anschließend
zeigen wir, dass diese Beschriftung die gewünschten Eigenschaften hat, und wir berechnen
die Werte der Möbiusfunktion.

Darüber hinaus untersuchen wir die m-Tamariverbände und die kambrischen Halbver-
bände noch aus einem strukturellen Blickwinkel. Es ist bekannt, dass beide Familien gemein-
same Mitglieder haben, nämlich die Tamariverbände. In den letzten Jahrzehnten wurden die
Tamariverbände sehr umfangreich untersucht und es wurden vielen schöne strukturelle und
abzählende Eigenschaften gefunden. Wir zeigen für einige dieser Eigenschaften, dass sie ana-
log in beiden Verallgemeinerungen der Tamariverbände gelten. Insbesondere präsentieren
wir Ergebnisse über die Breite, die Länge, die Anzahl der irreduziblen Elemente und die
Linksmodularität dieser Ordnungen. Weiterhin definieren wir eine andere Beschriftung der
kambrischen Halbverbände, mit deren Hilfe wir zeigen, dass diese Ordnungen beschränkt-
homomorphe Bilder freier Verbände sind. Zudem präsentieren wir einen ersten Ansatz um
beide Verallgemeinerungen zusammenzuführen. Das Ziel dieses Ansatzes ist es eine Ver-
allgemeinerung der Tamariverbände zu definieren, die mit einer positiven Zahl m und einer
Spiegelungsgruppe W parametrisiert ist, so dass man im Fall m = 1 die entsprechenden
kambrischen Halbverbände erhält, und im Fall dass W die symmetrischen Gruppe ist die
m-Tamariverbände erhält. Dafür definieren wir die sogenannte m-Bedeckungsordnung einer
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gegebenen Ordnung. Diese Konstruktion funktioniert für die symmetrische Gruppe und die
Diedergruppen, aber sie kann nicht direkt auf die anderen Spiegelungsgruppen übertragen
werden.
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CHAPTER 0

Prologue

0.1. Fuß-Catalan Numbers

One of the most remarkable and most frequently occurring integer sequences in combi-
natorics is the sequence of Catalan numbers, see [109, A000108]. These numbers are defined
by

(0.1) Cat(n) =
1

n + 1

(
2n
n

)
,

and there exists a plethora of combinatorial interpretations of these numbers. Stanley has
compiled a list of more than 200 combinatorial objects that are counted by these numbers, see
[110]. Whenever we encounter a family of mathematical objects where the cardinality of its
n-th member is given by Cat(n), then we refer to these as Catalan objects. Perhaps the oldest
of these Catalan objects is the set of triangulations of a convex (n + 2)-gon. In this thesis
we encounter several other Catalan objects, such as Dyck paths of length 2n, 312-avoiding
permutations of {1, 2, . . . , n}, or noncrossing set partitions of {1, 2, . . . , n}.

Some years after Euler proposed that the number of triangulations of a convex (n + 2)-
gon is given by Cat(n), his secretary, by the name of Fusz, solved a more general problem: he
showed that the number of ways to dissect a convex (mn + 2)-gon into (m + 2)-gons is given
by

(0.2) Cat(m)(n) =
1

mn + 1

(
(m + 1)n

n

)
,

and these numbers are nowadays called the Fuß-Catalan numbers. Analogously to before we
speak of a Fuß-Catalan object when we mean a family of mathematical objects indexed by
two positive integers m and n such that the cardinality of their m, n-th member is given by
Cat(m)(n). In particular if m = 1 these objects reduce to Catalan objects. Sometimes we
call a Fuß-Catalan object a Fuß-Catalan generalization of some Catalan object. Besides the
previously mentioned (m + 2)-angulations of a convex (mn + 2)-gon, the m-Dyck paths of
length (m + 1)n or the m-divisible noncrossing set partitions of {1, 2, . . . , mn} are well-known
Fuß-Catalan objects. They are at the same time Fuß-Catalan generalizations of some Catalan
objects mentioned in the previous paragraph.

1



2 0. PROLOGUE

The Fuß-Catalan numbers have a remarkable connection to the symmetric group1 on
{1, 2, . . . , n}, which we will denote by An−1. Let An−1 act on Cn by permuting the stan-
dard basis vectors, i.e. for v = (v1, v2, . . . , vn)T ∈ Cn and π ∈ An−1 we have π · v =
(vπ(1), vπ(2), . . . , vπ(n))

T. We notice that An−1 fixes the subspace
{
(v1, v2, . . . , vn)T ∈ Cn |

v1 = v2 = · · · = vn
}

pointwise. Hence An−1 acts essentially on the (n − 1)-dimensional
vector space

V =
{
(v1, v2, . . . , vn)

T ∈ Cn | v1 + v2 + · · ·+ vn = 0
}

,
i.e. it fixes no point of V except the origin. Consider now the ring C[x1, x2, . . . , xn] of complex
polynomials in n variables, and let An−1 act on these polynomials by permuting the indices,
i.e.

π · f (x1, x2, . . . , xn) = f (xπ(1), xπ(2), . . . , xπ(n))

for π ∈ An−1 and f ∈ C[x1, x2, . . . , xn]. Let C[x1, x2, . . . , xn]An−1 denote the subring of
C[x1, x2, . . . , xn] that consists of complex polynomials in n variables invariant under the action
of An−1, i.e. those f ∈ C[x1, x2, . . . , xn] with π · f = f for all π ∈ An−1. It is well known that
this ring is for instance generated by the elementary symmetric polynomials

ej(x1, x2, . . . , xn) = ∑
1≤i1<i2<···<ij≤n

xi1 xi2 · · · xij ,

for j ∈ {1, 2, . . . , n}. Moreover, if we recall that C[x1, x2, . . . , xn] is isomorphic to the symmetric
algebra Sym(Cn), then it follows that Sym(Cn)An−1 ∼= C[e1, e2, . . . , en]. If we restrict our atten-
tion to the dual of the essential space of An−1, then we obtain Sym(V∗)An−1 ∼= C[e2, e3, . . . , en],
since e1 vanishes on V. Let us write dj = j + 1 for j ∈ {1, 2, . . . , n− 1}. We notice that dj is
precisely the degree of ej+1. It is well known that these degrees are invariants of An−1, i.e. any
minimal set of homogeneous polynomials generating Sym(V∗)An−1 (like complete symmetric
functions or Schur functions) has these numbers as set of degrees, see for instance [63, Propo-
sition 3.7]. Thus it is justified to call these numbers the degrees of the symmetric group. With
their help we can factorize Cat(m)(n) as follows:

Cat(m)(n) =
1

mn + 1

(
(m + 1)n

n

)
=

(
(m + 1)n

)(
(m + 1)n− 1

)
· · · (mn + 2)

n(n− 1) · · · 2

=
mn + n

n
· mn + (n− 1)

n− 1
· · · · · mn + 2

2

=
mn + 2

2
· mn + 3

3
· · · · · mn + n

n

=
n−1

∏
i=1

mdn + di
di

.

The existence of such invariants is not an exclusive property of the symmetric group, but
it holds in every finite irreducible complex reflection group. It is a well-known theorem by
Shephard and Todd that the ring of complex polynomials invariant under the action of a finite
group G ⊆ GLn(C) is generated by polynomials if and only if G is an irreducible complex
reflection group, see [104, Proposition 5.1]. While Shephard and Todd proved this theorem
in a case-by-case fashion, the first uniform proof of this result was given by Chevalley in
[39]. Again the set of degrees of these generating polynomials does not depend on the actual

1Throughout this thesis we use the Coxeter notation An−1 for the symmetric group on {1, 2, . . . , n}. The shift in
the indices comes from the fact that as a reflection group it acts essentially on an (n− 1)-dimensional space.



0.2. FUSS-CATALAN POSETS 3

choice of these generators. Hence we can associate a set of degrees with every finite complex
reflection group W, and we can define the W-Fuß-Catalan numbers by

(0.3) Cat(m)(W) =
n

∏
i=1

mdn + di
di

,

where the numbers d1, d2, . . . , dn denote the degrees of W in nondecreasing order. In the case
m = 1 we call those numbers the W-Catalan numbers, and we write Cat(W).

For m = 1 the formula in (0.3) was first written down in [44, Theorem 3], but without
the connection to the Catalan numbers. This connection was first observed for W a Coxeter
group by Reiner in [98, Remark 2] for m = 1, and by Athanasiadis in [4, Corollary 1.3]
for m > 1. Bessis finally proposed this formula for all well-generated complex reflection
groups in [13, Section 13]. We define Coxeter-(Fuß-)Catalan objects and Coxeter-(Fuß-)Catalan
generalizations analogously to before. (Here the term “Coxeter” refers to the fact that the well-
generated complex reflection groups are geometric generalizations of finite Coxeter groups.)

The observation that the Fuß-Catalan numbers can be generalized to all finite well-gene-
rated complex reflection groups opened up a whole new field of research, which can best
be named by Fuß-Catalan combinatorics. The purpose of this field of research is to find new
Coxeter-(Fuß-)Catalan generalizations of known Catalan objects, and to use these generaliza-
tions to exhibit new, or to explain old connections between such objects. This research was
initiated in the late 1990s when noncrossing set partitions were generalized to well-generated
complex reflection groups, see [1, 7, 32, 33, 98]. This generalization has had quite some impact
on many different areas of mathematics, such as group theory [19], topology [12, 15, 32], free
probability [18], representation theory of quivers [64], or cluster algebras [94]. See Section 4.1
for some further explanation. Soon after, more classical Catalan objects were generalized
analogously, such as nonnesting set partitions [98, Remark 2] or [5], triangulations [53, 54],
or 312-avoiding permutations [94]. It turned out that these Coxeter-Catalan generalizations
share many combinatorial and enumerative properties, and we refer to Armstrong’s excellent
exposition on this topic in [1, Chapter 5] for more details.

0.2. Fuß-Catalan Posets

In this thesis we investigate two different families of Fuß-Catalan objects equipped with a
partial order: on the one hand generalizations of the Tamari lattice and on the other hand the
lattices of noncrossing partitions.

0.2.1. Generalized Tamari Posets. The Tamari lattice of parameter n, denoted by Tn, was
introduced by Tamari as a partial order on so-called bracketings of strings where the cover
relations are given by applications of a semiassociative law [118]. It was shown in [119] that
the cardinality of Tn is given by Cat(n), and in view of the many known Catalan objects
it is not surprising that there exist many realizations of Tn as a poset (short for “partially
ordered set”) on such Catalan objects. We are mainly interested in two of these realizations:
(i) via Dyck paths of length 2n equipped with the rotation order and (ii) via 312-avoiding
permutations of {1, 2, . . . , n} equipped with the weak order. While the realization in terms
of Dyck paths is quite straightforward from Tamari’s original definition, the realization in
terms of 312-avoiding permutations is less obvious, see [26, Theorem 9.6(i) and (ii)]. Our
interest in these realizations comes from the fact that each of them is the starting point of a
generalization of Tn: (i) Bergeron and Préville-Ratelle defined in [11] the m-Tamari lattice
T (m)

n as a poset on m-Dyck paths equipped with rotation order, and (ii) Reading defined in
[95] the Cambrian lattices Cγ as posets on γ-sortable elements for some Coxeter element γ in
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a Coxeter group W. (There is a particular choice of W and γ such that one obtains precisely
the 312-avoiding permutations.) A more detailed explanation of these generalizations can be
found in Sections 2.1 and 3.1, respectively.

For now it is sufficient to state that T (m)
n can be seen as a Fuß-Catalan generalization of

Tn, and Cγ can be seen as a Coxeter-Catalan generalization of Tn. It is an immediate question
whether these generalizations preserve the properties of Tn, and, if so, to which extent. One
of the main contributions of this thesis is an affirmative answer to these questions from a
topological and from a structural viewpoint. When we speak of the topology of a poset, we
mean the topology of a certain simplicial complex of this poset, the so-called order complex,
and it follows from Rota’s work in [101] that the Möbius function of a poset is closely related
to its topology.

In the case of the Tamari lattices it was observed by Pallo in [89, Section 5] that the
Möbius function of Tn takes only values in {−1, 0, 1}. Later Björner and Wachs proved
that Tn is EL-shellable, which implies that its order complex is homotopy equivalent to a
sphere. We prove that the same is true for T (m)

n and for Cγ, see Theorem 2.3.1 on page 35
and Theorem 3.4.1 on page 80, and we characterize the intervals of these posets according to
the value the Möbius function takes on them. These results are obtained by defining a certain
edge-labeling of these posets, which then allows for the application of a whole combinatorial
framework developed mainly by Björner and Wachs in [21,24–26]. We remark that for some
special cases these results were already known before, and we refer the reader to Sections 2.3
and 3.4, respectively, for a more detailed exposition.

On a structural level it was observed by Urquhart in [125] that Tn is a so-called bounded-
homomorphic image of a free lattice. While this result can be easily transferred to T (m)

n , it is not so
obvious for Cγ. Again by using a certain kind of edge-labeling we prove that the same is true
for Cγ, see Theorem 3.5.1 on page 91. Moreover, we show that the irreducibles of Cγ satisfy
the same extremality condition as the irreducibles of Tn, see Theorem 3.4.14 on page 87.

We have remarked earlier that T (m)
n and Cγ are two different, in a sense orthogonal,

generalizations of Tn. It is an intriguing question, whether these two generalizations can be
combined. More precisely, this question can be phrased as follows: what would a Coxeter-
Fuß-Catalan object look like that simultaneously generalizes T (m)

n and Cγ? This object would
have to be parametrized by a Coxeter group W, a Coxeter element γ, and a positive integer
m such that for m = 1 we obtain Cγ and for W = An−1 we obtain T (m)

n . We present a first
partial solution to this question that works nicely for the dihedral groups, see Section 2.4.4.
However, our construction cannot be generalized directly to other Coxeter groups, so this
question remains open.

0.2.2. Lattices of Noncrossing Partitions. The lattices of noncrossing partitions have a
huge impact on many fields of mathematics, as briefly announced at the end of Section 0.1.
For a more detailed introduction on the history of these lattices, we refer to Section 4.1 or to
the surveys [77, 106]. For now, let W be a finite well-generated complex reflection group, let
γ ∈W be a Coxeter element, and let NCW(γ) denote the corresponding lattice of noncrossing
partitions. If W is a Coxeter group, there is an interesting connection between NCW(γ) and
the elements of Cγ: namely if we equip the elements of Cγ, the γ-sortable elements of W, with
a certain partial order, the shard intersection order, then we obtain precisely NCW(γ), see [96,
Theorem 8.5]. However, we do not elaborate on this connection here.

Instead we are interested in Armstrong’s generalization of NCW to a poset of m-divisible
W-noncrossing partitions, denoted by NC(m)

W , and again we investigate these posets from a
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topological point of view. It has been shown uniformly for W a Coxeter group that NC(m)
W is

EL-shellable, see [1, 6], and what the possible values of the Möbius function of NC(m)
W are, see

[2]. However, in general the reasoning in these proofs cannot be transferred to well-generated
complex reflection groups. We close this gap by providing a proof that NC(m)

W is EL-shellable
for all well-generated complex reflection groups by means of a case-by-case analysis, see
Theorem 4.4.1 on page 113. A uniform solution to this question remains open, but we suggest
a possible uniform approach in Section 4.4.5.

0.3. On the Organization of this Thesis

This thesis consists mainly of four parts. The first part, Chapter 1, gives all the back-
ground information on posets, poset topology, and Coxeter groups that is necessary for the
understanding of this thesis. Readers familiar with these topics can skip this chapter, and
return back to it whenever some explanation is in order. The index at the end of this thesis
might also help with quickly finding the places of definition of the concepts used here.

The remaining three parts, Chapters 2–4, can be seen as independent from each other,
so that it does not really matter in which order they are read. There is perhaps a slight
dependence between Chapter 2 and Chapter 3, however not to an extent that requires having
read the one chapter first in order to understand the other.

More precisely, in Chapter 2 we formally define the m-Tamari lattices T (m)
n , we investigate

their topology, and we present a generalization of T (m)
n to the dihedral groups. These two

aspects are described separately in our articles [83] and [67], respectively, where also some
additional results are provided. In Chapter 3 we formally define the Cambrian semilattices, we
investigate their topology, and we prove several structural properties. Again these results are
described separately in [66] and [85], respectively, and some additional results are provided
there. Finally, in Chapter 4, we formally define complex reflection groups as well as the
lattices of noncrossing partitions, and we investigate their topology. The exposition of this
chapter follows [82]. Each of these three chapters has a separate introductory section in which
we give a brief historical outline of the central objects and references to related work.

In the epilogue, Chapter 5, we outline potential future research with which we intend to
continue the work presented in this thesis.





CHAPTER 1

Basic Notions

1.1. Posets and Lattices

In this section we briefly recall the necessary definitions concerning partially ordered sets
that we need in this thesis. A good textbook on this subject matter is for instance [42]. For
an introduction to partially ordered sets with a more combinatorial emphasis we refer to
[112, Chapter 3]. Even though some of the partially ordered sets occurring in this thesis are
infinite per se, we will always reduce our investigation to a finite subposet of those. Thus we
assume everything to be finite, unless explicitly stated.

1.1.1. Partially Ordered Sets. We begin with the very basic notions. Given a set P, a
partial order on P is a binary relation ≤ on P having the following three properties:

(i) if p ∈ P, then p ≤ p; (Reflexivity)
(ii) if p, q ∈ P as well as p ≤ q and q ≤ p, then p = q; (Antisymmetry)

(iii) if p, q, r ∈ P as well as p ≤ q and q ≤ r, then p ≤ r. (Transitivity)

Then we call the pair (P,≤) a partially ordered set, or poset for short, and we usually denote it
by P . The relation ≤ is said to be a total order on P if it additionally has the following property:

(iv) if p, q ∈ P, then p ≤ q or q ≤ p, (Totality)

and we call P a totally ordered set. We use the obvious conventions that p ≥ q simply means
q ≤ p, and p < q means p ≤ q and p 6= q. If neither p ≤ q nor q ≤ p holds, then we write
p ‖ q instead.

For a subset P′ ⊆ P the restriction of ≤ to P′ produces an induced partial order ≤′, and
we call the pair (P′,≤′) a subposet of P . A frequently recurring poset feature is duality: if ≤ is
a partial order on P, then we define the dual order of ≤ by p ≤d q if and only if q ≤ p, and we
call the poset (P,≤d) the dual poset of (P,≤).

An element p ∈ P is minimal in P if there is no element q ∈ P with q < p. Dually, p is
maximal in P if there is no element q ∈ P with p < q. If there is only one minimal element
in P , then this is the least element of P , and dually, if there is only one maximal element in
P , then this is the greatest element of P . If P has both a least and a greatest element, usually
denoted by 0̂ and 1̂, then we call P bounded. The subposet of P induced by P = P \ {0̂, 1̂} is
called the proper part of P , and it is usually denoted by P .

Now let p, q ∈ P with p ≤ q. The set [p, q] = {r ∈ P | p ≤ r ≤ q} is called a closed interval
of P , and the set (p, q) = {r ∈ P | p < r < q} is called an open interval of P . The half-open

7
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Figure 1. A poset and its order complex.

intervals (p, q] and [p, q) are defined analogously. If the cardinality of the closed interval [p, q]
is two, then we say that q covers p, or equivalently that p is covered by q, and we write p l q.
The set of cover relations of P is E(P) =

{
(p, q) ∈ P× P | p l q

}
. It is common practice to

graphically represent P via its Hasse diagram. This is a graph with vertex set P and edge set
E(P), with the convention that if p < q, then p is drawn strictly below q. Clearly the partial
order ≤ can be recovered from E(P) by taking the reflexive and transitive closure. If P has
a least element 0̂, then we call an element p ∈ P with 0̂ l p an atom of P . Dually, if P has a
greatest element 1̂, then we call an element p ∈ P with p l 1̂ a coatom of P .

A totally ordered subset C ⊆ P is called a chain of P . This implies that we can uniquely
write C = {p0, p1, . . . , ps} where pi < pj if and only if i < j for all i, j ∈ {0, 1, . . . , s}. We
usually write such a chain as C : p0 < p1 < · · · < ps. Moreover, a chain is saturated if it can be
written as C : p0 l p1 l · · ·l ps, and a chain is maximal in the interval [p, q] if it is saturated and
p0 = p and ps = q. The length of a chain is its cardinality minus one, and the length of P is the
maximal length of a maximal chain in P . We usually denote the length of P by `(P). Finally
we say that a bounded poset is graded if all maximal chains have the same length. Graded
posets admit a rank function rk, which is defined by rk(p) = `([0̂, p]).

Example 1.1.1

Let n be a positive integer, let D(n) denote the set of divisors of n, and consider this set
ordered by divisibility. For instance, if n = 24, then we have D(24) = {1, 2, 3, 4, 6, 8, 12, 24}.
It is immediately clear that the poset

(
D(6), |

)
is a subposet of

(
D(24), |

)
. Moreover, we

have

E
(
D24

)
=
{
(1, 2), (1, 3), (2, 4), (2, 6), (3, 6), (4, 12), (4, 8), (6, 12), (8, 24), (12, 24)

}
,

and the Hasse diagram of
(

D(24), |
)

is shown in Figure 1(a). We notice that this poset is
graded, and its rank function is given by

rk(1) = 0, rk(2) = rk(3) = 1, rk(4) = rk(6) = 2, rk(8) = rk(12) = 3, rk(24) = 4.

The set {1, 2, 4, 8, 24} is a maximal chain in this poset.

1.1.2. Poset Topology. One of the main contributions of this thesis is the investigation of
the topology of certain families of posets, i.e. the investigation of a topological space asso-
ciated with each of these posets. The topological space in question is given by a simplicial
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complex, the so-called order complex, which is defined via the chains of the given poset. We
will now briefly define the necessary concepts. For a more detailed exposition of this topic,
including any undefined concepts and historical remarks, we refer to [22] or [127].

For a finite set M we say that an (abstract) simplicial complex on M is a nonempty collection
∆ of subsets of M such that {m} ∈ ∆ for all m ∈ M, and if F ∈ ∆ and F′ ⊆ F, then F′ ∈ ∆.
The elements of M are called the vertices of ∆, the elements of ∆ are called the faces of ∆, and
the maximal faces (with respect to inclusion) are called the facets of ∆. The dimension of a face
is its cardinality minus one, and the dimension of ∆ is the maximum of the dimensions of its
facets. In both cases we use the abbreviation dim. (Note that the empty set is always a face of
dimension −1.) If all facets of ∆ have the same dimension, then we call ∆ pure.

With each abstract simplicial complex ∆ we can associate a topological space as follows.
First we say that a d-simplex in Rn is the convex hull of d + 1 affinely independent vectors in
Rn, and the geometric realization of ∆ is then the union of the simplices defined by the faces of
∆. More precisely, if F is a face of ∆ with dimension d, then we associate a d-simplex with this
face, and whenever two faces of ∆ have a common subface, then the corresponding simplices
have a common subsimplex as well. Moreover, we say that a simplicial complex is contractible
if its geometric realization is homotopy equivalent to a point, i.e. it can be deformed continu-
ously into a point. It is called spherical if it is homotopy equivalent to a sphere.

The simplicial complexes that we will consider in this thesis are constructed from posets
in the following way: given a poset P = (P,≤), we say that the order complex of P , denoted by
∆(P), is the simplicial complex whose vertex set is P, and whose faces are the chains of P . It
is immediate that the dimension of ∆(P) is precisely `(P), and that ∆(P) is pure if and only
if P is graded. The topological space associated with a P (i.e. the topological space that we
are interested in) is then the geometric realization of the order complex of P .

Example 1.1.2

The simplicial complex shown in Figure 1(b) is precisely the order complex of the proper
part of the poset

(
D(24), |

)
from Figure 1(a), and likewise the simplicial complex shown

in Figure 2(b) is precisely the order complex of the proper part of the poset shown in
Figure 2(a).

Next we will describe the main properties of simplicial complexes in which we are inter-
ested in this thesis. If we denote by fi(∆) the number of faces of ∆ having dimension i, then
we can define the reduced Euler characteristic of ∆ by

χ̃(∆) =
dim(∆)

∑
i=−1

(−1)i fi(∆).

The reduced Euler characteristic is an important topological invariant, since it has a deep
connection to the homology of the geometric realization of ∆. Recall that the i-th reduced Betti
number β̃i(∆) is defined as the rank of the i-th homology group of the geometric realization
of ∆. The previously mentioned connection is given by the following well-known formula.

Theorem 1.1.3 ([127, Theorem 1.2.8])

For any simplicial complex ∆ we have

χ̃(∆) =
dim(∆)

∑
i=−1

(−1)i β̃i(∆).
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Figure 2. A nonshellable poset and its order complex.

Example 1.1.4

Consider the set M = {2, 3, 4, 6, 8, 12}, and define an abstract simplicial complex ∆ via the
facets

F1 = {2, 4, 8}, F2 = {2, 4, 12}, F3 = {2, 6, 12}, F4 = {3, 6, 12}.
The corresponding geometric realization of ∆ is shown in Figure 1(b). The shaded regions
indicate two-dimensional simplices. The face numbers of this simplicial complex are

f−1(∆) = 1, f0(∆) = 6, f1(∆) = 9, f2(∆) = 4,

and we obtain χ̃(∆) = −1 + 6− 9 + 4 = 0. Moreover, the geometric realization of ∆ is a
convex subset of R2, and thus contractible, which implies that β̃ j = 0 for all j.

Let us now introduce a class of simplicial complexes with a particularly beautiful struc-
ture. For a face F ∈ ∆ denote by F the set of subfaces of F, which is a simplicial complex
in its own right. We say that ∆ is shellable if its facets can be arranged in a linear order
F1 ≺ F2 ≺ · · · ≺ Fs such that

(⋃k−1
i=1 Fi

)
∩ Fk is a pure simplicial complex of dimension

dim(Fk)− 1 for all k ∈ {2, 3, . . . , s}. In this case we call this particular linear order a shelling
order of the facets of ∆. Moreover, we say that a poset is shellable if its order complex is
shellable. Shellable simplicial complexes have several nice topological properties, one of them
is stated in the next well-known theorem.

Theorem 1.1.5 ([25, Theorem 4.1])

Let ∆ be a shellable complex of dimension d. Then, ∆ has the homotopy type of a wedge of β̃ j(∆)-
many j-dimensional spheres for all j ∈ {0, 1, . . . , d}.

Let us recall a helpful result on the ordering of the dimensions of the facets in a shelling
order.

Lemma 1.1.6 ([25, Lemma 2.2])

If ∆ is a shellable simplicial complex and F1 ≺ F2 ≺ · · · ≺ Fs is a shelling order of its facets, then
dim(F1) = dim(∆).
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In particular, for every shellable complex we can find a shelling order in which the facets
are ordered weakly decreasingly with respect to their dimensions.

Example 1.1.7

The ordering {2, 4, 8} ≺ {2, 4, 12} ≺ {2, 6, 12} ≺ {3, 6, 12} of the facets of the simplicial
complex ∆ from Example 1.1.4 is indeed a shelling order of ∆, since two consecutive facets
intersect in exactly two points, which then form a one-dimensional pure simplicial complex,
and earlier facets do not contribute additional vertices to this intersection.

Now consider the simplicial complex ∆′ on the set M = {1, 2, 3, 4, 5, 6, 7} whose facets
are

F1 = {1, 2, 3}, F2 = {1, 2, 6}, F3 = {1, 3, 5}, F4 = {1, 5, 6}, F5 = {1, 4, 7}.
Its geometric realization is shown in Figure 2(b). The intersection of the facet F5 with each
of the other facets is exactly the point {1} and thus zero-dimensional. Since dim(F5) = 2 it
follows that there cannot exist a shelling order of the facets of ∆′, which is thus nonshellable.

1.1.3. Möbius Function. The main connection between the combinatorial and the topo-
logical part of this thesis is the well-known Möbius function, and this connection was first
worked out in detail by Rota in his seminal paper [101]. Again we start with the basic defini-
tions.

Definition 1.1.8

Let P = (P,≤) be a poset. The Möbius function of P is the function µP : P× P→ N that is
recursively defined by:

µP (p, q) =


1, if p = q,
−∑
p<r≤q

µ(r, q), if p < q,

0, otherwise.

Remark 1.1.9

The Möbius function of a poset is closely related to the classical Möbius function from
number theory, which is defined as the function µ : N→ {−1, 0, 1} with

µ(n) =

{
(−1)k, if n has k distinct prime factors,
0, otherwise.

In particular, if we write Dn =
(

D(n), |
)
, then for d ∈ N with d | n we have µDn(d, n) =

µ( n
d ).

In this thesis we will mainly consider bounded posets, and for our purposes the most
important value of the Möbius function will be the so-called Möbius invariant of P , namely
µ(P) = µP (0̂, 1̂).

Example 1.1.10

The Möbius function of the poset D24 from Figure 1(a) can be described best in terms of
a matrix where the rows and columns are indexed by the elements of D(24) in increasing
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order:

µD24 =



1 −1 −1 0 1 0 0 0
0 1 0 −1 −1 0 1 0
0 0 1 0 −1 0 0 0
0 0 0 1 0 −1 −1 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1


.

Thus the entry −1 in the second row and fifth column means that µD24(2, 6) = −1. Since
6
2 = 3 is already prime it follows that µ(3) = −1. Moreover, we have µ(D24) = 0, and since
24 = 23 · 3 it follows that µ(24) = 0.

An important combinatorial way to compute the Möbius invariant of finite bounded
posets is given in the next result, which first appeared in [61]. For reasons of availability
we give a different reference here.

Proposition 1.1.11 ([112, Proposition 3.8.5])

Let P be a finite bounded poset, and let ci denote the number of maximal chains in P having length
i. Then,

µ(P) =
`(P)

∑
i=0

(−1)ici.

Thus by definition of the order complex, we immediately obtain the following equivalent
formulation of Proposition 1.1.11.

Proposition 1.1.12 ([112, Proposition 3.8.6])

Let P be a finite bounded poset. Then, µ(P) = χ̃
(
∆(P)

)
.

1.1.4. Edge-Labelings. The main tools used in this thesis are certain poset edge-labelings.
First we define edge-labelings in general, and then we introduce the two types of edge-
labelings that we use later on.

Let P = (P,≤) be a bounded poset, and let (Λ,≤Λ) be another poset. A map λ : E(P)→
Λ is called an edge-labeling of P . If C : p0 l p1 l · · ·l ps is a saturated chain of P , then we
abbreviate the sequence

(
λ(p0, p1), λ(p1, p2), . . . , λ(ps−1, ps)

)
by λ(C). We say that a chain C

of P is rising (with respect to λ) if the sequence λ(C) is strictly increasing with respect to ≤Λ.
Analogously, we say that C is falling (with respect to λ) if λ(C) is weakly decreasing with respect
to ≤Λ. Let Λ? denote the set of tuples of elements of Λ having arbitrary length. (Sometimes
this is referred to as the set of words on the alphabet Λ.) We define the lexicographic order on
Λ? by (u1, u2, . . . , us) ≤lex (v1, v2, . . . , vt) if and only if either

ui = vi, for i ∈ {1, 2, . . . , s} and s ≤ t, or

ui <Λ vi, for the least i such that ui 6= vi.

It is easy to check that ≤lex is a total order.
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Definition 1.1.13

Let P be a bounded poset. An edge-labeling λ of P is called an ER-labeling (which is short
for “edge rising labeling”) if in every closed interval of P there exists a unique rising max-
imal chain. An ER-labeling is called an EL-labeling (which is short for “edge lexicographic
labeling”) if in every closed interval the unique rising chain is lexicographically first among
all maximal chains in this interval. If P admits an EL-labeling, then P is called EL-shellable.

The notion of EL-labelings was introduced by Björner in [21] in order to prove a conjec-
ture by Stanley who asked whether every admissible lattice is Cohen-Macaulay. Admissible
lattices are a certain class of graded lattices (see Section 1.1.5) that have an ER-labeling, and
they were first considered in [111]. The power of ER-labelings comes from the following result,
which was first stated in the graded lattice case by Stanley, see [111, Corollary 3.3], and later
generalized to the non-graded poset case by Björner and Wachs, see [25, Proposition 5.7].

Proposition 1.1.14 ([25, Proposition 5.7])

Let P be a bounded poset admitting an ER-labeling, and let fo denote the number of falling maximal
chains from 0̂ to 1̂ with odd length, and let fe denote the number of such chains with even length.
Then, µ(P) = fe − fo.

It is clear from the definition that the restriction of an ER-labeling to some interval of P
yields an ER-labeling of this interval, and hence we can compute every single value of µP by
counting falling chains between the corresponding poset elements. Moreover, the power of
EL-labelings lies in the fact that they produce a shelling order of the order complex of P in
the following way.

Theorem 1.1.15 ([25, Theorem 5.8])

Let P be a bounded EL-shellable poset. The order complex ∆(P) is shellable, and every linear
extension of the lexicographic order on the maximal chains of P induces a shelling order on ∆(P).

With the help of EL-labelings we can strengthen Theorem 1.1.5 as follows:

Theorem 1.1.16 ([25, Theorem 5.9])

Let P be an EL-shellable poset, and let λ be some EL-labeling of P . Then, β̃ j
(
∆(P)

)
equals the

number of falling maximal chains in P having length j + 2.

Example 1.1.17

In Example 1.1.2 we have seen that the simplicial complex ∆ from Figure 1(b) is shellable,
and we observed in Example 1.1.17 that ∆ is the order complex of the proper part of the
poset D24 from Figure 1(a). It is indeed easy to verify that the labeling given there is an
EL-labeling.

On the other hand, the simplicial complex ∆′ from Figure 2(b) is nonshellable, and
it is the order complex of the proper part of the poset P ′ shown in Figure 2(a). Thus
Theorem 1.1.15 implies that P ′ cannot be EL-shellable, and we can quickly verify that the
labeling given there is an ER-labeling but no EL-labeling, since the unique rising chain in
the interval [1, 6] is not lexicographically first. On the other hand, since there needs to be a
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rising chain in the intervals [1, 7] and [4, 8], it follows that the chain 1 l 4 l 7 l 8 must be
rising, but we cannot modify the other labels such that we obtain an EL-labeling.

Now we introduce another poset edge-labeling that we use in Section 3.5.1. We call an
interval [p, q] of P a 2-facet if there are exactly two maximal chains in [p, q], and they intersect
only in p and q. This implies in particular that (in [p, q]) the element p is covered by exactly
two elements, say p1 and p2, and (in [p, q]) the element q covers exactly two elements, say q1
and q2. We can assume that these elements are labeled in such a way that p1 ≤ q1 and p2 ≤ q2.

Definition 1.1.18

Let P be a bounded poset. An edge-labeling λ of P is called a 2-facet labeling if it satisfies
λ(p, p1) = λ(q2, q) and λ(p, p2) = λ(q1, q) for every 2-facet [p, q].

Example 1.1.19

The poset D24 from Figure 1(a) has exactly three 2-facets, namely the intervals [1, 6], [2, 12]
and [4, 24]. Moreover, the edge-labeling given there is in fact both an EL-labeling and a
2-facet labeling.

1.1.5. Lattices. Most of the posets which we consider in this thesis come equipped with
an additional property which we will describe next. Let P = (P,≤) be a poset, and let
p, q ∈ P. If the set {r ∈ P | p, q ≤ r} (which is a poset in its own right) has a least element,
then we call this element the join of p and q, and we denote it by p ∨ q. Dually, if the set
{r ∈ P | r ≤ p, q} has a greatest element, then we call this element the meet of p and q, and
we denote it by p ∧ q. A join-semilattice is a poset in which the join of any two elements exists,
and dually, a meet-semilattice is a poset in which the meet of any two elements exists. A lattice
is a poset that is both a join- and a meet-semilattice. A subposet P ′ of a lattice P is a sublattice
of P if P ′ is a lattice in its own right and if joins and meets in P ′ agree with joins and meets
in P . Subsemilattices are defined analogously.

Example 1.1.20

The poset in Figure 1(a) is in fact a lattice, while the poset in Figure 2(a) is not, since for
instance the elements 2 and 3 do not have a join.

An element p in a lattice P is join-irreducible if it cannot be written as the join of other
elements of P, i.e. if we can write p = p1 ∨ p2 ∨ · · · ∨ ps for p1, p2, . . . , ps ∈ P, then there
is some i ∈ {1, 2, . . . , s} with p = pi. We denote the set of join-irreducible elements of P
by J (P). In particular, p ∈ J (P) if and only if p covers exactly one element, which we
then denote by p?. Dually, p is called meet-irreducible if it cannot be written as the meet of
other elements of P, and we denote the set of meet-irreducible elements of P by M(P). In
particular, p ∈ M(P) if and only if p is covered by exactly one element, which we then denote
by p?. According to [76] we say that a lattice P is extremal if

∣∣J (P)
∣∣ = `(P) =

∣∣M(P)
∣∣.

Let us introduce some further lattice-theoretic concepts. An element p is called left-modular
if it satisfies the following equality for all q, q′ ∈ P with q < q′:

(1.1) (q ∨ p) ∧ q′ = q ∨ (p ∧ q′).
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If there exists a maximal chain in P consisting of left-modular elements, then we say that P
is left-modular. The following characterization of left-modular elements turns out to be very
useful.

Theorem 1.1.21 ([75, Theorem 1.4])

Let P = (P,≤) be a finite lattice, and let p ∈ P. The following are equivalent:
(i) the element p is left-modular; and

(ii) for any q, q′ ∈ P with q l q′, we have p ∧ q = p ∧ q′ or p ∨ q = p ∨ q′ but not both.

Now suppose that P is a left-modular lattice, and let 0̂ = p0 l p1 l · · ·l ps = 1̂ be a
maximal chain of P consisting of left-modular elements. We define an edge-labeling of P by

(1.2) ψ(q, q′) = min
{

i ∈ {1, 2, . . . , s} | q ∨ pi ∧ q′ = q′
}

,

for all q, q′ ∈ P with q l q′. We have the following result.

Theorem 1.1.22 ([74])

If P is a left-modular lattice with a distinguished left-modular chain, then the edge-labeling in (1.2)
is an EL-labeling. In particular, every left-modular lattice is EL-shellable.

For more results on left-modular lattices, including a generalization to posets, we refer
the reader to [27, 75, 79, 121]. Recall further that P is called distributive if it satisfies

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r) and,(1.3)

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r),(1.4)

for all p, q, r ∈ P. Following [121], a trim lattice is a lattice that is extremal and left-modular.
It follows from [76] that an interval of an extremal lattice need not necessarily be extremal
again. Trim lattices, however, behave nicely with respect to this property.

Theorem 1.1.23 ([121, Theorem 1])

Every interval of a trim lattice is trim again.

We can thus consider trimness as a generalization of distributivity to ungraded lattices,
since every graded trim lattice is distributive, see [76, Theorem 17]. Moreover, trim lattices
have a nice topological structure. Recall that a lattice P is nuclear if 1̂ is the join of the atoms
of P .

Theorem 1.1.24 ([121, Theorem 7])

Let P be a trim lattice with k atoms. If P is nuclear, then the order complex ∆(P) is homotopy
equivalent to a sphere of dimension k− 2. Otherwise ∆(P) is contractible. In particular, the Möbius
function of P takes values only in {−1, 0, 1}.

There is a weakening of the distributive laws, in the sense that whenever some element
p ∈ P has the same join (or dually, meet) with two elements q, r ∈ P, then the corresponding
distributive law can be applied to the triple (p, q, r). Formally we say that a lattice P is
semidistributive if it satisfies

p ∨ q = p ∨ r implies p ∨ q = p ∨ (q ∧ r), and(1.5)

p ∧ q = p ∧ r implies p ∧ q = p ∧ (q ∨ r),(1.6)
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(a) L1. (b) L2. (c) L3. (d) L4.

Figure 3. Essentially the forbidden sublattices of a semidistributive lattice.

for all p, q, r ∈ P. If P satisfies only (1.5) or (1.6), then we call P join-semidistributive or meet-
semidistributive, respectively. There is a nice characterization of semidistributive lattices in
terms of forbidden sublattices.

Theorem 1.1.25 ([41])

A lattice with no infinite chains is semidistributive if and only if it contains no sublattice isomorphic
to the lattices (or their duals) shown in Figure 3.

The next lemma states that semidistributive lattices have the same number of join- and
meet-irreducible elements.

Lemma 1.1.26 ([43])

If P is semidistributive, then |J (P)| = |M(P)|.

1.1.6. Lattices as Algebraic Structures. Besides the poset-theoretic approach, we can also
define lattices in an algebraic way. Consider a set L equipped with two binary operations
∨ : L × L → L and ∧ : L × L → L and two constants 0̂, 1̂ ∈ L having the following five
properties:

(i) if x ∈ L, then x ∨ x = x = x ∧ x; (Idempotence)
(ii) if x, y ∈ L, then x ∨ (x ∧ y) = x = x ∧ (x ∨ y); (Absorption)

(iii) if x, y ∈ L, then x ∨ y = y ∨ x and x ∧ y = y ∧ x; (Commutativity)
(iv) if x, y, z ∈ L, then x ∨ (y ∨ z) = (x ∨ y) ∨ z and

x ∧ (y ∧ z) = (x ∧ y) ∧ z; (Associativity)
(v) if x ∈ L, then x ∨ 0̂ = x = x ∧ 1̂. (Identity)

In this case, we call the algebraic structure (L;∨,∧, 0̂, 1̂) a lattice. It is checked easily that in a
bounded poset (P,≤) that is a lattice, the operations join and meet and the elements 0̂ and 1̂
satisfy the above axioms. On the other hand, if an algebraic structure (L;∨,∧, 0̂, 1̂) is a lattice,
then we can define a partial order on L via x ≤ y if and only if x ∨ y = y (if and only if
x ∧ y = x), and we can easily check that the bounded poset (L,≤) is indeed a lattice. In view
of this equivalence of concepts, we will not distinguish between the order-theoretic or the
algebraic definition of a lattice, and use both concepts interchangeably.

Viewing lattices as algebraic structures has certain advantages. For instance it allows for
a natural notion of homomorphisms. A lattice homomorphism is a map f : K → L from a lattice
K = (K;∨K,∧K, 0̂K, 1̂K) to a lattice L = (L;∨L,∧L, 0̂L, 1̂L) that preserves the lattice operations,
i.e.

f (x ∨K y) = f (x) ∨L f (y) and f (x ∧K y) = f (x) ∧L f (y)
for all x, y ∈ K. A lattice homomorphism is called bounded if for every x ∈ L the preimage
f−1(x) is a bounded subposet of (K,≤K). A subset X ⊆ L is said to generate L if every
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0

P0

I0

−→

00

01

P1 = P0[I0]

I1

−→

000

001 010

011

P2 = P1[I1]

I2

−→

000

0010 010

0011 0110

0111

P3 = P2[I2]

I3

−→

000

0010 010

00110 0110

00111 01110

01111

P4 = P3[I3]

Figure 4. The lattice D24 can be constructed from the one-element lattice
by successive doubling of intervals. (We have omitted parentheses in the
diagram labels for brevity.)

x ∈ L can be written as a sequence of joins and meets of elements in X. Moreover, a lattice
F = (F;∨,∧, 0̂, 1̂) that is generated by X is called the free lattice over X if every map from
X to some lattice L can be extended uniquely to a lattice homomorphism from F to L. (In
other words, F is the free object on X in the category of lattices.) Finally we call a lattice L
a bounded-homomorphic image of a free lattice if there exists a bounded lattice homomorphism
from some free lattice to L.

Bounded-homomorphic images of free lattices have two nice properties. On the one hand
they are semidistributive, and on the other hand they can be constructed in a very nice way
from the one-element lattice 1.

Theorem 1.1.27 ([55, Theorem 2.20])

If P is a bounded-homomorphic image of a free lattice, then P is semidistributive.

Now let P = (P,≤) be a lattice, and let I be a closed interval of P . Define the lattice
P [I] = (P′,≤′) by P′ = (P \ I) ∪

(
I × {0, 1}

)
, and

p ≤′ q =


p ≤ q, if p, q ∈ P \ I,
p ≤ q′, if p ∈ P \ I, and q = (q′, i) for q′ ∈ I and i ∈ {0, 1},
p′ ≤ q, if p = (p′, i) for p′ ∈ I and i ∈ {0, 1}, and q ∈ P \ I,
p′ ≤ q′, if p = (p′, i), q = (q′, j) for p′, q′ ∈ I and i, j ∈ {0, 1} with i ≤ j.

We say that P [I] arises from P by doubling the interval I. Figure 4 indicates how the lattice D24
can be constructed from the one-element lattice by successively doubling intervals.

Theorem 1.1.28 ([43, Theorem 5.1])

A lattice P is a bounded-homomorphic image of a free lattice if and only if there exists a sequence
1 = P0,P1, . . . ,Pt = P , and a sequence of intervals I0, I1, . . . , It−1 such that Is is a closed interval
of Ps, and Ps+1 = Ps[Is] for all s ∈ {0, 1, . . . , t− 1}.

Another lattice property that implies semidistributivity is the existence of a so-called
canonical join-representation. Let P = (P,≤) be a lattice, and let p ∈ P. A set Z =
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{z1, z2 . . . , zs} ⊆ P is called a join-representation of p in P if p = z1 ∨ z2 ∨ · · · ∨ zs. For two
join-representations Z and Z′ of p in P we say that Z refines Z′ if for every z ∈ Z there exists
a z′ ∈ Z′ with z ≤ z′. A join-representation Z of p in P is called canonical if it refines every
other join-representation of p in P . In this case we usually write Zp instead of Z. It follows
immediately that Zp is an antichain in P , i.e. the elements of Zp are pairwise incomparable,
and each element in Zp is join-irreducible.

Lemma 1.1.29 ([55, Lemma 2.22])

If every element of a lattice P has a canonical join-representation, then P is join-semidistributive.

Example 1.1.30

Let us again consider the lattice D24 from Figure 1(a). We have 12 = 4 ∨ 6 = 3 ∨ 4. Thus
both {4, 6} and {3, 4} are join-representations of 12. Since 3 | 6, it follows that {3, 4} refines
{4, 6}. Moreover, it can be checked easily that {3, 4} is the canonical join-representation of
12 in D24.

1.2. Coxeter Groups

The posets we investigate in this thesis are intrinsically connected to Coxeter groups,
so we will introduce the necessary concepts here. Coxeter groups play an important role
in algebra, geometry and combinatorics, since they can be seen as a natural generalization
of the symmetric group. Moreover, Coxeter groups can be viewed as groups generated by
reflections, and in this guise they generalize the Weyl groups. Even though we will mainly use
the algebraic representation of Coxeter groups, we will elaborate on this so-called reflection
representation in more detail in Section 1.2.3. We will use this aspect of Coxeter group theory
also in Chapter 4, where we consider the posets of generalized noncrossing partitions.

A good introduction to Coxeter groups from an algebraic point of view is [23], while [63]
focuses more on geometric aspects of the reflection representation of Coxeter groups.

1.2.1. Coxeter Systems. A Coxeter matrix is a symmetric (n× n)-matrix (mi,j)1≤i,j≤n with
the property that mi,i = 1 for i ∈ {1, 2, . . . , n} and mi,j ∈N≥2 ∪ {∞} for i, j ∈ {1, 2, . . . , n} and
i < j. With each Coxeter matrix we can associate a group given by the presentation

(1.7) W =
〈
s1, s2, . . . , sn | (sisj)

mi,j = ε
〉
,

where ε denotes the identity of W. We call such a group a Coxeter group, and if we abbreviate
S = {s1, s2, . . . , sn}, then we call the pair (W, S) a Coxeter system. The elements of S are called
the Coxeter generators of W, and the cardinality of S is called the rank of (W, S).

If we can write S as a disjoint union of two nontrivial sets S1 and S2 such that each
element of S1 commutes with every element of S2, then we say that W is reducible, and we have
W ∼= W1 ×W2 where W1 and W2 are the Coxeter groups generated by S1 and S2, respectively.
If this is not the case, then we call W irreducible.

Example 1.2.1

Perhaps the simplest example of a Coxeter group is the dihedral group of order 2k, i.e. the
group of symmetries of a regular k-gon ∆k. We denote this group by I2(k), and this name
comes from the classification of finite irreducible Coxeter groups, see Theorem 1.2.5. It is
generated naturally by two elements: a reflection s through a symmetry axis of ∆k and a
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rotation r by an angle of 2π
k . By definition s has order 2, r has order k, and we can quickly

verify that rs = sr−1.
However, for our point of view, the following choice of generators of I2(k) is more suit-

able: it can be checked quickly that r can be expressed as a concatenation of two reflections
through symmetry axes which enclose an angle of π

k , say r = s1s2. Thus in view of the
previous paragraph, it follows that the product s1s2 has order k and that both s1 and s2
have order two. It can be checked that these are the only relations in I2(k). Hence I2(k) can
be represented by the Coxeter matrix

MI2(k) =

(
1 k
k 1

)
,

and it is thus a Coxeter group of rank 2.

Example 1.2.2

Another classical example of a Coxeter group is the symmetric group on {1, 2, . . . , n}, which
we will denote by An−1. (Again this name comes from the classification.) Recall that
An−1 is generated naturally by the set of adjacent transpositions, i.e. by si = (i i+1) for
i ∈ {1, 2, . . . , n− 1}. It follows immediately that the product sisj has order three if and only
if j = i+ 1 and it has order two otherwise. It can be checked that these are the only relations
in An−1. Hence An−1 can be represented by the

(
(n− 1)× (n− 1)

)
-Coxeter matrix

MAn−1 =



1 3 2 · · · 2 2 2
3 1 3 · · · 2 2 2
2 3 1 · · · 2 2 2
...

...
...

. . .
...

...
...

2 2 2 · · · 1 3 2
2 2 2 · · · 3 1 3
2 2 2 · · · 2 3 1


,

and it is thus a Coxeter group of rank n− 1. (This explains why we denote the symmetric
group on {1, 2, . . . , n} by An−1.)

Remark 1.2.3

We remark that a group might have different, nonisomorphic presentations as a Coxeter
group. Hence it is sometimes important to specify the corresponding Coxeter system ex-
plicitly.

For example, consider the dihedral group I2(6). We have seen in Example 1.2.1 that
I2(6) is the group of symmetries of a regular hexagon, and it thus admits an irreducible
Coxeter presentation of the form

I2(6) =
〈
s1, s2 | s2

1 = s2
2 = (s1s2)

6 = ε
〉
.

See Figure 5(a) for an illustration of the symmetries. We can also consider I2(6) as a group
acting on two triangles. From this point of view we exhibit another presentation, which is,
however, reducible:

I2(6) =
〈
r, r1, r2 | r2 = r2

1 = r2
2 = (rr1)

2 = (rr2)
2 = (r1r2)

3 = ε
〉
,
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s1
s2

1
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6

(a) Coxeter symmetries of
a regular hexagon.

r

r1

r2

1

2

3

4

5

6

(b) Coxeter symmetries of
the star of David.

Figure 5. Two Coxeter presentations of I2(6).

where r is the reflection that maps the one triangle to the other triangle, and r1 and r2 are
the Coxeter generators of the dihedral group I2(3) considered as the symmetry group of a
triangle. See Figure 5(b) for an illustration.

1.2.2. Coxeter Diagrams. From now on let (W, S) be a Coxeter system of rank n. There is
a very simple and intuitive way to graphically represent (W, S): a Coxeter diagram Γ(W,S) is a
labeled graph with vertices vs1 , vs2 , . . . , vsn , where there is an edge between vsi and vsj if and
only if mi,j ≥ 3. Moreover, such an edge is labeled by mi,j if and only if mi,j ≥ 4.

Example 1.2.4

The Coxeter diagram of the dihedral group I2(k) is s1 s2

k
, while the Coxeter diagram

of the symmetric group An−1 is s1 s2
· · ·

sn−1
.

It follows immediately from the definition that a Coxeter diagram is connected if and only
if the corresponding Coxeter system is irreducible. With the help of these Coxeter diagrams,
Coxeter was able to characterize the finite irreducible Coxeter groups.

Theorem 1.2.5 ([40, Theorem ‡])

An irreducible Coxeter group is finite if and only if its Coxeter diagram is one of the diagrams in
Figure 6.

Disclaimer 1.2.6

Whenever we consider a finite irreducible Coxeter group W, then we implicitly use the
Coxeter system (W, S) such that the corresponding Coxeter diagram is shown in Figure 6.

The impact of Coxeter’s classification becomes even clearer, in view of the following
interpretation of Coxeter groups as groups generated by reflections.

1.2.3. Reflection Representation. So far we have defined Coxeter groups in a purely al-
gebraic way. However, they have a very natural geometric interpretation that we will describe
next, following [63, Chapter 5.3]. Let (W, S) be a Coxeter system of rank n, and consider the
n-dimensional real vector space V spanned by {vs | s ∈ S}. That is, we take some basis of V
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Name Coxeter diagram

An, n ≥ 1 s1 s2 s3
· · ·

sn−1 sn

Bn, n ≥ 2 s1 s2 s3
· · ·

sn−1 sn

4

Dn, n ≥ 4 s1 s2 s3
· · ·

sn−2

sn−1

sn

E6 s1 s2 s3

s6

s4 s5

E7 s1 s2 s3

s7

s4 s5 s6

E8 s1 s2 s3

s8

s4 s5 s6 s7

F4 s1 s2 s3 s4

4

H3 s1 s2 s3

5

H4 s1 s2 s3 s4

5

I2(k), k ≥ 5 s1 s2

k

Figure 6. The Coxeter diagrams of the finite irreducible Coxeter groups.

and associate each basis vector with one Coxeter generator. The crucial step in understanding
the geometry of W is the definition of a symmetric bilinear form that is given on the basis of
V by

(1.8) B(vsi , vsj) = − cos

(
π

mi,j

)
,

and we set B(vsi , vsj) = −1 if mi,j = ∞. This bilinear form allows for the concept of orthogo-
nality in V, by saying that two vectors v, v′ ∈ V are orthogonal if and only of B(v, v′) = 0. It
follows from (1.8) that B(vs, vs) = 1 and thus that the orthogonal complement of vs in V is a
hyperplane, which we will denote by Hs. For s ∈ S we define the reflection σs through Hs to be
the following linear transformation on V:

σs(v) = v− 2B(vs, v)vs,

for v ∈ V. Then, σs fixes Hs pointwise and sends vs to its negative. (In fact, these two
properties can be taken as a definition for a reflection. In the case where B(·, ·) is an inner
product, this coincides with the usual definition.) The hyperplane Hs is called the reflection
hyperplane of σs. In particular, the bilinear form B(·, ·) is defined in such a way that the dihedral
angle between the reflection hyperplanes Hsi and Hsj is 2π

mi,j
. Moreover, the bilinear form B(·, ·)
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is preserved under the action of σs, since B(vs, vs) = 1 implies

B(σsv, σsv′) = B
(
v− 2B(vs, v)vs, v′ − 2B(vs, v′)vs

)
= B

(
v, v′ − 2B(vs, v′)vs

)
− B

(
2B(vs, v)vs, v′ − 2B(vs, v′)vs

)
= B(v, v′)− 2B(vs, v′)B(v, vs)− 2B(vs, v)B(vs, v′) + 4B(vs, v)B(vs, v′)B(vs, vs)

= B(v, v′).

Let G be the subgroup of GL(V) generated by the reflections σs for s ∈ S. In view of the
previous reasoning it follows that G preserves B(·, ·) as well, and we have the following
result.

Theorem 1.2.7 ([63, Theorem 5.3 and Corollary 5.4])

There exists a unique isomorphism σ between W and G that sends s to σs for all s ∈ S.

We call the isomorphism σ from Theorem 1.2.7 the geometric representation of W, and this
theorem states that σ is a faithful representation of W in GL(V). The bilinear form B(·, ·)
is not necessarily an inner product on V. However, the following theorem characterizes the
situation in which this is the case.

Theorem 1.2.8 ([63, Theorem 6.4])

Let (W, S) be a Coxeter system. Then, W is finite if and only if the linear form B(·, ·) from (1.8) is
positive definite.

This implies together with Theorems 1.2.5 and 1.2.7 that every finite Coxeter group is a
finite reflection group, and that the rank of a finite Coxeter group corresponds to the dimen-
sion of the vector space on which this group acts essentially as a reflection group. On the
other hand [63, Theorem 1.9] implies that every finite reflection group admits a presentation
as a finite Coxeter group.

Among the finite reflection groups there is a subclass of great importance: the finite
Weyl groups. These are reflection groups for which the Coxeter matrix has entries only in
{1, 2, 3, 4, 6}. Each finite reflection group is completely characterized by a so-called root sys-
tem, which is a certain set of vectors in a Euclidean vector space. (For an exact definition, see
for instance [63, Section 1.2].) It suffices here to say that the roots are vectors orthogonal to the
reflection hyperplanes of the corresponding reflection group. These root systems were used
by Weyl to characterize the semisimple Lie algebras, see [128–130]. This characterization was
simplified by Dynkin in [46], who used diagrams similar to the Coxeter diagrams in order to
represent the root systems of the the finite irreducible Weyl groups.

We conclude this section with the observation that the reflections corresponding to the
Coxeter generators are not the only reflections in a reflection group. It follows from linear
algebra that for w ∈W and s ∈ S the transformation σ(w−1sw) fixes the hyperplane w−1(Hs)
pointwise and sends w−1(vs) to its negative. Thus σ(w−1sw) acts as a reflection on V, and we
define

(1.9) T = {w−1sw | w ∈W, S ∈ S}.

It follows from [63, Proposition 1.14] that T is the set of all reflections of W. Clearly S is a
distinguished subset of T. Even though we mainly consider Coxeter groups from an algebraic
point of view, we refer to the elements of S as the simple reflections of W and to the elements of
T as the reflections of W.
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Remark 1.2.9

In this section we have considered only groups generated by reflections in a real vector
space. Under a suitable relaxation of the concept of a reflection, this can be generalized
to complex vector spaces, and the resulting groups are complex reflection groups. We will
return to this generalization in Chapter 4, where we also formally define these groups.

1.2.4. Reduced Decompositions and Length. Now we return to the algebraic nature of
the Coxeter groups. Since S is a generating set of W, every group element w ∈ W can be
written as a product of the simple reflections of W. This gives rise to a length function, which
we will call the Coxeter length, in the following way:

(1.10) `S : W →N, w 7→ min{k | w = si1 si2 · · · sik , sij ∈ S for 1 ≤ j ≤ k}.

If `S(w) = k, then we call every word w = si1 si2 · · · sik a reduced decomposition of w. An
element w ∈W is a Coxeter element of (W, S) if it has a reduced decomposition in which every
simple reflection appears exactly once, i.e. if we can write w = sσ(1)sσ(2) · · · sσ(n) for some
permutation σ of {1, 2, . . . , n}.

Example 1.2.10

Let us consider the symmetric group An−1 again. The simple reflections of An−1 are pre-
cisely the adjacent transpositions. It is well known that every permutation of {1, 2, . . . , n}
can be decomposed into a product of adjacent transpositions, and the minimal length of
such a decomposition corresponds to the Coxeter length of An−1. Moreover, every long
cycle can be decomposed into a product of n − 1 adjacent transpositions, none of which
occurs twice. Hence each long cycle is a Coxeter element of An−1.

According to [105] the Coxeter elements of (W, S) have an interesting connection to the
Coxeter diagram Γ(W,S). An orientation of Γ(W,S) is an assignment of “directions” to the edges
of Γ(W,S), i.e. for an edge between two generators si and sj we fix whether this edge runs from
si to sj or in the opposite direction. An acyclic orientation of Γ(W,S) is an orientation of Γ(W,S)

that does not contain oriented cycles. Given an acyclic orientation~Γ(W,S) of the Coxeter graph
of (W, S) we can define an element ~γ ∈ W with the following property: whenever an edge
is oriented from si to sj, then we require that the letter si occurs before the letter sj in every
reduced decomposition of ~γ. Theorem 1.5 in [105] states that ~γ is a Coxeter element of (W, S)
and that this correspondence is one-to-one. This connection plays a crucial role in the original
definition of the Cambrian lattices due to Reading, see [93]. We define the Cambrian lattices
in detail in Section 3.2.

Example 1.2.11

Consider the group W = A5 together with the orientation s1 s2 s3 s4 s5
.

The corresponding Coxeter element is γ = s1s3s5s2s4 = (1 2 4 6 5 3), and we can easily
check that in each reduced decomposition of γ, the letter s1 appears before s2, the letter
s3 appears before both s2 and s4, and the letter s5 appears before s4. In fact, we can write
γ = γ1γ2, where γ1 = s1s3s5 and γ2 = s2s4, and each letter from γ1 commutes with every
letter from γ2. Coxeter elements that possess such a reduced decomposition are called
bipartite.

We have seen in the end of Section 1.2.3 that the set T of all reflections can also be taken
as a generating set of W. Hence we can define reduced decompositions of the elements of W
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in terms of all reflections as well as a length function analogously as before. More precisely,
we define the absolute length by

(1.11) `T : W →N, w 7→ min{k | w = ti1 ti2 · · · tik , tij ∈ T for 1 ≤ j ≤ k},

and if `T(w) = k, then we call every word w = ti1 ti2 · · · tik a reduced T-decomposition of w. Since
S ⊆ T it follows immediately that `T(w) ≤ `S(w) for all w ∈W.

Example 1.2.12

We have seen in Example 1.2.2 that the simple reflections of An−1 correspond to the adjacent
transpositions. It follows by definition of T that the reflections of An−1 are precisely all
transpositions.

If we consider for instance the permutation π = (1 4 3)(2 6 5) ∈ A5, then we can
quickly check that

π = (1 3)(1 4)(2 6)(5 6) = (3 4)(2 3)(1 2)(5 6)(4 5)(3 4)(4 5)(2 3).

Thus we have `T(π) = 4 and `S(π) = 8.

1.2.5. Partial Orders on Coxeter Groups. In this section we will introduce the two main
partial orders on Coxeter groups that we need in this thesis. We start with a partial order that
is defined in terms of the simple reflections of (W, S).

Definition 1.2.13

Let (W, S) be a Coxeter system. The (right) weak order on (W, S) is the partial order defined
by

u ≤S v if and only if `S(v) = `S(u) + `S(u−1v),
for all u, v ∈W. We will usually writeW = (W,≤S) for the corresponding poset.

Figure 7 shows the right weak order on the symmetric group A3.

Remark 1.2.14

We can also define a left weak order on W analogously to Definition 1.2.13, which does not
coincide with the right weak order, but is isomorphic via the map w 7→ w−1. Hence we will
usually omit the qualifier “right” and speak of the weak order only.

The posetW has several nice properties.

Proposition 1.2.15 ([23, Proposition 3.1.6])

For every u, v ∈W with u ≤S v, we have [u, v] ∼= [ε, u−1v] via the poset isomorphism w 7→ u−1w.

Proposition 1.2.16 ([97, Proposition 2.19])

For every w ∈W the interval [ε, w] inW is isomorphic to the dual of the interval [ε, w−1].

Theorem 1.2.17 ([23, Proposition 3.1.2 and Theorem 3.2.1])

The posetW is a graded meet-semilattice with rank function `S.
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1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 7. The weak order on the symmetric group A3.

If W is finite, then there exists a unique element wo ∈ W of maximal length, and in
particular we have `S(wo) = |T|, see [23, Proposition 2.3.2(iv)]. Proposition 1.2.16 implies
that wo is an involution and that W is a self-dual lattice if and only if W is finite. Moreover,
Proposition 1.2.15 implies that it is sufficient to understand the intervals of the form [ε, w]
for some w ∈ W. But more can be said. Recall that a poset (P,≤) with a least element 0̂ is
called finitary if for every p ∈ P the interval [0̂, p] is finite. The following proposition is well
known to the community, however we could not find an explicit reference for it. Thus we give
a simple proof here.

Proposition 1.2.18

The semilatticeW is finitary.

Proof. Let W be a Coxeter group of rank n, and let w ∈ W with `S(w) = k. We want to
show that the interval [ε, w] is finite. Recall for instance from [23, Proposition 3.1.2(i)], that the
maximal chains in [ε, w] are in bijection with the reduced decompositions of w. Since w has
length k, there are at most nk reduced decompositions of w, which is clearly a finite number.
Hence there is only a finite number of maximal chains in [ε, w] and each of these chains is
finite. Thus the interval itself has to be finite. �

We will often find the following equivalent definition of ≤S convenient. We say that t ∈ T
is a (left) inversion of w ∈ W if `S(tw) < `S(w). If we write inv(w) for the set of all inversions
of w, then it follows from [23, Corollary 1.4.5] that `S(w) =

∣∣inv(w)
∣∣.
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1234

3214 1432 2134 1324 1243 4231

3124 1423 3412 2314 1342 3241 2431 2143 4321 4213 4132

3421 2413 3142 2341 4123 4312

Figure 8. The absolute order on the symmetric group A3. The highlighted
interval is a lattice of noncrossing partitions.

Proposition 1.2.19 ([23, Proposition 3.1.3])

Let (W, S) be a Coxeter system. For every u, v ∈W we have

u ≤S v if and only if inv(u) ⊆ inv(v).

For s ∈ S let W≥s = {w ∈W | s ≤S w}, and let W6≥s = {w ∈W | s 6≤S w}.

Proposition 1.2.20 ([97, Proposition 2.18])

Let w ∈ W, and let s ∈ S. Then, `S(sw) < `S(w) if and only if s ≤S w if and only if s ∈ inv(w).
Left multiplication by s is a poset isomorphism from

(
W6≥s,≤S

)
to
(
W≥s,≤S

)
. If wlS w′, s ≤S w′

and s 6≤S w, then w′ = sw.

There exists a distinguished subset of the inversions of w, the so-called cover reflections of
w. These are the inversions t ∈ inv(w) for which there exists some s ∈ S such that tw = ws.
We denote the set of cover reflections of w by cov(w). In particular, if t ∈ cov(w), then twlS w,
and we have inv(tw) = inv(w) \ {t}.

The second partial order on Coxeter groups that we consider in this thesis is defined very
similarly to the weak order. We simply replace the set of simple reflections by the set of all
reflections, and this partial order was first considered in [33].

Definition 1.2.21

Let W be a Coxeter group, and let T denote the set of all reflections of W. The absolute order
on W is the partial order defined by

u ≤T v if and only if `T(v) = `T(u) + `T(u−1v),

for all u, v ∈W.

Figure 8 shows the poset (A3,≤T). In contrast to the weak order, the poset (W,≤T) is
not bounded and not a semilattice. However, it is a graded poset with rank function `T , and
if W is finite, then it contains a very well-behaved subposet: if γ ∈ W is a Coxeter element,
then the interval [ε, γ] in (W,≤T) is called the lattice of W-noncrossing partitions. We study this
lattice in Chapter 4, and we postpone the statement of its basic properties until then.



CHAPTER 2

The m-Tamari Lattices

2.1. Introduction

Perhaps one of the best-studied lattices in combinatorics is the Tamari lattice Tn intro-
duced by Tamari in [118]. Among other things Tamari considered the set Tn of so-called
n-bracketings, which is the set of all possible ways of inserting n pairs of parentheses into
a string of length n + 1 such that each opening parenthesis has a uniquely associated clos-
ing parenthesis, and such that each pair of parentheses contains precisely two factors that
are either smaller bracketings or letters. He then defined a hierarchy on Tn induced by the
following associativity rule

(2.1) (ab)c→ a(bc),

where one application of this rule means going up one step in this hierarchy. The Tamari lattice
Tn is then the set Tn equipped with the induced partial order. Figure 9 shows the lattices T1, T2
and T3. It was already conjectured in Tamari’s thesis [118] that Tn is indeed a lattice, but it
took some more years until this result was proven [56, 62, 120]. A recent reference on the
history of Tamari’s work along with its impact on different fields of mathematics is [86].

Another property that makes Tn a frequently recurring combinatorial object is the fact that
its cardinality is given by the n-th Catalan number Cat(n) = 1

n+1 (
2n
n ), see [119]. Accordingly,

there are many realizations of Tn as a partial order on Catalan objects. In this chapter, we
are mainly interested in the realization of Tn as a poset on Dyck paths equipped with the
so-called rotation order.

(x0x1) ((x0x1)x2)

(x0(x1x2))

(((x0x1)x2)x3)

((x0(x1x2))x3) ((x0x1)(x2x3))

(x0((x1x2)x3))

(x0(x1(x2x3)))

Figure 9. The first three Tamari lattices T1, T2 and T3.

27
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ab

c

r

r′

 

ab

c

r’ r

Figure 10. The rotation on Dyck paths.

Recall that a Dyck path of length 2n is a lattice path from (0, 0) to (n, n) that consists only
of right-steps (i.e. steps of the form (1, 0)) or up-steps (i.e. steps of the form (0, 1)), and that
never goes below the line x = y. We denote the set of Dyck paths of length 2n by Dn. Now
suppose that q ∈ Dn is a Dyck path of length 2n, and let r be a right-step of q that is followed
by an up-step u. Further let q′ be the unique subpath of q that starts with u, and that is a
Dyck path of length 2n′, where n′ < n. Let $r(q) denote the unique Dyck path in Dn that is
created from q by exchanging r and q′. The rotation order is the partial order on Dn whose
cover relations are given by

q1 lrot q2 if and only if q2 = $r(q1) for some right-step r of q1.(2.2)

See Figure 10 for an illustration of the rotation order, and see Figure 11 for an illustration of
T4 as a poset on Dyck paths.

The fact that the poset
(
Dn,≤rot

)
is indeed isomorphic to Tn can be seen best by taking

a detour through binary trees. By definition, a bracketing b ∈ Tn can be written in the form
b = (b1b2), where b1 and b2 are either smaller bracketings or single letters. Thus it is obvious
that we can encode each bracketing by a binary tree where b1 corresponds to the left subtree of
the root and b2 corresponds to the right subtree of the root and such a bracketing corresponds
to a leaf if and only if it consists of a single letter. Then, the associativity rule from (2.1)
corresponds to the right rotation of binary trees illustrated in Figure 12. There is a well-known
bijection between binary trees with n + 1 leaves and Dyck paths of length 2n, see for instance
[8]: we construct a Dyck path by parsing the tree depth-first (i.e. we first visit the left child,
then the right child, then the node itself) and for every leaf we visit (except for the first),
we add an up-step, and for every inner node we visit, we add a right-step. In view of this
bijection, it is immediately clear that the right rotation on binary trees corresponds to the
rotation on Dyck paths.

Among the many combinatorial properties of the Tamari lattice, we will now recall two
results that have strong consequences for the topology of Tn, and that have motivated the
research presented in this chapter: the possible values of the Möbius function of Tn have been
determined by Pallo, who gave an explicit algorithm for their computation.

Theorem 2.1.1 ([89, Section 5])

For n > 0 the Möbius function of Tn takes values only in {−1, 0, 1}.
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Figure 11. The Tamari lattice T4 as a poset on Dyck paths.

r′

r
c

a b

 

r

a
r′

b c

Figure 12. The right rotation on binary trees.

This result was later recovered by Björner and Wachs, who proved that Tn is EL-shellable
and that (with respect to their labeling) there is at most one falling chain in each interval.
Moreover, they characterized the spherical and the contractible intervals of Tn.

Theorem 2.1.2 ([26, Theorem 9.2])

For n > 0 the lattice Tn is EL-shellable.

Besides this, there is a deep connection between the Tamari lattices and the dimension
and the graded Frobenius characteristic of the space of diagonal harmonic polynomials in
two sets of variables. This was first observed in [60, Fact 2.8.1], and [59, Conjecture 3.1.2], and
it was later generalized in [11]. The main object with which we are working in this chapter is
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a generalization of the Tamari lattice called the m-Tamari lattice. This generalization was first
considered in [11, Section 5], and served as a valuable tool for the computation of the graded
Frobenius characteristic of the spaces of higher diagonal harmonic polynomials in m + 1 sets
of variables.

In this chapter, we formally define these lattices, and we investigate their topology as well
as some structural properties. In particular, we prove that these lattices are EL-shellable, and
we compute their Möbius function, see Theorem 2.3.1. Finally, we give a new realization of
T (m)

n in terms of m-tuples of classical Dyck paths, see Theorem 2.4.24, and we define a family
of “m-Tamari like” lattices for the dihedral groups, see Section 2.4.4.

2.2. Definition and Examples

We start right away with the definition of the main objects of this chapter.

Definition 2.2.1

For m, n > 0 we say that an m-Dyck path of length (m + 1)n is a lattice path from (0, 0) to
(mn, n) that consists only of right-steps and up-steps, and that never goes below the line
y = mx.

Clearly, the 1-Dyck paths of length 2n are precisely the classical Dyck paths of length
2n. Let D(m)

n denote the set of all m-Dyck paths of length (m + 1)n. It is well known that
the cardinality of D(m)

n is given by the Fuß-Catalan number Cat(m)(n) = 1
mn+1 (

(m+1)n
n ), see for

instance [45, 69]. Each m-Dyck path p ∈ D(m)
n comes equipped with two sequences: the height

sequence hp = (h1, h2, . . . , hmn), which satisfies

h1 ≤ h2 ≤ · · · ≤ hmn(2.3) ⌈
i
m

⌉
≤ hi ≤ n, for all i ∈ {1, 2, . . . , mn},(2.4)

and the step sequence up = (u1, u2, . . . , un), which satisfies

u1 ≤ u2 ≤ · · · ≤ un(2.5)

0 ≤ ui ≤ m(i− 1), for all i ∈ {1, 2, . . . , n}.(2.6)

The interpretation of these sequences is that the i-th entry of the height sequence indicates
which height the path has at the coordinate x = i− 1, and the i-th entry of the step sequence
indicates at which x-coordinate the i-th up-step takes place. The next lemma, the proof of
which is straightforward and hence omitted, implies how to convert these sequences into
each other.

Lemma 2.2.2

Let p ∈ D(m)
n with step sequence up = (u1, u2, . . . , un) and height sequence hp = (h1, h2, . . . , hmn).

If we set h0 = 0, then we have

uhi+1 = uhi+2 = · · · = uhi+1
= i, for all i ∈ {0, 1, . . . , mn} with hi < hi+1, and

hi = max
{

j ∈ {1, 2, . . . , n} | uj < i
}

, for all i ∈ {1, 2, . . . , mn}.
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Figure 13. A 5-Dyck path of length 36.

Example 2.2.3

Figure 13 shows a Dyck path p ∈ D(5)
6 . Its height sequence is given by

hp = (1, 1, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6),

and its step sequence is given by up = (0, 2, 3, 8, 14, 23).

Analogously to classical Dyck paths, we can define a rotation order on D(m)
n , following the

lines before (2.2). According to [11, Section 5], this definition can also be rephrased in terms
of step sequences. Let p ∈ D(m)

n have step sequence up = (u1, u2, . . . , un). For i ∈ {1, 2, . . . , n},
we call the unique subsequence (ui, ui+1, . . . , uk) of up satisfying

uj − ui < m(j− i), for all j ∈ {i, i + 1, . . . , k},(2.7)

uk+1 − ui ≥ m(k + 1− i) or k = n.(2.8)

the primitive subsequence of up at position i. For p, p′ ∈ D(m)
n with up = (u1, u2, . . . , un), we

define

(2.9) plrot p
′ if and only if

up′ = (u1, u2, . . . , ui−1, ui − 1, ui+1 − 1, . . . , uk − 1, uk+1, uk+2, . . . , un),

for some i ∈ {2, 3, . . . , n} with ui−1 < ui, where (ui, ui+1, . . . , uk) is the primitive subsequence
of up at position i. If ≤rot denotes the reflexive and transitive closure of lrot, then we call the
poset

(
D(m)

n ,≤rot
)

the m-Tamari lattice of parameter n, and we denote it by T (m)
n . (This name

will be justified soon.) Figure 14 shows the poset T (3)
3 .

Example 2.2.4

Let p be the 5-Dyck path of length 36 shown in Figure 13. The primitive subsequence of up at
position 2 is (2, 3, 8, 14), and the highlighted part of p indicates that this subsequence is the
step sequence of an m-Dyck path of smaller length in its own right. Hence it is immediately
clear that the definition of the rotation order in (2.9) coincides with the generalization of the
one given in (2.2).

Disclaimer 2.2.5

If m = 0 or n = 0, then the resulting poset is a singleton and hence trivial. Thus in what
follows, we will always assume m, n > 0.

The next easy lemma states how the step and the height sequences of m-Dyck paths
behave with respect to the rotation order. Again, we omit the proof which is straightforward
from the definition.
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(0, 3, 6)

(0, 2, 6)

(0, 1, 6) (0, 2, 5)

(0, 0, 6) (0, 1, 5)

(0, 0, 5) (0, 1, 4) (0, 3, 5)

(0, 0, 4) (0, 2, 4) (0, 3, 4)

(0, 0, 3) (0, 1, 3) (0, 2, 3) (0, 3, 3)

(0, 0, 2) (0, 1, 2) (0, 2, 2)

(0, 0, 1) (0, 1, 1)

(0, 0, 0)

(2, 3)

(3, 6)

(2, 2) (3, 6)

(2, 1) (3, 6) (2, 2)

(3, 5)(3, 6) (2, 1) (3, 5)

(3, 5) (2, 1)

(3, 4)

(2, 3) (3, 5)

(3, 4) (2, 2) (3, 4) (2, 3) (3, 4)

(3, 3) (2, 1) (3, 3) (2, 2) (3, 3) (2, 3)

(3, 2) (2, 1) (3, 2) (2, 1)

(3, 1) (2, 1)

Figure 14. The lattice T (3)
3 as a poset on 3-Dyck paths. Each 3-Dyck path is

displayed together with its step sequence, and the edges are labeled by the
edge-labeling defined in (2.10).

Lemma 2.2.6

Let m, n > 0, and let p, p′ ∈ D(m)
n with p ≤rot p′. If up = (u1, u2, . . . , un) and up′ =

(u′1, u′2, . . . , u′n) denote the step sequences of p and p′, respectively, then we have ui ≥ u′i for all
i ∈ {1, 2, . . . , n}. Moreover, if hp = (h1, h2, . . . , hmn) and hp′ = (h′1, h′2, . . . , h′mn) denote the
height sequences of p and p′, respectively, then we have hi ≤ h′i for all i ∈ {1, 2, . . . , mn}.
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A crucial observation about the poset T (m)
n is that it can be embedded as an interval in

Tmn, which implies that it is indeed a lattice. More precisely, every m-Dyck path of length
(m + 1)n can be converted into a classical Dyck path of length 2mn by replacing each up-
step by m consecutive up-steps. In view of this construction, it follows immediately that a
cover relation between two m-Dyck paths corresponds exactly to a cover relation between the
associated “blown-up” Dyck paths. Hence we have the following result.

Proposition 2.2.7 ([30, Proposition 4])

For n, m > 0, the poset T (m)
n is isomorphic to the interval [q, q′] in Tmn, where q is the Dyck path

whose step sequence uq = (u1, u2, . . . , umn) is given by uin+1 = uin+2 = · · · = uin+n = i, for
i ∈ {0, 1, . . . , m− 1}, and where q′ is the Dyck path whose step sequence is uq′ = (0, 0, . . . , 0).

Remark 2.2.8

In [3], a further generalization of Dyck paths was considered, namely so-called (a, b)-Dyck
paths, where a and b are coprime. These paths are lattice paths from (0, 0) to (b, a) that
consist only of right-steps and up-steps and never go below the line y = a

b x. If we denote
the set of all (a, b)-Dyck paths by Da,b, then it follows from [20] that∣∣Da,b

∣∣ = 1
a + b

(
a + b
a, b

)
=

(a + b− 1)!
a! b!

,

see also [3, Theorem 3.1]. Again we can define a rotation order on these paths analogous to
before, and the resulting poset Ta,b =

(
Da,b,≤rot

)
is again an interval in Tb. See Figure 15

for an illustration of the poset T4,7. In the case a = n and b = n + 1, we obtain precisely
the Dyck paths of length 2n, and in the case a = n and b = mn + 1, we obtain precisely the
m-Dyck paths of length (m + 1)n.

2.3. Topological Properties of T (m)
n

In view of Proposition 2.2.7, the results in Theorems 2.1.1 and 2.1.2 can be generalized
immediately to T (m)

n for m > 1. However, we will reprove these results independently, which
at the same time provides a uniform proof for all m-Tamari lattices. The main result of this
section is the following.

Theorem 2.3.1

For m, n > 0 the m-Tamari lattice of parameter n is EL-shellable. Moreover, the Möbius function of
T (m)

n takes values only in {−1, 0, 1}.

First of all we need to find suitable edge-labeling which embodies the characteristic prop-
erties of the cover relations in T (m)

n . By definition, a cover relation plrot p
′ is uniquely de-

termined by some up-step of p. In terms of step sequences this means the following: let
p, p ∈ D(m)

n with p lrot p
′ where the step sequences are up = (u1, u2, . . . , un) and up′ =

(u′1, u′2, . . . , u′n), respectively. Then, there exists a minimal index i ∈ {2, 3, . . . , n} such that
u′i = ui − 1, and we will assign this index together with the corresponding entry in up to the

edge between p and p′ in T (m)
n . More precisely, we consider the following edge-labeling of
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(0, 1, 3, 5)

(0, 0, 3, 5)

(0, 1, 2, 5) (0, 0, 2, 5)

(0, 1, 1, 5) (0, 0, 1, 5) (0, 0, 2, 4)

(0, 0, 0, 5) (0, 0, 1, 4) (0, 1, 2, 4) (0, 1, 3, 4)

(0, 0, 0, 4) (0, 1, 1, 4) (0, 0, 1, 3) (0, 0, 3, 4) (0, 1, 3, 3)

(0, 0, 0, 3) (0, 1, 1, 3) (0, 1, 2, 3) (0, 0, 2, 3) (0, 0, 3, 3)

(0, 0, 0, 2) (0, 1, 1, 2) (0, 0, 1, 2) (0, 1, 2, 2) (0, 0, 2, 2)

(0, 0, 0, 1) (0, 1, 1, 1) (0, 0, 1, 1)

(0, 0, 0, 0)

(2, 1)

(3, 3)

(4, 5)

(3, 3)

(4, 5)

(3, 2) (2, 1)

(4, 5)

(3, 2)

(4, 5)

(2, 1)

(4, 5)

(3, 1)

(4, 5)

(3, 2)

(4, 5)(4, 5)

(3, 1) (4, 4) (3, 2)

(2, 1)

(4, 4)

(2, 1) (4, 4)

(3, 3)

(4, 4) (2, 1)

(4, 4) (3, 1)

(4, 3)

(3, 3)

(4, 3)

(2, 1)

(3, 3)

(4, 3) (2, 1) (4, 3)

(3, 2)

(2, 1)

(4, 3) (3, 2) (4, 3)

(3, 3)

(4, 2) (2, 1)

(4, 2) (3, 1) (4, 2) (3, 2)

(2, 1) (3, 2)

(4, 1) (2, 1) (3, 1)

Figure 15. The lattice T4,7.
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T (m)
n :

(2.10) λ : E
(
T (m)

n
)
→N×N, (p, p′) 7→ (i, ui),

where up = (u1, u2, . . . , un) and up′ = (u′1, u′2, . . . , u′n) and i = min{j | uj 6= u′j}. See Figure 14
for an illustration of this labeling. Then, we have the following result, which immediately
implies Theorem 2.3.1.

Theorem 2.3.2

For m, n > 0 the labeling from (2.10) is an EL-labeling for T (m)
n with respect to the following total

order on N×N:

(i, ui) � (j, uj) if and only if i < j or i = j and ui ≥ uj.

Moreover, there is at most one falling chain in every interval of T (m)
n with respect to this labeling.

Proof. Let m, n > 0, and let p, p′ ∈ D(m)
n satisfy p <rot p′. We need to show that there

is a unique rising maximal chain in the interval [p, p′] and that this chain is lexicographically
first among all maximal chains in this interval. Let up = (u1, u2, . . . , un), and let up′ =

(u′1, u′2, . . . , u′n), and consider the set of differences D =
{

j ∈ {1, 2, . . . , n} | uj 6= u′j
}

. We write
the elements of D in increasing order, i.e. D = {j1, j2, . . . , js}, where j1 < j2 < · · · < js.

Let r(0) = p, and construct r(i+1) from r(i) by decreasing the entries of the primitive
subsequence of ur(i) at position jk by one, where jk is the smallest element in D such that the
jk-th entry of ur(i) is larger than the jk-th entry of up′ . By the minimality of jk, it is always

guaranteed that r(i+1) ≤rot p′. Since T (m)
n is finite we eventually reach an index t such that

r(t) = p′. By construction it follows immediately that the chain

(2.11) p = r(0) lrot r
(1) lrot · · ·lrot r

(t) = p′

is rising. Moreover, it follows by construction that λ(p, r(1)) = (j1, uj1). Now let r ∈ D(m)
n

with plrot r ≤rot p
′ where r 6= r(1). It follows from the uniqueness of primitive subsequences

that λ(p, r) = (jk, ujk ) for k > 1, which immediately implies that the chain in (2.11) is the
lexicographically first maximal chain in [p, p′]. Moreover, the j1-st value of the step sequence
of r is uj1 which is strictly larger than u′j1 . Hence in every maximal chain from r to p′, there
exists an edge labeled by (j1, u), which implies that the chain in (2.11) is the unique rising
maximal chain in the interval [p, p′]. Hence λ is an EL-labeling for T (m)

n .
Now we want to count the falling chains in [p, p′]. Consider the set D′ =

{
j ∈ {1, 2, . . . , n} |

uj 6= u′j and uj ≥ uj−1 +m}. This time we write the elements of D′ in decreasing order, namely
D′ = {j′1, j′2, . . . , j′s} with j′1 > j′2 > · · · > j′s. (This s is not necessarily the same as in the previ-
ous paragraph.) The interpretation of D′ is the following: if j ∈ D′, then the step sequences of
p and p′ differ in position j, and uj is not contained in the primitive subsequence of up at some
position < j. Let r̄(0) = p, and for i ∈ {1, 2, . . . , s}, construct r̄(i) from r̄(i−1) by decreasing the
entries of the primitive subsequence of r̄(i) at position j′i by one. By construction, we have
r̄(i−1) lrot r̄

(i) for i ∈ {1, . . . , s}, and it follows that λ
(
r̄(i−1), r̄(i)

)
= (j′i , uj′i

). Hence the chain

(2.12) p = r̄(0) lrot r̄
(1) lrot · · ·lrot r̄

(s)

is falling. Moreover, suppose that there are three elements r1, r2, r3 ∈ D
(m)
n with r1 lrot r2 lrot r3

as well as λ(r1, r2) = (k, u), and λ(r2, r3) = (k, u′). Then, it follows by construction that u > u′,
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hence such a chain cannot be falling. This implies that the chain in (2.12) is the only possible
falling chain in [p, p′], and this chain is maximal if and only if r̄(s) = p′. Hence the proof is
complete. �

Proof of Theorem 2.3.1. This follows by definition from Theorem 2.3.2. �

In view of the proof of Theorem 2.3.2, we can immediately compute the length of T (m)
n .

Corollary 2.3.3

For m, n > 0 we have `
(
T (m)

n
)
= m(n

2).

Proof. Let 0 and 1 denote the least and the greatest element of T (m)
n . By definition, we

have u0 = (0, m, 2m, . . . , (n− 1)m), and u1 = (0, 0, . . . , 0). The maximal rising chain from 0

to 1 has length m(n
2), since in view of (2.11), we first decrease the second entry of u0 until

it is equal to 0, then the third until it is equal to 0, and so on. Summing this up yields
∑n

i=2 m(i− 1) = m(n
2). Now, Lemma 1.1.6 implies that the lexicographic first maximal chain

in an EL-shellable poset has maximal length, which implies the result. �

Remark 2.3.4

We can analogously to (2.10) define an edge-labeling for the rational Tamari lattices Ta,b, see
Remark 2.2.8, and the proof of Theorem 2.3.2 can be carried over almost verbatim.

2.3.1. The Möbius Function. In this section, we use the EL-labeling (2.10) to compute the
Möbius function of T (m)

n . The next result follows immediately from Theorem 2.3.2, but in
view of Proposition 2.2.7 and Theorem 2.1.1 is not new. However, using Theorem 2.3.2, we
can prove this result simultaneously for all m, n > 0.

Corollary 2.3.5

For m, n > 0 the Möbius function of T (m)
n takes values only in {−1, 0, 1}. Hence every interval in

T (m)
n is either spherical or contractible.

Proof. It follows from Theorem 2.3.2 that in every interval of T (m)
n there is at most one

falling maximal chain with respect to the edge-labeling (2.10). Hence Proposition 1.1.14
implies that the Möbius function of T (m)

n takes only values in {−1, 0, 1}. Moreover, Theo-
rem 1.1.16 implies that the order complex of every interval of T (m)

n has at most one non-
vanishing reduced Betti number, which implies that it is either spherical or contractible. �

In the remaining part of this section, we characterize the spherical intervals of T (m)
n , and

we compute the number of spherical intervals of the form [0, p] or [p, 1]. For that, let p ∈ D(m)
n ,

and let up = (u1, u2, . . . , un) be its step sequence. Define Dp =
{

i ∈ {1, 2, . . . , n} | ui > ui−1
}

,
and

(2.13) psp(j) =
∣∣{i ∈ Dp | i < j and uj − 1− ui < m(j− i) and

uk − ui < m(k− i) for all i < k < j}
∣∣
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for all j ∈ Dp. Fix j ∈ Dp. If pj denotes the upper cover of p in T (m)
n whose step sequence is

given by decreasing the entries of the primitive subsequence of up at position j by one, then
psp(j) counts the primitive subsequences of upj at position i ∈ Dp that contain the j-th entry
of upj .

Example 2.3.6

Let us consider the 5-Dyck path p of length 36 from Figure 13 again, which is given by the
step sequence up = (0, 2, 3, 8, 14, 23). Then Dp = {2, 3, 4, 5}, and we have

psp(2) = 0, psp(3) = 1, psp(4) = 2, psp(5) = 1.

If we take for instance j = 5, then the upper cover p5 of p that is constructed from decreasing
the primitive subsequence of up at position 5 is given by up5 = (0, 2, 3, 8, 13, 23). If up5(j)
denotes the primitive subsequence of up5 at position j, then we have

up5(2) = (2, 3, 8, 13), up5(3) = (3), up5(4) = (8).

The fifth entry of up5 , which is 13, is only contained in one of those subsequences, and it
follows that psp(5) = 1.

Theorem 2.3.7

Let m, n > 0, and let p, p′ ∈ D(m)
n with p <rot p′ as well as up = (u1, u2, . . . , un) and up′ =

(u′1, u′2, . . . , u′n). Let D =
{

j ∈ {1, 2, . . . , n} | uj 6= u′j and uj > uj−1
}

. Then the open interval
(p, p′) has the homotopy type of a (|D| − 2)-sphere if and only if

uj − 1− uj−1 < m implies u′j − u′j−1 < m, and(2.14)

u′j = uj − 1− psp(j),(2.15)

for all j ∈ D. Otherwise (p, p′) is contractible.

Proof. We need to show that there exists a falling maximal chain in the interval [p, p′]
if and only if (2.14) and (2.15) are satisfied. For that, we write the elements of D again in
decreasing order, namely D = {j1, j2, . . . , js} with j1 > j2 > · · · > js. Let r(0) = p, and for i ∈
{1, 2, . . . , s} construct r(i) from r(i−1) by decreasing the entries of the primitive subsequence of
ur(i−1) at position ji by one. By construction, we have r(i−1)lrot r

(i) and λ
(
r(i−1), r(i)

)
= (ji, uji ).

Hence the chain r(0)lrot r
(1)lrot · · ·lrot r

(s) is falling, and we have psr(i)(jk) = psp(jk) if k < i.

First we show that (2.14) is equivalent to r(i) ≤rot p
′ for all i ∈ {1, 2, . . . , s}, and we proceed

by contradiction. Suppose that there exists some k ∈ {1, 2, . . . , s} such that ujk − 1− ujk−1
< m

and u′jk − u′jk−1 ≥ m, and k is minimal with this property. (This means that jk is the maximal
index with this property.) Since p <rot p′ and ujk 6= u′jk Lemma 2.2.6 implies ujk > u′jk .
If we assume ujk−1 = u′jk−1, then our hypothesis implies ujk − 1 < u′jk < ujk , which is a
contradiction. Hence again with Lemma 2.2.6 it follows that ujk−1 > u′jk−1. Now let r̄ ∈

D(m)
n be the element whose step sequence ur̄ = (ū1, ū2, . . . , ūn) is obtained from ur(k) by

successively decreasing the primitive subsequence at position jk until ūjk = u′jk . Clearly we
have ūjk−1 > u′jk−1. However, since ujk is contained in the primitive subsequence of up at
position jk − 1, it follows that ūjk is contained in the primitive subsequence of ur̄ at position

jk − 1 as well, which implies that r̄ 6≤rot p′. Now let r̄ ∈ D(m)
n be the element whose step
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sequence ur̄ = (ū1, ū2, . . . , ūn) is obtained from ur(k) by successively decreasing the primitive
subsequence at position jk − 1 until ūjk−1 = u′jk−1. By assumption it follows that

ūjk = ujk − ujk−1 + u′jk−1 < m + 1 + u′jk−1 ≤ u′jk + 1,

which implies with Lemma 2.2.6 that r̄ 6≤rot p
′. Hence r(k) 6≤rot p

′.
The converse implication is straightforward since (2.14) implies that whenever in the con-

struction of r(i) from r(i−1) some entry u(i)
k of ur(i) =

(
u(i)

1 , u(i)
2 , . . . , u(i)

n
)

is decreased for k > ji,
then the k-th entry of ur(i+1) belongs to the primitive subsequence of ur(i+1) , and the k-th entry
of up′ belongs to the primitive subsequence of up′ at position ji. Hence r(i) ≤rot p′ for all
i ∈ {1, 2, . . . , s}.

Now we show that (2.15) is equivalent to r(s) = p′. Fix i ∈ {1, 2, . . . , s}, and let ur(i) =

(u(i)
1 , u(i)

2 , . . . , u(i)
n ). The number psp(ji) corresponds to the number of primitive subsequences

of ur(i) at some position k ∈ D with k < ji that contain u(i)
ji

. Hence along the chain r(1) lrot

r(2) lrot · · ·lrot r
(s), the entry u(i)

ji
is decreased exactly psp(ji)-times. By construction, we have

u(i)
ji

= uji − 1, which implies u′ji = uji − 1− psp(ji) as desired.

Hence the chain r(0)lrot r
(1)lrot · · ·lrot r

(s) is a maximal falling chain in [p, p′] if and only
if (2.14) and (2.15) are satisfied. �

Example 2.3.8

If we continue with Example 2.3.6, then we find that the path p′ ∈ D(5)
6 given by the step

sequence up′ = (0, 1, 1, 5, 12, 23) has p ≤rot p
′, and satisfies both (2.14) and (2.15). Figure 16

shows the interval [p, p′] in T (5)
6 , and we can check that µ

T (5)
6

(p, p′) = 1. The unique falling

maximal chain in that interval is

(0, 2, 3, 8, 14, 23)lrot (0, 2, 3, 8, 13, 23)lrot (0, 2, 3, 7, 13, 23)

lrot (0, 2, 2, 6, 13, 23)lrot (0, 1, 1, 5, 12, 23).

The following corollaries are immediate.

Corollary 2.3.9

Let m, n > 0, and let p, p′ ∈ D(m)
n with p <rot p′ as well as up = (u1, u2, . . . , un) and up′ =

(u′1, u′2, . . . , u′n). Let D =
{

j ∈ {1, 2, . . . , n} | uj 6= u′j and uj > uj−1
}

. Then,

µ
T (m)

n
(p, p′) =

{
(−1)|D|, if (2.14) and (2.15) hold,
0, otherwise.

Proof. This follows from Proposition 1.1.12 and Theorem 2.3.7. �

In what follows, we denote the least element of T (m)
n by 0, and the greatest element of

T (m)
n by 1.
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(0, 2, 3, 8, 14, 23)

(0, 1, 2, 7, 13, 23)

(0, 2, 2, 8, 14, 23)

(0, 2, 3, 8, 13, 23)

(0, 1, 1, 7, 13, 23)

(0, 1, 2, 7, 12, 23)

(0, 2, 2, 8, 13, 23) (0, 2, 2, 7, 14, 23)

(0, 2, 3, 7, 14, 23)

(0, 1, 1, 7, 12, 23) (0, 1, 1, 6, 13, 23)

(0, 1, 2, 6, 13, 23)

(0, 2, 2, 7, 13, 23) (0, 2, 2, 6, 14, 23)

(0, 2, 3, 7, 13, 23)

(0, 1, 1, 6, 12, 23) (0, 1, 1, 5, 13, 23)

(0, 1, 2, 6, 12, 23)

(0, 2, 2, 6, 13, 23)

(0, 1, 1, 5, 12, 23)

(2, 2)
(3, 3)

(5, 14)

(4, 8)
(3, 2)

(5, 13)

(4, 7)

(2, 2)

(5, 14)

(4, 8)

(2, 2)

(3, 3)

(4, 8)(5, 13)

(4, 7)
(3, 2)

(4, 7)

(2, 2)

(4, 8)

(2, 2)

(5, 14)

(4, 7)

(2, 2)

(3, 3)
(5, 14)

(4, 7) (5, 13)

(4, 6)

(3, 2)

(5, 13)

(2, 2)

(4, 7)

(2, 2)

(5, 14)

(2, 2)(3, 3)

(4, 6) (5, 13)
(3, 2)

(2, 2)

Figure 16. A spherical interval in T (5)
6 .

Corollary 2.3.10

Let m, n > 0, and let p ∈ D(m)
n with up = (u1, u2, . . . , un). Define D =

{
j ∈ {1, 2, . . . , n} | uj 6=

(j− 1)m
}

, and Dj = {i ∈ D | i < j}. Then,

µ
T (m)

n
(0, p) =

{
(−1)|D|, if uj = (j− 1)m− 1− |Dj| for all j ∈ D,
0, otherwise.
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Proof. By definition, we have u0 = (0, m, 2m, . . . , (n− 1)m). Hence the premise in (2.14)
is (j− 1)m− 1− (j− 2)m = m− 1 < m, and this is always true. Moreover, we have ps0(j) =∣∣{i ∈ D | i < j}

∣∣ = |Dj| for all j ∈ D. If p satisfies (2.15), then uj = (j− 1)m− 1− |Dj|. It
remains to show that under this assumption the conclusion of (2.14) is true. We distinguish
two cases:

(i) Let j− 1 ∈ D. We have

uj − uj−1 = (j− 1)m− 1− |Dj| − (j− 2)m + 1 + |Dj−1| = m− |Dj|+ |Dj−1|.

Thus the conclusion of (2.14) is true if and only if |Dj| − |Dj−1| > 0. Since j− 1 ∈ D, it follows
that Dj−1 ( Dj, and the claim is true.

(ii) Let j− 1 /∈ D. In this case, we have uj−1 = (j− 2)m, and we conclude

uj − uj−1 = (j− 1)m− 1− |Dj| − (j− 2)m = m− 1− |Dj| < m,

as desired.
Hence the interval [0, p] is spherical if and only if (2.15) is satisfied. �

Corollary 2.3.11

Let m, n > 0, and let p ∈ D(m)
n with up = (u1, u2, . . . , un). Then,

µ
T (m)

n
(p, 1) =

{
(−1)|Dp|, if uj = psp(j) + 1 for all j ∈ Dp,
0, otherwise,

where Dp is the set defined just before (2.13).

Proof. By definition, we have u1 = (0, 0, . . . , 0). Hence for p ∈ D(m)
n Condition (2.14) is

trivially true. Moreover, Condition (2.15) reduces to uj = psp(j) + 1. �

We conclude this section with the following result.

Proposition 2.3.12

Let m, n > 0, and define S (m)
n (0) =

{
p ∈ D(m)

n | µ
T (m)

n
(0, p) 6= 0

}
and S (m)

n (1) =
{
p ∈ D(m)

n |
µ
T (m)

n
(p, 1) 6= 0

}
. Then we have ∣∣S (m)

n (0)
∣∣ = 2n−1 =

∣∣S (m)
n (1)

∣∣.
Proof. We first compute the cardinality of S (m)

n (0). Let D ⊆ {2, 3, . . . , n}, and for j ∈ D
define Dj = {i < j | i ∈ D}. Define a sequence u = (u1, u2, . . . , un) by

uj =

{
(j− 1)m− 1− |Dj|, if j ∈ D,
(j− 1)m, otherwise.

Then, u is the step sequence of some p ∈ D(m)
n , and Corollary 2.3.10 implies that µ

T (m)
n

(0, p) =

(−1)|D|. Clearly, for each D ⊆ {2, 3, . . . , n}, there is a unique element with this property.
Hence

∣∣S (m)
n (0)

∣∣ = 2n−1.
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Now we compute the cardinality of S (m)
n (1). Let i ∈ {2, 3, . . . , n}, and let {j1, j2, . . . , jt} ⊆

{i + 1, i + 2, . . . , n} with j1 < j2 < · · · < jt. Set j0 = i, and consider the sequence

u = (0, 0, . . . , 0︸ ︷︷ ︸
j0−1

, 1, 1, . . . , 1︸ ︷︷ ︸
j1−j0

, 2, 2, . . . , 2︸ ︷︷ ︸
j2−j1

, . . . , t + 1, t + 1, . . . , t + 1︸ ︷︷ ︸
n−jt+1

).

Since i > 1, this sequence is indeed the step sequence of some p ∈ D(m)
n , and we have

Dp = {j0, j1, . . . , jt}. Moreover, we have psp(ji) = i. By construction if uj−1 < uj, then uj =

i + 1 = psp(ji) + 1, and Corollary 2.3.11 implies that only in this case µ
T (m)

n
(p, 1) = (−1)|Dp|.

Hence we obtain ∣∣S (m)
n (1)

∣∣ = 1 +
n

∑
i=2

2n−i = 1 +
n−2

∑
i=0

2i = 1 + 2n−1 − 1 = 2n−1

as desired. �

2.4. A new Realization of T (m)
n via Tuples of Dyck Paths

In this section, we define a certain subposet of the m-fold direct product of a bounded
poset, the so-called m-cover poset. We use this construction to obtain a new realization of
T (m)

n in terms of m-tuples of classical Dyck paths of length 2n. Subsequently, we consider
the m-cover poset of a poset associated with the dihedral groups, and we obtain a family of
“m-Tamari like” lattices for the dihedral groups. We conclude this section by discussing some
drawbacks when trying to apply this construction to arbitrary Coxeter groups.

2.4.1. The m-Cover Poset. We start with a very general poset construction. Let P = (P,≤
) be a finite bounded poset, let m > 0, and consider tuples of the form

(2.16)
(
0̂l0 , pl1 , ql2

)
= (0̂, 0̂, . . . , 0̂︸ ︷︷ ︸

l0

, p, p, . . . , p︸ ︷︷ ︸
l1

, q, q, . . . , q︸ ︷︷ ︸
l2

),

for some l0, l1, l2 ∈N with l0 + l1 + l2 = m. The object of our interest is the following poset.

Definition 2.4.1

Let P = (P,≤) be a bounded poset, and let m > 0. Consider the set

(2.17) P〈m〉 =
{(

0̂l0 , pl1
1 , pl2

2
)
∈ Pm | p1 l p2, l0 + l1 + l2 = m

}
.

The poset P 〈m〉 =
(

P〈m〉,≤
)

is called the m-cover poset of P , where its partial order is the
componentwise partial order of P .

Remark 2.4.2

In fact, the previous definition does not necessarily require P to be bounded, it would be
sufficient if P had a least element. However, it is easy to see that P 〈m〉 is bounded if and
only if P is bounded, and since we are mainly interested in the case where P 〈m〉 is a lattice
(and hence bounded), we will use this definition.
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1

2 3

4 6

8 12

24

(a) The poset D24 from Exam-
ple 1.1.1.

(1, 1)

(1, 2) (1, 3)

(1, 6)

(1, 4) (2, 2) (3, 3)

(1, 12) (2, 6) (3, 6)(2, 4)

(1, 8) (4, 4) (6, 6)

(4, 12) (6, 12)(4, 8) (1, 24)

(8, 8) (12, 12)

(8, 24) (12, 24)

(24, 24)

(b) The 2-cover poset D〈2〉24 .

Figure 17. A poset and its corresponding 2-cover poset.

Example 2.4.3

Let us again consider the poset D24 = (D(24), |) from Example 1.1.1. For the convenience
of the reader, we have drawn the Hasse diagram of D24 again in Figure 17(a). If we consider

m = 2, then the set
(

D(24)
)〈2〉 consists of the following 23 elements:

(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (1, 8), (1, 12), (1, 24),

(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (4, 8), (4, 12),

(6, 6), (6, 12), (8, 8), (8, 24), (12, 12), (12, 24), (24, 24),

and the poset D〈2〉24 is displayed in Figure 17(b).

Before we investigate the m-cover poset of the Tamari lattice, we start with some general
properties of the m-cover poset of an arbitrary bounded poset. First of all we determine its
cardinality and its length.

Proposition 2.4.4

Let P = (P,≤) be a bounded poset with n elements, k atoms and c cover relations. For m > 0, we
have `(P 〈m〉) = m · `(P), and

(2.18)
∣∣∣P〈m〉∣∣∣ = (c− k) ·

(
m
2

)
+ m(n− 1) + 1.
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Proof. Suppose that P is a bounded poset with `(P) = s, and let 0̂ = p0 l p1 l · · ·l ps =

1̂ be a maximal chain of P . Define p0,m =
(
0̂m), as well as pi,j =

(
pm−j

i−1 , pj
i
)

for i ∈ {1, 2, . . . , s}
and j ∈ {1, 2, . . . , m}. It is immediately clear that pi,j l pi,j+1 for i ∈ {1, 2, . . . , s} and j ∈
{1, 2, . . . , m− 1}, as well as pi−1,m l pi,1 for all i ∈ {1, 2, . . . , s}. Thus the chain

(2.19) p0,m l p1,1 l p1,2 l p1,m l p2,1 l p2,2 l · · ·l ps,m

is a maximal chain in P 〈m〉 with length ms, which implies `
(
P 〈m〉

)
≥ ms. Since P 〈m〉 is a

subposet of the m-fold direct product of P with itself, it follows that `
(
P 〈m〉

)
≤ `
(
Pm) = ms,

which implies the claim.

Now we want to compute the cardinality of P〈m〉. If p ∈ P〈m〉, then it necessarily has to
be of one of the following four forms:

(i) p =
(
0̂l0 , pl1

1 , pl2
2
)

with l0, l1, l2 6= 0 and 0̂ 6= p1 l p2. Clearly, there are c− k possible
choices for p1 and p2, and each such choice yields (m−1

2 ) distinct elements of P〈m〉.
(ii) p =

(
pl , qm−l) with l ∈ {1, 2, . . . , m− 1} and 0̂ 6= p l q. Again, there are c− k possible

choices of p and q, and each such choice yields m− 1 distinct elements of P〈m〉.
(iii) p =

(
0̂l , pm−l) with l ∈ {1, 2, . . . , m− 1} and 0̂ 6= p. We see immediately that there

are (m− 1)(n− 1) distinct elements of this form in P〈m〉.
(iv) p =

(
pm) with p ∈ P. There are n distinct elements of this form in P〈m〉.

If we add all these possibilities, then we obtain∣∣∣P〈m〉∣∣∣ = (c− k)
(

m− 1
2

)
+ (c− k)(m− 1) + (m− 1)(n− 1) + n

= (c− k)
(

m
2

)
+ m(n− 1) + 1,

as desired. �

Example 2.4.5

The poset D24 in Figure 17(a) consists of 8 elements, two of which are atoms, and it has 10
cover relations. The cardinality of D〈2〉24 is 8 + 14 + 1 = 23 as can be seen in Figure 17(b).

The length of D24 is 4, and a maximal chain is for instance {1, 2, 4, 8, 24}. For m = 2, the
corresponding chain constructed in the proof of Proposition 2.4.4 is{

(1, 1), (1, 2), (2, 2), (2, 4), (4, 4), (4, 8), (8, 8), (8, 24), (24, 24)
}

,

and it can be checked in Figure 17(b) that this is indeed a maximal chain in D〈2〉24 .

Next, we will generalize the concept of join- and meet irreducible elements in a lattice to
arbitrary posets. By definition, join- or meet-irreducible elements are those lattice elements
that have precisely one lower or one upper cover, respectively. From this point of view, these
elements can be defined without any lattice-specific terminology, so we can look for such
elements in arbitrary posets as well. Hence if P = (P,≤) is a poset, then we call p ∈ P join-
irreducible if it has precisely one lower cover, and we denote this element by p?. Moreover, we
denote the set of join-irreducible elements of P by J (P). Dually, we call p ∈ P meet-irreducible
if it has precisely one upper cover, and we denote this element by p?. We denote the set of
meet-irreducible elements of P by M(P). Let us now characterize the irreducible elements
of the m-cover poset.
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Proposition 2.4.6

Let P be a bounded poset, and let m > 0. Then,

J
(
P 〈m〉

)
=
{(

0̂l , pm−l) ∈ P〈m〉 | p ∈ J (P) and 0 ≤ l < m
}

, and

M
(
P 〈m〉

)
=
{(

pl , (p?)m−l) ∈ P〈m〉 | p ∈ M(P) \ {0̂} and 0 < l ≤ m
}

∪
{(

0̂l , 1̂m−l) | 1̂ ∈ J (P) and 0 < l ≤ m
}
∪
{(

0̂m) | 0̂ ∈ M(P)
}

.

Proof. Let p =
(
0̂l0 , pl1

1 , pl2
2
)
∈ P〈m〉 with 0̂ 6= p l q. First suppose that p ∈ J

(
P 〈m〉

)
.

If l1 > 0 and l2 > 0, then it follows that the elements p′ =
(
0̂l0+1, pl1−1

1 , pl2
2
)

and p′′ =(
0̂l0 , pl1+1

1 , pl2−1
2

)
are both lower covers of p in P 〈m〉, contradicting the assumption that p is

join-irreducible. Without loss of generality, we can assume that p =
(
0̂l0 , pl1

1
)
. If l1 = 0, then p

is the least element of P 〈m〉, and thus not join-irreducible, contradicting the choice of p. Now
for every element p̄ ∈ P with p̄ l p1, the element p̄ =

(
0̂l0 , p̄, pl1−1

1
)

is a lower cover of p,
which implies the claim.

Now suppose that p ∈ M
(
P 〈m〉

)
. If l0 > 0 and l1 > 0, then it follows that the elements

p′ =
(
0̂l0−1, pl1+1

1 , pl2
2
)

and p′′ =
(
0̂l0 , pl1−1

1 , pl2+1
2

)
are both upper covers of p in P 〈m〉, contra-

dicting the assumption that p is meet-irreducible. (In the special case where l1 = 0 and l2 > 0,
we can apply the same reasoning.) Hence we have either l0 = 0 or one of l1 and l2 is zero.

First let l0 = 0, and thus p =
(

pl1
1 , pl2

2
)
. Clearly the element p′′ =

(
pl1−1

1 , pl2+1
2

)
satisfies

plp′′. Assume that p1 /∈ M(P). Then it follows immediately that p2 6= 1̂, because otherwise
p1 is a coatom, and thus clearly meet-irreducible, contradicting the assumption. Thus we can
choose an upper cover q2 of p2 in P , and some upper cover q1 of p1 in P with q1 6= p2. It
follows that q1 6= 1̂, and we distinguish three cases:

(i) If q1 ≤ q2, then there exists a chain q1 = w1 l w2 · · ·l wk l q2 in P , and we have
p2 6≤ wk, because otherwise we would obtain a contradiction to p2 l q2. Consider the element
p̄ =

(
wl1

k , ql2
2
)
, which satisfies p ≤ p̄. Suppose that there is some element q ∈ P〈m〉 with

p l q ≤ p̄. Since p2 6≤ wk it follows that q =
(

xl1 , yl2
)

for p1 ≤ x ≤ wk and p2 ≤ y ≤ q2.
If y = p2, then necessarily x = p1, and we obtain q = p, which contradicts the choice of q.
Hence y = q2, and since x is a lower cover of y it follows that x = wk, which implies q = p̄.
Hence p l q. However, since p̄ 6= p′′ we obtain a contradiction to p being meet-irreducible in
P 〈m〉.

(ii) If q2 ≤ q1, then the reasoning is analogous to (i).
(iii) If q1 ‖ q2, then, since P is bounded, there exists a (not necessarily unique) minimal

element w ∈ P with q1, q2 ≤ w, and there exist chains q1 = u1 l u2 l · · · l uk l w and
q2 = v1 l v2 l · · ·l vl lw. Consider the element p̄ =

(
ul1

k , wl2
)
, which satisfies p ≤ p̄. Again,

suppose that there is some element q ∈ P〈m〉 with p l q ≤ p̄. The minimality of w ensures
that p2 6≤ uk, and it follows that q =

(
xl1 , yl2

)
for p1 ≤ x ≤ uk and p2 ≤ y ≤P w. The

minimality of w also ensures that ui ‖ vj for all i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , l}. Since x is
a lower cover of y and q 6= p, it follows that x = uk and y = w, which implies q = p̄. Thus
p l p̄. However, since p̄ 6= p′′ we obtain a contradiction to p being meet-irreducible in P 〈m〉.

Hence if l0 = 0, then it follows that p1 ∈ M(P) and p2 = p?1 .
Now suppose that l0 > 0, and thus that l1 = 0 or l2 = 0. Without loss of generality,

we can write p =
(
0̂l0 , pl1

1
)
. If l1 = 0, then every atom of P yields an upper cover of p, and
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hence p ∈ M
(
P 〈m〉

)
if and only if 0̂ ∈ M(P). Now let l1 > 0. If p1 6= 1̂, then the element

p′ =
(
0̂l1−1, pl2+1

1
)

satisfies p l p′. Moreover, for every upper cover q of p1 in P , the element(
0̂l0 , pl2−1

1 , q
)

is an upper cover of p different from p′, which is a contradiction to p being
meet-irreducible in P 〈m〉. If p1 = 1̂, then for every coatom c of P the element

(
0̂l0−1, c, 1̂l1

)
is an upper cover of p. Hence if l0 > 0, then it follows that either p =

(
0̂m) provided that

0̂ ∈ M(P) or p =
(
0̂l0 , 1̂l1

)
provided that 1̂ ∈ J (P). �

In view of Propositions 2.4.4 and 2.4.6, we can determine the posets for which every
m-cover poset is extremal, i.e. where

∣∣J (P 〈m〉)∣∣ = `
(
P 〈m〉

)
=
∣∣M(

P 〈m〉
)∣∣.

Corollary 2.4.7

Let P be a bounded extremal poset, with `(P) = k. Then, P 〈m〉 is extremal for every m > 0 if and
only if either 0̂ ∈ J (P) and 1̂ ∈ M(P) or 0̂ /∈ J (P) and 1̂ /∈ M(P).

Proof. Proposition 2.4.4 implies that `
(
P 〈m〉

)
= mk, and it follows from the first part

of Proposition 2.4.6 that
∣∣J (P 〈m〉)∣∣ = m

∣∣J (P)
∣∣ = mk. Thus it remains to determine the

cardinality of the set of meet-irreducibles of P 〈m〉. If 0̂ ∈ M(P) and 1̂ /∈ J (P), then the
second part of Proposition 2.4.6 implies

∣∣M(
P 〈m〉

)∣∣ = m(k − 1) + 1 < mk unless m = 1.
Analogously, if 0̂ /∈ M(P) and 1̂ ∈ J (P), then the second part of Proposition 2.4.6 implies∣∣M(

P 〈m〉
)∣∣ = (m + 1)k > mk. On the other hand if 0̂ ∈ M(P) and 1̂ ∈ J (P) or 0̂ /∈

M(P) and 1̂ /∈ J (P), then the second part of Proposition 2.4.6 implies
∣∣M(

P 〈m〉
)∣∣ = mk as

desired. �

If we take a closer look at Figure 17, then we notice that the poset D24 is a lattice while
its 2-cover poset D〈2〉24 is not, since for instance the elements (4, 12) and (6, 12) do not have
a meet. Since by definition the poset P 〈m〉 is an interval of P 〈m+1〉 for every bounded poset
P , it follows that no m-cover poset of D24 is a lattice, unless m = 1. The next proposition
characterizes the bounded posets, whose m-cover posets are always lattices.

Proposition 2.4.8

Let P = (P,≤) be a bounded poset. The m-cover poset P 〈m〉 is a lattice for all m > 0 if and only if
P is a lattice and for all p, q ∈ P we have p ∧ q ∈ {0̂, p, q}.

Proof. Suppose that P is a lattice, and suppose that for every p, q ∈ P, we have p ∧ q ∈
{0̂, p, q}. We want to show first that P 〈m〉 is a lattice again. Let p =

(
0̂k0 , pk1

1 , pk2
2
)

and

q =
(
0̂l0 , ql1

1 , ql2
2
)
. We show that the componentwise meet of p and q, denoted by z, is again

contained in P〈m〉, and since P 〈m〉 is a subposet of Pm it follows that z has to be the meet of
p and q in P 〈m〉. We essentially have two choices for z, depending on the values of k0, k1, k2
and l0, l1, l2:

z =
(
0̂s0 , (p1 ∧ q1)

s1 , (p1 ∧ q2)
s2 , (p2 ∧ q2)

s3
)
, or(2.20)

z =
(
0̂s0 , (p1 ∧ q1)

s1 , (p2 ∧ q1)
s2 , (p2 ∧ q2)

s3
)
,(2.21)

for suitable s0, s1, s2, s3 ∈ {0, 1, . . . , m}, and we distinguish three cases.
(i) Let p1 ∧ q1 = 0̂. Here we need to distinguish three more cases:

(ia) Let p1 ∧ q2 = 0̂. If z is of the form (2.20), then it follows immediately that z ∈ P〈m〉. So,
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suppose that z is of the form (2.21). If q1 ≤ p2, then q1 ≤ p2 ∧ q2 ≤ q2, which implies with
q1 l q2 that z ∈ P〈m〉. If p2 ≤ q1, then it follows immediately that z ∈ P〈m〉. If q1 ‖ p2, then
q1 ∧ p2 = 0̂ by assumption and again z ∈ P〈m〉.
(ib) Let p1 ∧ q2 = p1. Then, both p2 and q2 are upper bounds for p1, and hence p1 ≤ p2 ∧ q2.
If p2 ‖ q2, then p1 = 0̂ = q1, and it follows that z =

(
0̂m) ∈ P〈m〉. If q2 ≤ p2, then p1 = q2,

and it follows that z =
(
0̂s0+s1 , ps2+s3

1
)
∈ P〈m〉 or z =

(
0̂s0+s1 , qs2

1 , qs3
2
)
∈ P〈m〉. If p2 ≤ q2,

then we have either p2 ‖ q1 or p2 = q1. In both cases, if z is of the form (2.20), then we
have z =

(
0̂s0+s1 , ps2

1 , ps3
2
)
∈ P〈m〉. If z is of the form (2.21), then the first case yields z =(

0̂s0+s1+s2 , ps3
2
)
∈ P〈m〉, and the second case yields z =

(
0̂s0+s1 , ps2+s3

2
)
∈ P〈m〉.

(ic) Let p1 ∧ q2 = q2. This works analogously to (ib).
(ii) Let p1 ∧ q1 = p1. Then, it follows by assumption that either p2 ≤ q1 or p1 =

0̂. In the first case, we have z =
(
0̂s0 , ps1+s2

1 , ps3
2
)
∈ P〈m〉 if z is of the form (2.20), or

z =
(
0̂s0 , ps1

1 , ps2+s3
2

)
∈ P〈m〉 if z is of the form (2.21). In the second case, we have z =(

0̂s0+s1+s2 , (p2 ∧ q2)
s3
)
∈ P〈m〉 if z is of the form (2.20). Thus it remains to consider the case

where p1 = 0̂, and z is of the form (2.21). Then, we have either p2 ∧ q1 = 0̂ (which implies
z =

(
0̂m) ∈ P〈m〉), or p2 ∧ q1 = p2 (which implies z =

(
0̂s0+s1 , ps2+s3

2
)
∈ P〈m〉), or p2 ∧ q1 = q1

(which implies z =
(
0̂s0+s1 , qs2

1 , qs3
2
)
∈ P〈m〉).

(iii) Let p1 ∧ q1 = q1. This works analogously to (ii).
Hence every two elements p, q ∈ P〈m〉 have a meet in P 〈m〉, and since P 〈m〉 is finite and

bounded, it is a classical lattice-theoretic result that P 〈m〉 is a lattice.

We prove the converse argument by contradiction. Since P is an interval in P 〈m〉, it follows
immediately that if P is no lattice, then P 〈m〉 cannot be a lattice as well. So suppose that P is
a lattice, and suppose further that there exist two elements p, q ∈ P, with p∧ q = z /∈ {0̂, p, q}.
We explicitly construct two elements p, q ∈ P〈m〉 that do not have a meet in P 〈m〉. Without
loss of generality, we may assume that if p̄, q̄ ∈ P with p ≤ p̄ and q ≤ q̄ satisfy p̄∧ q̄ /∈ {0̂, p̄, q̄},
then p = p̄ or q = q̄. It follows further immediately that neither p = 1̂ nor q = 1̂. Hence
we can find elements p′, q′ ∈ P with p l p′ and q l q′, and it follows that p′ ∧ q′ ∈ {0̂, p′, q′}.
Moreover, since 0̂ 6= z ≤ p′ ∧ q′, it follows that p′ ≤ q′ or q′ ≤ p′, and we assume without loss
of generality that p′ ≤ q′.

On the one hand, consider the elements p =
(

p, (q′)m−1) and q = (q, (q′)m−1), and on the
other hand, the consider elements w1 =

(
0̂, (p′)m−1) and w2 =

(
z, (z′)m−1), where z′ satisfies

zl z′ ≤ p. Then, we have w1, w2 ≤ p, q, and both p and q as well as w1 and w2 are mutually
incomparable. The only candidate for an element that would be larger than w1 and w2 and at
the same time smaller than p and q is

(
z, (p′)m−1), which does, however, not belong to P〈m〉,

since z < p < p′. Hence p and q do not have a meet in P 〈m〉, which implies that P 〈m〉 is not a
lattice. �

Remark 2.4.9

The proof of Proposition 2.4.8 implies that if P 〈m〉 is a lattice, then the meet of two elements
p, q ∈ P〈m〉 is their componentwise meet. However, we can find simple examples that the
same is not true for joins. (Consider for instance the pentagon lattice and m = 2.) Hence in
general P 〈m〉 is a meet-sublattice of Pm.

The condition when every m-cover poset of a given bounded poset is a lattice can be
reformulated in the following way.
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Corollary 2.4.10

Let P be a bounded poset. The m-cover poset P 〈m〉 is a lattice for all m > 0 if and only if the Hasse
diagram of P with 0̂ removed is a tree rooted at 1̂.

Proof. Let H denote the Hasse diagram of P with 0̂ removed, let p, q ∈ P with p ‖ q, and
let m > 1. If H is a tree rooted at 1̂, then by definition it does not contain a cycle. It is easy to
check that P is a lattice and that p ∧ q = 0̂.

Conversely, suppose that P 〈m〉 is a lattice, and that p∧ q = 0̂. If H is not a tree, then it must
contain a cycle, and we can assume without loss of generality that p and q are incomparable
and belong to this cycle. This implies, however, that there is an element z ∈ H with z ≤
p ∧ q = 0̂. This contradicts 0̂ /∈ H, and the proof is completed. �

Remark 2.4.11

The posets which occur in Proposition 2.4.8 and Corollary 2.4.10 are in principle the chord
posets defined in [68]. More precisely, if P is a poset such that for all m > 0 the m-cover poset
P 〈m〉 is a lattice, then the dual of the proper part of P is a chord poset. By definition, chord
posets are in a natural bijection with Dyck paths. We think that this is a nice coincidence,
since we encountered m-cover posets while studying the m-Tamari lattices, and it turns out
that there is this interesting structural correspondence between both objects. From this point
of view, the mysterious connection between the m-Tamari lattice and the m-cover poset of
the Tamari lattice that we exhibit in Section 2.4.3 might perhaps not be too mysterious.

In view of Corollary 2.4.10, we can simplify the formula for the cardinality of P 〈m〉 from
Proposition 2.4.4 in the lattice case.

Corollary 2.4.12

Let P = (P,≤) be a bounded poset with n elements such that P 〈m〉 is a lattice for all m > 0. If
n > 1, then ∣∣∣P〈m〉∣∣∣ = n

(
m + 1

2

)
−m2 + 1.

Proof. Corollary 2.4.10 states that the Hasse diagram of P with 0̂ removed is a tree with
n− 1 nodes. Suppose that H has k leaves. Each leaf of H is an atom of P , and since H has
n− 1 nodes, it follows that P has n− 2 + k cover relations. If we plug these values in (2.18),
then we obtain∣∣∣P〈m〉∣∣∣ = (n− 2 + k− k)

(
m
2

)
+ m(n− 1) + 1 = n

(
m + 1

2

)
−m2 + 1,

as desired. �

Besides their application within the context of the Tamari lattices, the m-cover posets are
interesting posets in their own right, and we have obtained further structural and topological
results in [67]. The precise statement of these results would lead too far from the central topic
of this thesis, so we refer the interested reader to [67, Section 5].
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2.4.2. The Strip-Decomposition. It is our overall goal in the remainder of this chapter
to investigate the connection between the m-Tamari lattices and the m-cover posets of the
classical Tamari lattices, and we will do that in Section 2.4.3. However, we need some more
preparation. By definition, the m-cover poset of Tn consists of m-tuples of Dyck paths of length
2n. In this section we introduce a new decomposition of m-Dyck paths of length (m + 1)n into
m-tuples of Dyck paths of length 2n. This decomposition plays a key role in Section 2.4.3, and
we start right away with the definition.

Definition 2.4.13

Let p ∈ D(m)
n with associated height sequence hp = (h1, h2, . . . , hmn). For i ∈ {1, 2, . . . , m}

let qi denote the Dyck path whose height sequence is hqi = (hi, hi+m, . . . , hi+(n−1)m). The
sequence δ(p) = (q1, q2, . . . , qm) is called the strip-decomposition of p.

The fact that δ is indeed well-defined can be seen easily using (2.3) and (2.4). Moreover,
we can explicitly describe the inverse of δ by using Lemma 2.2.2. For the record we state this
as a lemma.

Lemma 2.4.14

The map δ : D(m)
n →

(
Dn
)m from Definition 2.4.13 is well-defined and injective.

Example 2.4.15

Consider the 5-Dyck path p of length 36 shown in Figure 18(a). Its height sequence is

hp = (1, 1, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6).

The strip-decomposition of p yields the following five sequences

hq1 = (1, 3, 4, 5, 5, 6),

hq2 = (1, 3, 4, 5, 5, 6),

hq3 = (2, 3, 4, 5, 5, 6),

hq4 = (3, 4, 4, 5, 6, 6),

hq5 = (3, 4, 5, 5, 6, 6),

which are the height sequences of the Dyck paths q1, q2, . . . , q5 of length 12 shown in Fig-
ure 18(b).

If q, q′ ∈ Dn have height sequences hq = (h1, h2, . . . , hn) and hq′ = (h′1, h′2, . . . , h′n), then we
say that q′ dominates q if h′i ≥ hi for all i ∈ {1, 2, . . . , n}, and we will usually write q ≤dom q′. In
other words, the two Dyck paths q and q′ never cross, but might share some common edges.

Then, we call the partial order ≤dom the dominance order on Dn. The poset
(
Dn,≤dom

)
has

been investigated for instance in [10, 48–52, 84]. According to [103] an increasing m-fan of Dyck
paths is an m-tuple (q1, q2, . . . , qm) of Dyck paths of length 2n satisfying q1 ≤dom q2 ≤dom
· · · ≤dom qm.

Lemma 2.4.16

If p ∈ D(m)
n , then δ(p) is an increasing m-fan of Dyck paths of length 2n.
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p

(a) A 5-Dyck path p of length 36.

q1 q2 q3 q4 q5

(b) The strip-decomposition of p.

Figure 18. The strip-decomposition of a 5-Dyck path of length 36.

Proof. Let p ∈ D(m)
n with associated height sequence hp = (h1, h2, . . . , hmn), and let

δ(p) = (q1, q2, . . . , qm). For i ∈ {1, 2, . . . , m}, let hqi =
(
h(i)1 , h(i)2 , . . . , h(i)m

)
denote the height

sequence of qi. Then, for i, j ∈ {1, 2, . . . , m} with i < j, and k ∈ {1, 2, . . . , m}, it follows from
(2.3) and Definition 2.4.13 that h(i)k = hk+(i−1)m ≤ hk+(j−1)m = h(j)

k , as desired. �

Example 2.4.17

Let m = 2 and n = 3. Figure 19 shows the twelve 2-Dyck paths of length 9 and their
corresponding strip-decomposition. We notice that in total there are fourteen increasing 2-
fans of Dyck paths of length 6. The remaining two increasing 2-fans of Dyck paths of length
6 are displayed in Figure 20, and it is indicated why these do not correspond to 2-Dyck
paths of length 9.

The next lemma characterizes δ
(
D(m)

n
)
.

Lemma 2.4.18

Let (q1, q2, . . . , qm) be an increasing m-fan of Dyck paths of length 2n with associated height se-
quences hqj =

(
h(j)

1 , h(j)
2 , . . . , h(j)

n
)

for j ∈ {1, 2, . . . , m}. Then, (q1, q2, . . . , qm) induces an m-Dyck

path of length (m + 1)n via δ−1 if and only if h(k)i ≤ h(j)
i+1 for all i ∈ {1, 2, . . . , n− 2} and for all

k > j.

Proof. Let us first consider the case m = 2. Then, δ−1 constructs a sequence h =

(h1, h2, . . . , h2n) with h2i−1 = h(1)i and h2i = h(2)i for all i ∈ {1, 2, . . . , n}. Since (q1, q2) is in-

creasing we obtain h(1)i ≤ h(2)i for all i ∈ {1, 2, . . . , n}. Assume that for all i ∈ {1, 2, . . . , n− 2},
we have h(2)i ≤ h(1)i+1. Since by definition h(1)n = h(2)n = n we obtain h(1)1 ≤ h(2)1 ≤ h(1)2 ≤ · · · ≤
h(2)n , and thus h satisfies (2.3). Moreover, if we apply (2.4) to hq1 and hq2 , then we obtain
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p ∈ D(2)
3 δ(p) ∈

(
D3
)2

p ∈ D(2)
3 δ(p) ∈

(
D3
)2

Figure 19. The twelve 2-Dyck paths of length 9 and the corresponding in-
creasing 2-fans of Dyck paths of length 6.

 

 

Figure 20. The two increasing 2-fans of Dyck paths of length 9 that do not
produce a valid 2-Dyck path of length 6.

h2i−1 = h(1)i ≥ i =
⌈ 2i−1

2
⌉

and h2i = h(2)i ≥ i =
⌈ 2i

2
⌉
. Thus h satisfies (2.4) itself, and must be

the height sequence of some 2-Dyck path p of length 3n.
Conversely, let p ∈ D(2)

n have height sequence hp = (h1, h2, . . . , h2n), and let δ(p) =
(q1, q2). It follows from Lemma 2.4.16 that (q1, q2) is indeed an increasing 2-fan of Dyck paths
of length 2n. By construction, the height sequences of q1 and q2 are hq1 = (h1, h3, . . . , h2n−1)
and hq2 = (h2, h4, . . . , h2n), and with (2.3) follows h2i ≤ h2i+1 as desired.

The reasoning for m > 2 is exactly analogous. �

Recall that given two posets P = (P,≤P) and Q = (Q,≤Q), a map f : P → Q is called
order-preserving if for every p, p′ ∈ P with p ≤P p′ we have f (p) ≤Q f (p′). We have the
following property of δ.

Lemma 2.4.19

The map δ is an order-preserving map from
(
D(m)

n ,≤rot

)
to
(

δ
(
D(m)

n
)
,≤dom

)
.
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(a) The poset
(
D(2)

3 ,≤rot

)
.

(b) The poset
(

δ
(
D(2)

3
)
,≤dom

)
. (c) The poset

(
δ
(
D(2)

3
)
,≤rot

)
.

Figure 21. Illustration of dominance and rotation order on δ
(
D(2)

3
)
.

Proof. We have to show that for p, p′ ∈ D(m)
n with δ(p) = (q1, q2, . . . , qm) and δ(p′) =

(q′1, q′2, . . . , q′m), we have qi ≤dom q′i for all i ∈ {1, 2, . . . , m}. This, however, follows immediately
from Lemma 2.2.6. �

Figures 21(a) and 21(b) show the posets
(
D(2)

3 ,≤rot

)
and

(
δ
(
D(2)

3
)
,≤dom

)
.
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Remark 2.4.20

The converse of Lemma 2.4.19 is not true, i.e. the inverse map δ−1 is not order-preserving

from
(

δ
(
D(m)

n
)
,≤dom

)
to
(
D(m)

n ,≤rot

)
.

Consider for instance the Dyck paths q, q′ ∈ D3 with step sequences uq = (0, 1, 1)
and uq′ = (0, 0, 1). In view of Figure 19, we find that p = δ−1(q, q) has step sequence
up = (0, 2, 2), and p′ = δ−1(q, q′) has step sequence up′ = (0, 1, 2). We have q ≤dom q and
q ≤dom q′, but p 6≤rot p

′.

Remark 2.4.21

We can also consider δ as a map from
(
D(m)

n ,≤rot

)
to
(

δ
(
D(m)

n
)
,≤rot

)
. However, in this

case δ is not order-preserving.
Consider for instance p, p′ ∈ D(2)

3 with up = (0, 1, 2) and up′ = (0, 0, 1). Then we have
p ≤rot p

′ and δ(p) = (q1, q2) with uq1 = (0, 1, 1), uq2 = (0, 0, 1), as well as δ(p′) = (q′1, q′2)
with uq′1

= (0, 0, 1), uq′2
= (0, 0, 0). However, we have q1 6≤rot q′1. See Figure 21(c) for an

illustration of
(

δ
(
D(2)

3
)
,≤rot

)
.

2.4.3. The m-Tamari Lattices as a Lattice Completion. In this section, we will finally
investigate the m-cover poset of Tn. We start with a simple observation on its cardinality.

Proposition 2.4.22

For m, n > 0, we have∣∣∣D〈m〉n

∣∣∣ = n− 1
2

(
Cat(n)− 2

)(m
2

)
+ m · Cat(n)−m + 1.

Proof. It is well known that
∣∣Dn

∣∣ = Cat(n), and it follows by construction that Tn has
n − 1 atoms. Moreover, [58, Theorem 5.3] states that the number of cover relations in Tn is
precisely n−1

2 ·Cat(n). Now plugging these values in Proposition 2.4.4 yields the result. �

We observe that
∣∣D〈m〉n

∣∣ < Cat(m)(n) for n > 3 and m > 1. Moreover, in these cases,

Proposition 2.4.8 implies that T 〈m〉n is no longer a lattice. Since we want to use T 〈m〉n to realize
T (m)

n , we need to consider a lattice completion of T 〈m〉n . Recall that the Dedekind-MacNeille
completion of a poset P , denoted by DM(P), is the smallest lattice that contains P as a subposet.
And indeed, it turns out that this lattice completion will do the trick. We need the following,
well-known result.

Theorem 2.4.23 ([9, Korollar 3])

For every finite lattice L, we have

L ∼= DM
(
J (L) ∪M(L)

)
.

The main result of this section is the following.
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Theorem 2.4.24

For m, n > 0, we have T (m)
n ∼= DM

(
T 〈m〉n

)
.

In order to apply Theorem 2.4.23, we need to understand the irreducible elements of T (m)
n

a bit better. In general, the study of the irreducible elements helps for understanding and
characterizing certain classes of lattices, like for instance distributive and locally distributive
lattices, see [76]. But let us return to the m-Tamari lattices.

Proposition 2.4.25

Let m, n > 0, and let p ∈ D(m)
n with step sequence up = (u1, u2, . . . , un). Then, p ∈ J

(
T (m)

n
)

if
and only if

(2.22) uj =

{
m(j− 1), for j /∈ {i, i + 1, . . . , k},
m(j− i)− s, for j ∈ {i, i + 1, . . . , k}

for exactly one i ∈ {1, 2, . . . , n}, where k ∈ {i + 1, i + 2, . . . , n} and s ∈ {1, 2, . . . , m}. Moreover,
p ∈ M

(
T (m)

n
)

if and only if

(2.23) uj =

{
0, for j ≤ i,
s, for j > i

where s ∈ {1, 2, . . . , mi} and i ∈ {1, 2, . . . , n− 1}.

Proof. Let p ∈ D(m)
n with associated step sequence up = (u1, u2, . . . , un).

First we focus on the join-irreducible elements of T (m)
n . Let p ∈ D(m)

n have a step sequence
of the form (2.22). Since the entries uj for j /∈ {i, i + 1, . . . , k} are maximal, a lower cover of p
can only be obtained by increasing some of the values ui, ui+1, . . . , uk. First, we increase only
one entry, i.e. we consider the path pl ∈ D

(m)
n given by the step sequence

upl = (u1, u2, . . . , ul−1, ul + 1, ul+1, ul+2, . . . , un),

where l ∈ {i, i + 1, . . . , k}. We show that pl lrot p only if l = k. Indeed, if l < k, then we have

ul+1 − (ul + 1) = ml − s−m(l − 1) + s− 1 = m− 1 < m.

Hence ul+1 is contained in the primitive subsequence of pl at position l, which implies that pl
is no lower cover of p. If l = k, then we have

ul+1 − (ul + 1) = ml −m(l − 1) + s− 1 = m + s− 1 ≥ m,

and hence ul+1 is not contained in the primitive subsequence of pl at position l. Thus pk lrot p.
Now we increase at least two entries: for l1, l2 ∈ {i, i + 1, . . . , k} with l1 < l2, we consider

the path pl1,l2 given by the step sequence

upl1,l2
= (u1, u2, . . . , ul1−1, ul1 + 1, ul1+1 + 1, . . . , ul2 + 1, ul2+1, ul2+2, . . . , un).

As before we can show that l2 = k. Moreover, we have

ul2 + 1− (ul1 + 1) = ul2 − ul1 = m(l2 − l1) ≥ m.

Thus pl1,l2 ≤rot p, but pl1,l2 is no lower cover of p. Again we see that pl1,l2−1 6≤rot p, which
implies that every chain from pl1,l2 to p has to pass through pk. Hence pk is the unique lower

cover of p, and it follows that p ∈ J
(
T (m)

n
)

as desired.
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For the converse, suppose that p is not of the form (2.22). Then, we can find two indices
j1, j2 such that uj1 = m(j1 − 1) − s1 and uj2 = m(j2 − 1) − s2 with s1, s2 > 0, and s1 6= s2.
Without loss of generality, we can assume that j2 = j1 + 1, which implies

uj2 − uj1 = mj1 − s2 −m(j1 − 1) + s1 = m + s1 − s2.

If s1 < s2, then we have uj2 − uj1 < m, and uj2 lies in the primitive subsequence of up at
position j1. Now if we increase the entries of the primitive subsequence of up at position j1
by one, then we obtain an m-Dyck path p1, and the j2-nd entry of up1 is contained in the
primitive subsequence of up1 at position j1. Then, p1 lrot p. Analogously, if we increase the
entries of the primitive subsequence of up at position j2, then we obtain another m-Dyck path
p2 with p2 lrot p. Clearly we have p1 6= p2, which implies that p /∈ J

(
T (m)

n
)
. If s1 > s2,

then uj2 − uj1 > m. Now increasing uj1 by one yields an m-Dyck path p1 with p1 lrot p, and
increasing the entries of the primitive subsequence of up by one yields an m-Dyck path p2

with p2 lrot p. Again we have p1 6= p2, which implies p ∈ J
(
T (m)

n
)
.

Now we focus on the meet-irreducible elements of T (m)
n . It follows immediately from

the definition that the number of upper covers of p is precisely the cardinality of the set{
i ∈ {1, 2, . . . , n − 1} | ui < ui+1

}
. Hence p ∈ M

(
T (m)

n
)

if and only if up is of the form
(2.23). �

In view of Proposition 2.4.25, we can easily compute the cardinality of the sets of irre-
ducibles of T (m)

n .

Corollary 2.4.26

For m, n > 0 we have
∣∣J (T (m)

n )
∣∣ = m(n

2) =
∣∣M(T (m)

n )
∣∣.

Proof. This is a straightforward computation. �

Corollary 2.4.27

For m, n > 0 the lattice T (m)
n is extremal.

Proof. This follows from Corollaries 2.3.3 and 2.4.26. �

It was already observed in [76, Theorem 22] that Tn is an extremal lattice. However,
Markowsky also observed in [76] that extremal lattices may contain intervals which are not
extremal. Hence the extremality of T (m)

n is not automatically implied by the fact that T (m)
n is

an interval in Tmn.
Together with Proposition 2.4.6, Proposition 2.4.25 implies what the join- and the meet-

irreducible elements of T (m)
n and T 〈m〉n look like. Using the strip-decomposition, we can now

show that these sets are actually isomorphic. In what follows, let 0 denote the least element
of Tn, i.e. the Dyck path whose step sequence is u0 = (0, 1, . . . , n− 1).

Proposition 2.4.28

For m, n > 0 the posets
(
J
(
T (m)

n
)
,≤rot

)
and

(
J
(
T 〈m〉n

)
,≤rot

)
are isomorphic.
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Proof. It follows from Proposition 2.4.6 that

J
(
T 〈m〉n

)
=
{(

0l , qm−l) | q ∈ J (Tn
)

and 0 ≤ l < m
}

.

We show now that the strip-decomposition is a poset-isomorphism from
(
J
(
T (m)

n
)
,≤rot

)
to(

J
(
T 〈m〉n

)
,≤rot

)
. First we show that δ

(
J
(
T (m)

n
))
⊆ J

(
T 〈m〉n

)
. Let p ∈ J

(
T (m)

n
)

with step

sequence up = (u1, u2, . . . , un). Proposition 2.4.25 implies then that

uj =

{
m(j− 1), for j /∈ {i, i + 1, . . . , k}
m(j− 1)− s, for j ∈ {i, i + 1, . . . , k},

for exactly one i ∈ {1, 2, . . . , n} and some k ∈ {i + 1, i + 2, . . . , n}, as well as some (fixed)
s ∈ {1, 2, . . . , m}. Now let δ(p) = (q1, q2, . . . , qm). It is straightforward to show that

(2.24) uqj =

{
(0, 1, . . . , n− 1), if j ≤ m− s,
(0, 1, . . . , i− 2, i− 2, i− 1, . . . , k− 2, k, k + 1, . . . , n− 1), if j > m− s.

Using Proposition 2.4.25 again, we see that δ(p) = (0, 0, . . . , 0, q, q, . . . , q) for some q ∈ J
(
Tn
)
,

and hence that δ(p) ∈ J
(
T 〈m〉n

)
. Lemma 2.4.14 states that δ is injective, and Proposition 2.4.6

and Corollary 2.4.26 imply ∣∣∣J (T 〈m〉n
)∣∣∣ = m

(
n
2

)
=
∣∣∣J (T (m)

n
)∣∣∣,

and it follows that δ
(
J
(
T (m)

n
))

= J
(
T 〈m〉n

)
.

It remains to show that (in the given setting) δ and its inverse are both order-preserving.
Let p, p′ ∈ J

(
T (m)

n
)

and first assume that p ≤rot p′. Let i, k, s denote the parameters of p

according to Proposition 2.4.25, and let i′, k′, s′ denote the analogous parameters of p′. More-
over, let up = (u1, u2, . . . , un) and up′ = (u′1, u′2, . . . , u′n) denote the step sequences of p and
p′, respectively. In view of (2.24), we can write δ(p) =

(
0m−s, qs) and δ(p′) =

(
0m−s′ , qs′)

for q, q′ ∈ J
(
Tn
)
. We need to show that q ≤rot q′ and s ≤ s′. First of all, Lemma 2.2.6

implies that i′ ≤ i and k ≤ k′. For each j ∈ {i, i + 1, . . . , k}, we have uj = m(j − 1) − s
and u′j = m(j − 1) − s′, and again Lemma 2.2.6 implies uj ≥ u′j, which yields s ≤ s′. In
view of (2.24), we find uq = (0, 1, . . . , i − 2, i − 2, i − 1, . . . , k − 2, k, k + 1, . . . , n} and uq′ =
(0, 1, . . . , i′ − 2, i′ − 2, i′ − 1, . . . , k′ − 2, k′, k′ + 1, . . . , n}, and it is immediate that we can con-
struct a sequence of cover relations in Tn that yields a chain from q to q′. Hence q ≤rot q

′ and
thus δ(p) ≤rot δ(p′).

For the converse, suppose that
(
0m−s, qs) ≤rot

(
0m−s′ , qs′). This implies immediately that

s ≤ s′ and q ≤rot q
′. Since q, q′ ∈ J

(
Tn
)
, we can apply Proposition 2.4.25, and we obtain two

parameters i, k for q and i′, k′ for q′ which satisfy i′ ≤ i ≤ k ≤ k′. Thus we have uj = m(j− 1)
for j /∈ {i, i + 1, . . . , k} and uj = m(j− 1)− s for j ∈ {i, i + 1, . . . , k}, as well as u′j = m(j− 1)
for j /∈ {i′, i′+ 1, . . . , k′} and u′j = m(j− 1)− s′ for j′ ∈ {i′, i′+ 1, . . . , k′}. Again it is immediate

that we can construct a sequence of cover relations in T (m)
n that yields a chain from p to p′.

Hence p ≤rot p
′, and we are done. �

Proposition 2.4.29

For m, n > 0 the posets
(
M
(
T (m)

n
)
,≤rot

)
and

(
M
(
T 〈m〉n

)
,≤rot

)
are isomorphic.
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Proof. If n ≤ 2, then it follows that Tn is either a singleton or a 2-chain, and hence T (m)
n ∼=

T 〈m〉n . So suppose that n > 2. Since Tn has n− 1 atoms and n− 1 coatoms, Proposition 2.4.6
implies that

M
(
T 〈m〉n

)
=
{(

ql , (q?)m−l | q ∈ M
(
Tn
)

and 0 < l ≤ m
}

.

We show now that the strip-decomposition is a poset isomorphism from
(
M
(
T (m)

n
)
,≤rot

)
to
(
M
(
T 〈m〉n

)
,≤rot

)
. First we show that δ

(
M
(
T (m)

n
))
⊆ M

(
T 〈m〉n

)
. If p ∈ M

(
T (m)

n
)
, then

Proposition 2.4.25 implies that up = (0, 0, . . . , a, a, . . . , a), where the a appears first in the
(i + 1)-st position and satisfies 1 ≤ a ≤ mi. If we write a = mk + t with t ∈ {0, 1, . . . , m− 1}
and k ∈ {0, 1, . . . , i}, then we obtain δ(p) = (q1, q2, . . . , qm), where

(2.25) uqj =

{
(0, 0, . . . , 0, k + 1, k + 1, . . . , k + 1), if j ≤ t,
(0, 0, . . . , 0, k, k, . . . , k), if j > t

,

and k + 1 respectively k first appears in the (i + 1)-st position of uqj . It follows from Propo-
sition 2.4.25 that qj ∈ M

(
Tn
)
, and by definition of the rotation order, we have qt lrot qt+1.

Hence δ(p) ∈ M
(
T 〈m〉n

)
. Lemma 2.4.14 states that δ is injective, and Proposition 2.4.6 and

Corollary 2.4.26 imply ∣∣∣M(
T 〈m〉n

)∣∣∣ = m
(

n
2

)
=
∣∣∣M(

T (m)
n
)∣∣∣,

and it follows that δ
(
M
(
T (m)

n
))

=M
(
T 〈m〉n

)
.

It remains to show that (in the given setting) δ and its inverse are both order-preserving.
Let p, p′ ∈ M

(
T (m)

n
)
, and first assume that p ≤rot p′. By assumption, we can write up =

(0, 0, . . . , 0, a, a, . . . , a) with a = mk + t and up′ = (0, 0, . . . , 0, a′, a′, . . . , a′) with a′ = mk′ + t′,
where the nonzero entries appear first in the i-th and i′-th position, respectively. Since p ≤rot
p′, we conclude that i = i′, and either k′ < k or k′ = k and t′ < t. Let δ(p) = (q1, q2, . . . , qm),
and let δ(p′) = (q′1, q′2, . . . , q′m).
(i) If t′ < t, then k′ ≤ k, and in view of (2.25), we obtain

uq1 = uq2 = · · · = uqt′ = (0, 0, . . . , k + 1, k + 1, . . . , k + 1),

uqt′+1
= uqt′+2

= · · · = uqt = (0, 0, . . . , 0, k + 1, k + 1, . . . , k + 1), and

uqt+1 = uqt+2 = · · · = uqm = (0, 0, . . . , 0, k, k, . . . , k),

as well as

uq′1
= uq′2

= · · · = uq′
t′
= (0, 0, . . . , k′ + 1, k′ + 1, . . . , k′ + 1),

uq′
t′+1

= uq′
t′+2

= · · · = uq′t
= (0, 0, . . . , 0, k′, k′, . . . , k′), and

uq′t+1
= uq′t+2

= · · · = uq′m = (0, 0, . . . , 0, k′, k′, . . . , k′),

and it follows immediately that qj ≤rot q
′
j for all j ∈ {1, 2, . . . , m}.

(ii) If t′ ≥ t, then k′ < k, and in view of (2.25), we obtain

uq1 = uq2 = · · · = uqt = (0, 0, . . . , k + 1, k + 1, . . . , k + 1),

uqt+1 = uqt+2 = · · · = uqt′ = (0, 0, . . . , 0, k, k, . . . , k), and

uqt′+1
= uqt′+2

= · · · = uqm = (0, 0, . . . , 0, k, k, . . . , k),
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as well as

uq′1
= uq′2

= · · · = uq′t
= (0, 0, . . . , k′ + 1, k′ + 1, . . . , k′ + 1),

uq′t+1
= uq′t+2

= · · · = uq′
t′
= (0, 0, . . . , 0, k′ + 1, k′ + 1, . . . , k′ + 1), and

uq′
t′+1

= uq′
t′+2

= · · · = uq′m = (0, 0, . . . , 0, k′, k′, . . . , k′),

and it follows again that qj ≤rot q
′
j for all j ∈ {1, 2, . . . , m}. Hence we have δ(p) ≤rot δ(p′). We

can show analogously, that if δ(p) ≤rot δ(p′), then p ≤rot p
′ and we are done. �

The next result states that the irreducible elements of T 〈m〉n are actually enough to con-
struct the Dedekind-MacNeille completion.

Proposition 2.4.30

Every element inD〈m〉n \
{(

0m)} can be expressed as a componentwise join of elements in J
(
T 〈m〉n

)
.

Proof. Let
(
0l0 , ql1 , (q′)l2

)
∈ D〈m〉n . Recall for instance from [97, Theorem 8.1] that every

element of Tn has a so-called canonical join-representation, i.e. that every element of Tn can be
expressed as the join of a unique, minimal set of join-irreducible elements of Tn. Now suppose
that {r1, r2, . . . , rk} is the canonical join-representation of q and {r′1, r′2, . . . , r′k′} is the canonical
join-representation of q′, i.e. q = r1 ∨ r2 ∨ · · · ∨ rk and q′ = r′1 ∨ r′2 ∨ · · · ∨ r′k′ with ri, r′i′ ∈ J

(
Tn
)

for i ∈ {1, 2, . . . , k} and i′ ∈ {1, 2, . . . , k′}. Since qlrot q
′, we can conclude that k < k′, and

without loss of generality we can assume that ri = r′i for i ∈ {1, 2, . . . , k}. Thus if we abbreviate
wi =

(
0l0 , rl1+l2

i
)

for i ∈ {1, 2, . . . , k}, and w′i′ =
(
0l0+l1 , (r′)l2

k+i′
)

for i′ ∈ {1, 2, . . . , k′ − k}, then

we have wi, w′i′ ∈ J
(
T 〈m〉n

)
for i ∈ {1, 2, . . . , k} and i′ ∈ {1, 2, . . . , k′ − k}. Moreover, we have

w1 ∨w2 ∨ · · · ∨wk ∨w′1 ∨w′2 ∨ · · · ∨w′k′−k =

(
0l0 ,
( k∨

i=1

ri

)l1
,
( k′∨

i=1

r′i

))
=
(
0l0 , ql1 , (q′)l2

)
.

�

Now everything is set to prove the connection between T (m)
n and the m-cover poset of Tn

stated in Theorem 2.4.24.

Proof of Theorem 2.4.24. By using Theorem 2.4.23 and Propositions 2.4.28–2.4.30, we
obtain

T (m)
n ∼= DM

(
J
(
T (m)

n
)
∪M

(
T (m)

n
)) ∼= DM

(
J
(
T 〈m〉n

)
∪M

(
T 〈m〉n

)) ∼= DM
(
T 〈m〉n

)
.

�

Example 2.4.31

Let us illustrate the case m = 2 and n = 4. The Tamari lattice T4 is shown again in Figure 22,
and the elements of D〈2〉4 are the following:(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,
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,

)
,
(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
,
(

,
)
.

Now we notice that for instance the pairs
(

,
)

and
(

,
)

do not have a meet in

T 〈2〉4 , since(
,

)
≤rot

(
,

)
,
(

,
)
, and

(
,

)
≤rot

(
,

)
,
(

,
)
,

but
(

,
)

and
(

,
)

are mutually incomparable.
The componentwise meet of

(
,

)
and

(
,

)
is
(

,
)
. If we now succes-

sively add all the missing meets, then we can check that we have to include the following
ten elements:(

,
)
,

(
,

)
,

(
,

)
,

(
,

)
,

(
,

)
,(

,
)
,

(
,

)
,

(
,

)
,

(
,

)
,

(
,

)
,

and these 55 elements form a lattice which is indeed isomorphic to T (2)
4 , see Figure 23.

Theorem 2.4.24 states that we can realize T (m)
n as a poset of m-tuples of Dyck paths

equipped with componentwise rotation order. However, this realization is rather implicit,
since we only know what the elements of T 〈m〉n look like, but we have no explicit description
of the elements added during the lattice completion. We present now an explicit, but only
conjectural description of this realization. Let ∧ and ∨ denote meet and join in Tn, and for
i, j ∈ {1, 2, . . . , m} consider the map

βi,j :
(
Dn
)m →

(
Dn
)m, (q1, q2, . . . , qm) 7→

(q1, q2, . . . , qi−1, qi ∧ qj, qi+1, qi+2, . . . , qj−1, qi ∨ qj, qj+1, qj+2, . . . , qm).

We call the composition

(2.26) β = βm−1,m ◦ βm−2,m ◦ · · · ◦ β2,3 ◦ β1,m ◦ · · · ◦ β1,3 ◦ β1,2

the bouncing map. (This composition acts from the left, i.e. we first apply β1,2, then β1,3, and
so on.) In particular, it follows that β(q1, q2, . . . , qm) is a multichain in Tn. If we abbreviate
ζ = β ◦ δ (again acting from the left), then we obtain a map

(2.27) ζ : D(m)
n →

(
Dn
)m, p 7→ ζ(p).

Example 2.4.32

Let p be the 5-Dyck path of length 36 with strip-decomposition δ(p) = (q1, q2, q3, q4, q5)
as illustrated in Figure 18. There are only two non-trivial steps in the application of the
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Figure 22. The Tamari lattice T4 again.

bouncing map:

i = 1, j = 3 : q1 ∧ q3 = 0, and q1 ∨ q3 = r1 with ur1 = (0, 0, 0, 1, 2, 5);

i = 2, j = 4 : q2 ∧ q4 = r2 with ur2 = (0, 1, 1, 2, 4, 5), and q2 ∨ q4 = q5.

Thus we have ζ(p) = (0, r2, r1, q5, q5).

Computer experiments suggest the following somewhat surprising property of ζ.

Conjecture 2.4.33

The posets
(
D(m)

n ,≤rot

)
and

(
ζ
(
D(m)

n
)
,≤rot

)
are isomorphic.

Remark 2.4.34

In general, β is not an order-preserving map from
(

δ
(
D(m)

n
)
,≤dom

)
to
(

ζ
(
D(m)

n
)
,≤rot

)
.

Consider for instance the Dyck paths q1, q2, q′1, q′2 ∈ D5 given by the height sequences
hq1 = (1, 3, 3, 4, 5), hq2 = (2, 3, 4, 4, 5), hq′1

= (2, 3, 3, 5, 5) and hq′2
= (2, 3, 4, 5, 5). Then, it

follows that q1 ≤dom q′1 and q2 ≤dom q′2. Moreover, the pairs (q1, q2) and (q′1, q′2) satisfy the

conditions from Lemma 2.4.18, which implies that they are indeed contained in δ
(
D(2)

5
)
.
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Figure 23. The lattice DM
(
T 〈2〉4

)
. The highlighted elements are added during

the lattice completion.
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Further we have

hq1∧q2 = (1, 2, 3, 4, 5) and hq1∨q2 = (3, 3, 4, 4, 5), as well as

hq′1∧q′2
= (2, 3, 3, 4, 5) and hq′1∨q′2

= (2, 3, 5, 5, 5).

The corresponding step sequences are

uq1∧q2 = (0, 1, 2, 3, 4) and uq1∨q2 = (0, 0, 0, 2, 4), as well as

uq′1∧q′2
= (0, 0, 1, 3, 4) and uq′1∨q′2

= (0, 0, 1, 2, 2),

which implies β(q1, q2) 6≤rot β(q′1, q′2).

However, if p, p′ ∈ D(2)
5 are the 2-Dyck paths satisfying δ(p) = (q1, q2) and δ(p′) =

(q′1, q′2), then we can quickly check that up = (0, 1, 2, 5, 8) and up′ = (0, 0, 2, 5, 6), which
implies p 6≤rot p

′. So this is not a counterexample to Conjecture 2.4.33.

The following conjecture turns out to be equivalent to Conjecture 2.4.33, as we will explain
afterwards.

Conjecture 2.4.35

The map ζ from (2.27) is injective.

Remark 2.4.36

Suppose that Conjecture 2.4.35 is true, and let Irr
(
T (m)

n
)
= J

(
T (m)

n
)
∪M

(
T (m)

n
)
. Then,

it follows that
∣∣∣D(m)

n

∣∣∣ = ∣∣∣ζ(D(m)
n
)∣∣∣, and we can quickly check that if p ∈ Irr

(
T (m)

n
)
, then

ζ(p) = δ(p). Hence it follows from Theorem 2.4.23, and Propositions 2.4.28 and 2.4.29 that(
D(m)

n ,≤rot

)
= T (m)

n

∼= DM
(

Irr
(
T (m)

n
))

∼= DM
(

Irr
(
δ
(
D(m)

n
))

,≤rot
))

∼= DM
(

Irr
(
ζ
(
D(m)

n
))

,≤rot
))

⊇
(

ζ
(
D(m)

n
)
,≤rot

)
.

Since ζ is injective, the claim of Conjecture 2.4.33 follows.
Conversely, if Conjecture 2.4.33 is true, then Conjecture 2.4.35 follows immediately,

since poset isomorphisms are by definition injective.

2.4.4. A Family of “m-Tamari Like” Lattices for the Dihedral Groups. We complete this
section by defining a family of lattices associated with the dihedral group I2(k) which is
parametrized by a positive integer m. In particular let Ck denote the lattice consisting of k + 2
elements whose proper part is the disjoint union of a (k− 1)-chain and a singleton. The poset
of interest in this section is C〈m〉k , the m-cover poset of Ck. For later use, we denote the elements
of the (k− 1)-chain of Ck by a1, a2, . . . , ak−1, we denote the singleton element of Ck by b, and
we denote the least and the greatest element of Ck by 0̂ and 1̂, respectively. See Figure 24 for
an illustration.

We can use the results from Section 2.4.1 to determine certain properties of C〈m〉k .
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0̂

a1

a2

a3 b

1̂

1

42

3

4 1

(a) The lattice C4.

(0̂, 0̂, 0̂)

(0̂, 0̂, a1)

(0̂, a1, a1) (0̂, 0̂, a2)

(a1, a1, a1) (0̂, a1, a2)

(a1, a1, a2) (0̂, a2, a2)

(a1, a2, a2) (0̂, 0̂, a3)

(a2, a2, a2) (0̂, a2, a3)

(a2, a2, a3) (0̂, a3, a3) (0̂, 0̂, b)

(a2, a3, a3) (0̂, 0̂, 1̂) (0̂, b, b)

(a3, a3, a3) (0̂, a3, 1̂) (0̂, b, 1̂) (b, b, b)

(a3, a3, 1̂) (0̂, 1̂, 1̂) (b, b, 1̂)

(a3, 1̂, 1̂) (b, 1̂, 1̂)

(1̂, 1̂, 1̂)

1

10

2 4

3 4 2

74 3 5

5 3

7

6 2

107 3 8

8 3

10

1 11

9 2 11 1 12

10 3 11 2 12 1

11 3 12 2

12 3

(b) The lattice C〈3〉4 .

Figure 24. Two Fuß-Catalan lattices associated with the dihedral group
I2(4). The highlighted chains consist of left-modular elements, and the edge-
labeling is the one defined in (1.2).

Proposition 2.4.37

For k > 1 and m > 0 the poset C〈m〉k is a lattice. Its length is mk and its cardinality is (m+1
2 )k +

m + 1.
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Proof. By definition, the Hasse diagram of Ck with 0̂ removed is a tree, hence the lattice
property of C〈m〉k follows from Corollary 2.4.10. Moreover, since k > 1, the lattice C〈m〉k has
length k, cardinality k + 2, it has two atoms and k + 1 cover relations. Hence the results on the
length and the cardinality of C〈m〉k follow from Proposition 2.4.4. �

Disclaimer 2.4.38

By definition, the lattice C1 has three elements, and in this case, the m-cover poset C〈m〉1
has (m

2 ) + 2m + 1 elements, which does not agree with the formula from Proposition 2.4.37.
Hence we will always exclude the case k = 1 from our considerations.

In the beginning of this section we have claimed that the lattices Ck are associated with
the dihedral group I2(k). Indeed, as we will see in Chapter 3 there exist generalizations of
the Tamari lattices for all Coxeter groups, and thus in particular for the dihedral groups. The
degrees of I2(k) are d1 = 2 and d2 = k, provided that k > 1. Hence according to (0.3), we can
define Fuß-Catalan numbers for I2(k) by

Cat(m)(I2(k)) =
mk + 2

2
· mk + k

k
=

m2k + mk + 2m + 2
2

=

(
m + 1

2

)
k + m + 1,

which is precisely the cardinality of C〈m〉k . Thus the lattices C〈m〉k can be seen as an m-Tamari
lattice of type I. The next lemma states that this connection is consistent with respect to the
fact that the symmetric group A2 is isomorphic to the dihedral group I2(3).

Lemma 2.4.39

For m > 0, we have T (m)
3
∼= C〈m〉3 .

Proof. We can see for instance from Figure 9 that T3 ∼= C3. Proposition 2.4.8 implies that
T 〈m〉3 is a lattice for all m > 0. Hence in view of Theorem 2.4.24, we conclude

T (m)
3
∼= DM

(
T 〈m〉3

) ∼= T 〈m〉3
∼= C〈m〉3 .

�

Now it is evident, to ask whether this construction also works for the other Coxeter
groups. However, we notice that this already fails in type B. There are explicit descriptions of
Tamari lattices of type B, see [93, 122], which fit nicely in the framework of Cambrian lattices
described in the next chapter. The corresponding Fuß-Catalan number of type B is

Cat(m)(Bn) =
n

∏
i=1

2mn + 2i
2i

=

(
(m + 1)n

n

)
,

and for n = 3 and m = 2, we obtain Cat(2)(B3) = (9
3) = 84. However, we can check that the

corresponding type B Tamari lattice has 20 elements, 3 atoms and 30 cover relations. Hence
Proposition 2.4.4 implies that its 2-cover poset has only 66 elements, and we can check that
the corresponding Dedekind-MacNeille completion has 88 elements. See Figure 32 for an
illustration of this lattice. See also Appendix A for some tables containing the cardinalities
of the m-cover posets and of their Dedekind-MacNeille completion for all Cambrian lattices
associated with finite Coxeter groups of rank at most 4 and m ≤ 4.
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We conclude this chapter with a short topological investigation of the lattices C〈m〉k . In

particular, we show that the lattices C〈m〉k are trim for all k > 1 and m > 0. See Section 1.1.5

for the terminology. Let C〈m〉k = {0̂, a1, a2, . . . , ak−1, b, 1̂} denote the ground set of C〈m〉k , and let

≤k denote the partial order of C〈m〉k .

Proposition 2.4.40

For k > 1 and m > 0, the lattice C〈m〉k is trim. Moreover, if w, w′ ∈ C〈m〉k with w ≤k w′, then we
have

µC〈m〉k
(w, w′) =


1, if [w, w′] is nuclear and has two atoms,
−1, if w lk w′,
0, otherwise.

Proof. First we show that every element in C〈m〉k has at most two upper covers. Let

w ∈ C〈m〉k . We distinguish three cases:

(i) Let w =
(
0̂l0 , al1

i , al2
i+1

)
for i ∈ {1, 2, . . . , k − 1}, where ak is to be interpreted as 1̂.

Since ai+1 is the unique upper cover of ai, and ai ‖k b it follows that
(
0̂l0−1, al1+1

i , al2
i+1

)
and(

0̂l0 , al1−1
i , al2+1

i+1

)
are the only possible upper covers of w.

(ii) Let w =
(
0̂l0 , bl1 , 1̂l2

)
. Again since 1̂ is the unique upper cover of b and since b ‖k ai

for all i ∈ {1, 2, . . . , k− 1}, it follows that
(
0̂l0−1, bl1+1, 1̂l2

)
and

(
0̂l0 , bl1−1, 1̂l2+1) are the only

possible upper covers of w.
(iii) Let w =

(
0̂m). Since a1 and b are the only atoms of Ck it follows that

(
0̂m−1, a1

)
and(

0̂m−1, b
)

are the only upper covers of w.

Next we show that C〈m〉k is trim. Since k > 1 it follows that 0̂ /∈ M
(
Ck
)

and 1̂ /∈ J
(
Ck
)
,

and since Ck is extremal Corollary 2.4.7 implies that C〈m〉k is extremal. Let a0,m =
(
0̂m), and

define ai,j =
(
am−j

i−1 , aj
i
)

for i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , m}. (Again, a0 and ak are to
be interpreted as 0̂ and 1̂, respectively.) Then it follows from the proof of Proposition 2.4.4
that a0,m lk a1,1 lk · · ·lk ak,m is indeed a maximal chain in C〈m〉k . We show that ai,j is left-
modular for i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , m}. (The element a0,m is the least element of
C〈m〉k and thus trivially left-modular.) Fix i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , m}. In view of

Theorem 1.1.21 it suffices to consider elements w, w′ ∈ C〈m〉k with w lk w′. We distinguish
two cases:

(i) Let w′ =
(
0̂l0 , al1

s , al2
s+1
)

for s ∈ {1, 2, . . . , k− 1} and l0 < m. Then we have essentially

two choices for w, namely w1 =
(
0̂l0−1, al1+1

s , al2
s+1
)

or w2 =
(
0̂l0 , al1−1

s , al2+1
s+1

)
. We have

ai,j ∧k w′ =


(
0̂l0 , al1

s , al2
s+1
)
, if s < i,(

0̂l0 , am−l0−min{j,l2}
s , amin{j,l2}

s+1
)
, if s = i,(

0̂l0 , am−l0−j
s , aj

s+1
)
, if s > i.
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It follows that ai,j ∧k w1 6= ai,j ∧k w′ and ai,j ∧k w2 6= ai,j ∧k w′ if and only if s < i or s = i and
l2 < j. On the other hand, we have

ai,j ∨k w′ =


(
am−j

i , aj
i+1

)
, if s < i,(

am−max{j,l2}
s , amax{j,l2}

s+1
)
, if s = i,(

am−l2
s , al2

s+1
)
, if s > i.

Here it follows that ai,j ∨k w1 = ai,j ∨k w′ and ai,j ∨k w2 = ai,j ∨k w′ if and only if s < i or s = i
and l2 < j.

(ii) Let w′ =
(
0̂l0 , bl1 , 1̂l2

)
with l0, l2 < m. Again, we have essentially two choices for w,

namely w1 =
(
0̂l0−1, bl1+1, 1̂l2

)
or w2 =

(
0̂l0 , bl1−1, 1̂l2+1). We have

ai,j ∧k w′ =

{(
0̂m−l2 , al2

i+1

)
, if l2 ≤ j,(

0̂m−l2 , al2−j
i , aj

i+1

)
, if l2 > j.

It follows that ai,j ∧k w1 = ai,j ∧k w′ and ai,j ∧k w2 6= ai,j ∧k w′. On the other hand, we have

ai,j ∨k w′ =
(
al0

k−1, 1̂m−l0
)
.

Here it follows that ai,j ∨k w1 6= ai,j ∨k w′ and ai,j ∨k w2 = ai,j ∨k w′.

Thus ai,j is left-modular, and so is C〈m〉k , which implies with its extremality that it is trim.

Finally we compute the values of the Möbius function of C〈m〉k . Let w, w′ ∈ C〈m〉k with w ≤k
w′. First suppose that [w, w′] is nuclear. Then Theorem 1.1.24 implies that µC〈m〉k

(w, w′) =

(−1)s, where s is the number of atoms of [w, w′]. In view of the first part of this proof it
follows that s ≤ 2. If s = 1, then necessarily w lk w, because we assumed [w, w′] to be
nuclear. If [w, w′] is not nuclear, then Theorem 1.1.24 implies that µC〈m〉k

(w, w′) = 0. Hence

the proof is complete. �





CHAPTER 3

The Cambrian Lattices

3.1. Introduction

Björner and Wachs observed in [26, Theorem 9.6] that the Tamari lattice Tn is isomor-
phic to the lattice of 312-avoiding permutations of {1, 2, . . . , n} under (right) weak order. This
observation led Reading in [93] to the construction of a generalization of the Tamari lattices
different from the m-Tamari lattices considered in the previous chapter. In type A the key
observation for this generalization is that each permutation of {1, 2, . . . , n} induces a triangu-
lation of a regular (n + 2)-gon as follows. We denote the (n + 2)-gon by Qn, and we label
its nodes by 0, 1, . . . , n + 1. We draw the nodes 0 and n + 1 on a horizontal line, and for
i ∈ {1, 2, . . . , n} we place the node i in such a way strictly between the nodes i− 1 and i + 1
that we obtain a convex polygon in which no three nodes are collinear. Then, we define
η0 = (0, 1, . . . , n + 1), and we interpret it as drawing a path from 0 to n + 1 by connecting con-
secutive entries in η0. Let π ∈ An−1 be a permutation, where π = π1π2 · · ·πn is its one-line
notation, i.e. πi = π(i) for i ∈ {1, 2, . . . , n}. We construct ηi from ηi−1 by removing πi, and
again we interpret ηi as drawing a path from 0 to n + 1 through the nodes contained in ηi.
Since π ∈ An, it follows that ηn = (0, n + 1). If we now superimpose the paths η0, η1, . . . , ηn
on Qn, then we obtain a triangulation of Qn. See Figure 25 for an illustration. We denote the
set of all triangulations of Qn by ∆(Qn), and hence there is a well-defined map from An−1 to
∆(Qn) that we also denote by η.

In order to recover the Tamari lattice as a poset on triangulations, we need to define a
suitable partial order. It is obvious that each triangulation D ∈ ∆(Qn) is completely charac-
terized by its diagonals, namely lines connecting two nodes i and j with i 6≡ j± 1 (mod n + 2).
If we remove a diagonal d from D, then we obtain a quadrilateral, and if we put the opposite
diagonal d′ back in, then we obtain a different triangulation D′ ∈ ∆(Qn). If the slope of d′

(with respect to the embedding of Qn in the plane described in the previous paragraph) is
larger than the slope of d, then we interpret such a move as going up one step. Hence we can
define a partial order on ∆(Qn), denoted by ≤flip, where the cover relations are diagonal flips.
See Figure 26 for an illustration.

However, we notice that there are n! elements in An−1, but only Cat(n) elements in ∆(Qn),
see [113, Exercise 6.19(a)]. Hence the map η is certainly not injective, but it is easy to see that
η is surjective. But more can be said. Recall that a fiber of a map f : M → N is the preimage
f−1(n) = {m ∈ M | f (m) = n} for some n ∈ N, and recall that a lattice congruence of a lattice

67
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Figure 25. A triangulation of Q6 derived from the permutation 253461.
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Putting the opposite
diagonal (4, 7) back in.

Figure 26. Illustration of a diagonal flip.

P = (P,≤) is an equivalence relation θ on P respecting joins and meets, i.e. if p1 θ p2 and
q1 θ q2 for p1, p2, q1, q2 ∈ P, then (p1 ∧ q1) θ (p2 ∧ q2) and (p1 ∨ q1) θ (p2 ∨ q2).

Theorem 3.1.1 ([93, Theorem 5.1])

The fibers of η are the congruence classes of a lattice congruence θ on the weak order on An−1. In
particular, η is a surjective lattice homomorphism. Moreover, an element π ∈ An−1 is the least
element in a congruence class of θ if and only if it is 312-avoiding.

Example 3.1.2

Figure 27(a) shows the weak order lattice of A3, where the nodes are labeled by the trian-
gulations induced via the map η. The non-singleton congruence classes with respect to the
congruence relation mentioned in Theorem 3.1.1 are highlighted. Figure 27(b) shows the
corresponding sublattice of 312-avoiding permutations and this lattice is indeed isomorphic
to T4.
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(a) The weak order lattice on A3 realized as a poset on
triangulations of a convex 6-gon.

(b) The sublattice
(
∆(Q4),≤flip

)
.

Figure 27. Two posets on triangulations of a convex 6-gon.

The next step in Reading’s generalization of the Tamari lattices is the observation that
different embeddings of Qn in the plane yield different lattice congruences of the weak order
on An−1. More precisely, let f : {1, 2, . . . , n} → {−1, 1} be some map, and embed Qn in
the plane as follows. Again we draw the nodes 0 and n + 1 on a horizontal line, and for
i ∈ {1, 2, . . . , n} we draw the node i strictly between the nodes i− 1 and i + 1. Now, however,
we draw the node i below the line connecting 0 and n + 1 if and only if f (i) = −1, and
we draw it above otherwise, and we denote the resulting polygon by Q( f )

n . Then, we derive
a triangulation of Q( f )

n from a permutation π ∈ An−1 with one-line notation π1π2 · · ·πn
similarly to before: let O =

{
i ∈ {1, 2, . . . , n} | f (i) = 1

}
= {o1, o2, . . . , ok}, and let U ={

i ∈ {1, 2, . . . , n} | f (i) = −1
}

= {u1, u2, . . . , un−k}. Let η
( f )
0 = (0, u1, u2, . . . , un−k, n + 1).

We construct η
( f )
i from η

( f )
i−1 by adding the index i if and only if f (i) = 1 and by removing it

otherwise. It is clear that η
( f )
n = (0, o1, o2, . . . , ok, n + 1), and we denote the map from An−1

to ∆
(
Q( f )

n
)

by η( f ). See Figure 28 for an illustration. The partial order remains the same as
before, namely going up one step by flipping a diagonal and increasing the slope. Reading

proved the following result.

Theorem 3.1.3 ([93, Theorem 5.1])

The fibers of η( f ) are the congruence classes of a lattice congruence θ( f ) on the weak order on An.
In particular, η( f ) is a surjective lattice homomorphism.

Figure 29 shows the poset
(
∆
(
Q( f )

6
)
,≤flip

)
, where f (1) = f (2) = −1 and f (3) = f (4) = 1.

If we compare Figures 27(b) and 29, then we observe that varying the map f yields different
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Figure 28. A triangulation of Q( f )
6 , where f (1) = f (2) = f (3) = −1 and

f (4) = f (5) = f (6) = 1, derived from the permutation 253461.

sublattices of the weak order, in the sense that they are in general nonisomorphic. How-
ever, these sublattices are “combinatorially isomorphic” in the following sense: their Hasse
diagrams can be seen as the 1-skeleton of an (n− 1)-dimensional polytope, i.e. their vertices
correspond to the 0-dimensional faces of some polytope, and their cover relations correspond
to the 1-dimensional faces of the same polytope. It turns out that this polytope does not
depend on the map f , see [93, Theorem 1.3]. In particular, this polytope is the well-known
associahedron. The fact that the Hasse diagram of the Tamari lattice is the 1-skeleton of the as-
sociahedron was already observed by Tamari. Later, Stasheff independently (re)discovered
the associahedra in the context of H-spaces and the study of associativity up to homotopy, see
[114,115]. Since then, analogously to the Tamari lattices, the associahedra have been attractive
objects of research, and we refer again to [86] for a recent overview on the appearances of the
associahedra in many different fields of mathematics.

The maps f from before do not only induce embeddings of a convex (n + 2)-gon in the
plane, they are also in correspondence with the Coxeter elements of An−1. Recall that the
Coxeter diagram of An−1 is a path with n− 2 edges. For i ∈ {1, 2, . . . , n− 2}, we orient the
edge between si and si+1 from left to right if and only if f (i + 1) = −1, and from right to left
otherwise. Thus each f yields a (not necessarily different) orientation of the Coxeter diagram
of An−1, and these orientations are in bijection with the Coxeter elements of An−1, see [105].
See Figure 30 for an illustration.
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Figure 29. The poset
(
∆(Q( f )

4 ),≤flip
)
, where f (1) = f (2) = 1 and f (3) =

f (4) = −1.
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(a) f (1) = f (2) = f (3) = f (4) = f (5) =

f (6) = −1.
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(b) f (1) = f (2) = f (3) = −1, f (4) = f (5) =

f (6) = 1.

Figure 30. Two embeddings of a convex 8-gon and the corresponding orien-
tation of ΓA5 .

Type-B analogues of the associahedra have been proposed in [29, 107, 116]. More gener-
ally, in [54] generalized associahedra have been defined for all Weyl groups in the context
of cluster algebras. A type-B Tamari lattice was introduced in [122] as a poset on centrally
symmetric triangulations, where the partial order is given by diagonal flips. In [93], Reading

showed that, analogously to the case of ordinary triangulations, different embeddings of the
underlying polygon yield different sublattices of the weak order of the Coxeter group of type
B. These ideas led Reading to the definition of so-called γ-sortable elements for an arbitrary
Coxeter group W and some Coxeter element γ ∈ W, see [95, 97] This construction in turn
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defined generalized associahedra simultaneously for every finite Coxeter group. Moreover,
Reading’s γ-sortable elements constitute a sub-semilattice of the weak order semilattice of
W. Thus they provide a generalization of the Tamari lattices to all Coxeter groups. These
semilattices, the so-called γ-Cambrian semilattices, are the object of interest in this chapter.

Here we investigate some topological and structural properties of the γ-Cambrian semi-
lattices. In particular, we prove that these semilattices are EL-shellable, and we compute their
Möbius function, see Theorem 3.4.1. Moreover, we prove that the γ-Cambrian semilattices
are trim, and that they are bounded-homomorphic images of some free lattice, see Theo-
rems 3.4.14 and 3.5.1. All of these results generalize known properties of the Tamari lattices,
and they are obtained in a uniform way, i.e. they are obtained simultaneously for all Coxeter
groups and all Coxeter elements.

3.2. Definition and Examples

Let us now formally define the γ-Cambrian semilattices associated with a Coxeter system
(W, S) of rank n and a Coxeter element γ ∈ W. Let S = {s1, s2, . . . , sn} and recall that
γ = sσ1 sσ2 · · · sσn for some permutation σ of {1, 2, . . . , n}. Without loss of generality, we can
assume σ to be the identity and hence γ = s1s2 · · · sn. Consider the half-infinite word

(3.1) γ∞ = s1s2 · · · sn|s1s2 · · · sn|s1 · · · ,

where the vertical bars serve only for indicating the repetitions of γ and do not have any
influence on the structure of the word. Since S generates W every reduced decomposition of
some w ∈ W can be written as a subword of γ∞, and among all reduced decompositions of
w there is a unique reduced decomposition that is lexicographically first as a subword of γ∞.
We call this reduced decomposition the γ-sorting word of w, and we denote it by γ(w). We can
write

(3.2) γ(w) = sδ1,1
1 sδ1,2

2 · · · sδ1,n
n |s

δ2,1
1 sδ2,2

2 · · · sδ2,n
n | · · · |s

δl,1
1 sδl,2

2 · · · s
δl,n
n ,

for some l ∈ N with δi,j ∈ {0, 1} for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , l}. Now for i ∈
{1, 2, . . . , l}, we call the set

(3.3) bi =
{

sj | j ∈ {1, 2, . . . , n} and δi,j = 1
}

the i-th block of w1.

Definition 3.2.1

Let (W, S) be a Coxeter system of rank n, where S = {s1, s2, . . . , sn}, and let γ = s1s2 · · · sn ∈
W be a Coxeter element of W. We call an element w ∈W γ-sortable if the sequence of blocks
of w is weakly decreasing with respect to inclusion, i.e. b1 ⊇ b2 ⊇ · · · ⊇ bl . We write Cγ for
the set of γ-sortable elements of W.

Remark 3.2.2

It follows from [94, Theorem 4.12] that a permutation π ∈ An−1 is γ-sortable for γ =
s1s2 · · · sn−1 with si = (i i+1) for i ∈ {1, 2, . . . , n− 1} if and only if it is 312-avoiding.

1Note that we speak of a “block of w”, when we actually mean a “block of the γ-sorting word of w”. Since we
will always consider the γ-sorting words of the elements of w, we use this abbreviated notion.
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Example 3.2.3

Let π = 21543 ∈ A4, and consider the Coxeter element γ = s1s2s3s4 = 23451. There are
eight reduced decompositions of π, namely

s1s4s3s4, s4s1s3s4, s4s3s1s4, s4s3s4s1, s1s3s4s3, s3s1s4s3, s3s4s1s3, s3s4s3s1,

and we can quickly verify that γ(π) = s1s3s4s3. Thus we can write

γ(π) = s1
1s0

2s1
3s1

4|s0
1s0

2s1
3s0

4,

and the blocks of π are b1 = {s1, s3, s4} and b2 = {s3}. Since b1 ⊇ b2 it follows that π is
γ-sortable. In fact, we can also check that π is 312-avoiding.

On the other hand let π′ = 24153 ∈ A4. There are five reduced decompositions of π′,
namely

s1s3s4s2, s1s3s2s4, s3s1s2s4, s3s1s4s2, s3s4s1s2,

and we can quickly verify that γ(π′) = s1s3s4s2. We have

γ(π′) = s1
1s0

2s1
3s1

4|s0
1s1

2s0
3s0

4,

and the blocks of π′ are b1 = {s1, s3, s4} and b2 = {s2}. Now we see that b1 6⊇ b2, which
implies that π′ is not γ-sortable. Moreover, we can check that π′ is not 312-avoiding, since
π2 = 4, π3 = 1 and π5 = 3.

The γ-sortable elements of W possess an intrinsic recursive structure. In order to explain
this structure, we recall that some of the subgroups of W are Coxeter groups again (not
necessarily of the same type, though). More precisely, let (W, S) be a Coxeter system, and
let J ⊆ S. Then, J generates a standard parabolic subgroup WJ of W, and it is immediate that
(WJ , J) is a Coxeter system itself. Moreover, the Coxeter diagram Γ(WJ ,J) is the subgraph
of Γ(W,S) induced by the vertices in J. Any subgroup of W that is conjugate to a standard
parabolic subgroup is called a parabolic subgroup of W. In the context of γ-sortable elements,
we will frequently need the case, where we reduce the rank of W only by one, hence where
J = S \ {s} for some s ∈ S. In this case, we will use the abbreviation 〈s〉 = S \ {s}.

If we define W J = {w ∈ W | `(ws) > `(w) for all s ∈ J}, then we have the following
decomposition of the elements in W.

Proposition 3.2.4 ([23, Proposition 2.4.4])

Let (W, S) be a Coxeter system, and let J ⊆ S. For every w ∈ W there exists a unique reduced
decomposition w = wJ · wJ such that wJ ∈ W J and wJ ∈ WJ . Moreover, we have `S(w) =

`S(wJ) + `S(wJ).

Hence we can interpret wJ as “the part of w which lies in WJ”, and it follows that
inv(wJ) = inv(w) ∩WJ . In particular, u ≤S v implies uJ ≤J vJ . In fact, joins and meets
inW are compatible with the restriction to parabolic subgroups.

Proposition 3.2.5 ([65, Lemmas 4.2(iii) and 4.5])

Let (W, S) be a Coxeter system, let J ⊆ S, and let A ⊆ W. Define AJ = {wJ | w ∈ A}. If A is
nonempty, then

∧
AJ =

(∧
A
)

J , and if A has an upper bound, then
∨

AJ =
(∨

A
)

J .

But let us now return to the recursive structure of the γ-sortable elements of W. We say
that s ∈ S is an initial letter of γ if there exists a reduced decomposition of γ that starts with s.
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Proposition 3.2.6 ([97, Proposition 2.29])

Let (W, S) be a Coxeter system, let γ ∈W be a Coxeter element, and let s ∈ S be an initial letter of
γ. Then, w ∈W is γ-sortable if and only if it satisfies one of the following two properties:

(i) if s ≤S w, then sw is sγs-sortable in W; or
(ii) if s 6≤S w, then w is sγ-sortable in W〈s〉.

Remark 3.2.7

The definition of γ-sortable elements does not depend on the choice of reduced decom-
position of γ. Since each reduced decompositions of γ can be transformed into any other
reduced decomposition of γ by commutations of letters, it is clear that such commutations
leave the blocks of any w ∈W fixed.

Proposition 3.2.6 implies that we can apply two parallel inductions, when working with
γ-sortable elements. On the one hand we can apply induction on the length of w, and on the
other hand we can apply induction on the rank of W, and these inductions do not interfere
with each other. Now we are set to define the γ-Cambrian semilattices.

Definition 3.2.8

Let W be a Coxeter group, and let γ ∈ W be a Coxeter element. The poset Cγ = (Cγ,≤γ)
is called the γ-Cambrian semilattice of W, where ≤γ denotes the restriction of ≤S to Cγ.

In the remainder of this chapter we will frequently switch between the weak order and the
Cambrian order, i.e. the restriction of the weak order to Cγ. In order to properly distinguish
which situation we currently consider, we add a subscript “S” to poset-theoretic notions, when
we consider the weak order, and we add a subscript “γ” to poset-theoretic notions, when we
consider the Cambrian order. For instance, a closed interval in W will be denoted by [u, v]S,
while a closed interval in Cγ will be denoted by [u, v]γ. Analogously, we distinguish open
intervals, joins, meets, cover relations, and so on. Figures 31 and 32 show two γ-Cambrian
lattices, the first one associated with the Coxeter group A3, and the second one associated
with the Coxeter group B3.

3.3. Basic Properties

Now we describe some basic properties of the γ-Cambrian semilattices, and we start with
the observation that Cγ is in fact a meet-subsemilattice ofW .

Theorem 3.3.1 ([97, Theorem 7.1])

Let W be a Coxeter group, let γ ∈W be a Coxeter element, and let A ⊆ Cγ. If A is nonempty, then∧
S A is γ-sortable. If A has an upper bound, then

∨
S A is γ-sortable.

Analogously to the maps η f described in the introduction of this chapter, there exists a
lattice homomorphism from the weak order semilattice to the Cambrian lattice. This map is
defined according to the recursive structure of the γ-sortable elements described in Proposi-
tion 3.2.6, namely by

(3.4) π
γ
↓ : W → Cγ, w 7→

{
sπ

sγs
↓ (sw), if s ≤S w,

π
sγ
↓ (w〈s〉), if s 6≤S w.

,
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Figure 31. An A3-Cambrian lattice with the labeling defined in (3.7). This
lattice is in fact isomorphic to T4.

for some initial letter s of γ, and where we set π
γ
↓ (ε) = ε for all Coxeter elements γ in all

Coxeter groups. The most important properties of this map are the following.

Theorem 3.3.2 ([97, Theorem 6.1])

The map π
γ
↓ is order-preserving for any Coxeter group W and any Coxeter element γ ∈W.

Theorem 3.3.3 ([97, Theorem 7.3])

Let W be a Coxeter group, let γ ∈W be a Coxeter element, and let A ⊆W. If A is nonempty, then∧
γπ

γ
↓ (A) = π

γ
↓
(∧

S A
)
. Moreover, if A has an upper bound, then

∨
γπ

γ
↓ (A) = π

γ
↓
(∨

S A
)
.

Now we recall some structural properties of Cγ.

Theorem 3.3.4 ([97, Theorem 8.1])

Let W be a Coxeter group. Then, every w ∈ W has a canonical join-representation Zw in W .
Furthermore, cov(w) is the disjoint union of cov(j) for j ∈ Zw.

Proposition 3.3.5 ([97, Proposition 8.2])

Let W be a Coxeter group, and let γ ∈ W be a Coxeter element. If w ∈ Cγ, then every element of
its canonical join-representation is γ-sortable.
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Figure 32. A B3-Cambrian lattice with the labeling defined in (3.7).

As a consequence we obtain that Cγ is semidistributive, which is already implicit in [97,
Section 8].

Proposition 3.3.6

Let W be a Coxeter group, and let γ ∈W be a Coxeter element. Then, every closed interval of Cγ is
semidistributive.

Proof. Let w ∈ Cγ. Lemma 1.1.29 and Theorem 3.3.4 imply that the interval [ε, w]S
is join-semidistributive. Let x, y, z ∈ Cγ with x, y, z ≤S w, and suppose that x ∨γ y = x ∨γ z.
Theorem 3.3.1 implies then, that x∨S y = x∨S z, and it follows from the join-semidistributivity
ofW and Theorem 3.3.3 that

x ∨γ y = π
γ
↓ (x) ∨γ π

γ
↓ (y) = π

γ
↓ (x ∨S y) = π

γ
↓
(

x ∨S (y ∧S z)
)

= π
γ
↓ (x) ∨γ π

γ
↓ (y ∨S z) = π

γ
↓ (x) ∨γ

(
π

γ
↓ (y) ∧γ π

γ
↓ (z)

)
= x ∨γ (y ∧γ z).

Thus the interval [ε, w]γ is join-semidistributive. Proposition 1.2.16 implies analogously that
[ε, w]γ is meet-semidistributive. Thus [ε, w]γ is a semidistributive lattice. In view of the char-
acterization of semidistributive lattices in Theorem 1.1.25, it follows that intervals of semidis-
tributive lattices are semidistributive again and the proof is complete. �

The semilattice Cγ is in general infinite, but Proposition 1.2.18 and Theorem 3.3.1 imply
that the closed intervals of Cγ are finite lattices. Hence in what follows we focus on intervals
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of the form [u, v]γ for u, v ∈ Cγ with u ≤γ v. This study usually breaks down into three cases,
namely (i) s ≤γ u, (ii) s 6≤γ u, s ≤γ v, and (iii) s 6≤γ v for some initial letter s of γ. In view
of Proposition 3.2.6, cases (i) and (iii) can be treated nicely by induction on length and rank.
However, case (ii) requires some more preparation. We provide a simple lemma that helps
reducing case (ii) to case (i).

Lemma 3.3.7

Let (W, S) be a Coxeter system of rank n, where S = {s1, s2, . . . , sn}. Let γ = s1s2 · · · sn, and let
u, v ∈ Cγ with u ≤γ v. If s1 6≤γ u and s1 ≤γ v, then the join s1 ∨γ u covers u in Cγ.

Proof. First of all since s1 ≤γ v and u ≤γ v it follows from Theorem 3.3.1 that z = s1 ∨γ u
exists. Moreover, for w, w′ ∈ Cγ with w ≤γ w′ it follows from Theorem 3.3.2 that

(3.5) w ≤S w′ implies π
γ
↓ (w) ≤γ π

γ
↓ (w

′) implies w ≤γ w′.

By assumption, we have s1 6≤γ u, and it follows then by contraposition from (3.5) that s1 6≤S u.
Hence (3.4) implies u = π

γ
↓ (u) = π

s1γ
↓ (u〈s1〉) ∈W〈s1〉, and Proposition 3.2.6 implies u = u〈s1〉 ∈

W〈s1〉.
Since u <γ z there exists some u′ ∈ Cγ with u ≤γ u′ lγ z. If s1 ≤γ u′, then u′ is an upper

bound for both s1 and u, which contradicts u′ ≤γ z. Thus we have s1 6≤γ u′, which with (3.5)
implies s1 6≤S u′ again. Again Proposition 3.2.6 implies u′ ∈W〈s1〉. Since Cγ is a sub-semilattice
ofW the relation u′ lγ z implies u′ <S z, and we obtain u′〈s1〉

≤S z〈s1〉 = (s1 ∨γ u)〈s1〉. In view
of Proposition 3.2.5 this implies u′〈s1〉

≤S (s1)〈s1〉 ∨γ u〈s1〉. However, since (s1)〈s1〉 = ε and
u〈s1〉 = u we conclude u′ ≤S u. With (3.5) follows u = u′ and thus the result. �

Let us record two more technical statements that will simplify later proofs.

Lemma 3.3.8

Let γ = s1s2 · · · sn, and let u, v ∈ Cγ with u ≤γ. If s1 ≤γ u, then the interval [u, v]γ is isomorphic
to the interval [s1u, s1v]s1γs1 in Cs1γs1 , and if s1 6≤γ v, then the interval [u, v]γ is isomorphic to the
interval

[
u〈s1〉, v〈s1〉

]
s1γ

in Cs1γ.

Proof. The statement for s1 ≤γ u follows from Proposition 3.2.6 and Proposition 1.2.20.
The statement for s1 6≤γ v follows from Proposition 3.2.6 and from the observation that the
weak order restricted to W〈s1〉 yields a sub-semilattice of W (which itself is a consequence of
Propositions 3.2.4 and 3.2.5). �

Lemma 3.3.9

Let γ = s1s2 · · · sn ∈ W, and let u, v ∈ Cγ with u ≤γ v. If s1 6≤γ u and s1 ≤γ v, then the
following are equivalent.

(i) The interval [u, v]γ is nuclear.
(ii) There exists an element v′ ∈ [u, v]γ with s1 6≤γ v′ lγ v, and the interval [u, v′]γ is nuclear.

Proof. Let A = {x ∈ Cγ | u lγ x ≤γ v} be the set of atoms in [u, v]γ. Since s1 ≤γ v and
u ≤γ v it follows from Lemma 3.3.7 that the join z = s1 ∨γ u covers u, and we set Az = A \ {z}.
The uniqueness of the existing joins in Cγ implies that s1 6≤γ x for all x ∈ Az. (Otherwise,
suppose that there is some x ∈ Az with s1 ≤γ x. Then, x is an upper bound for both s1 and



78 3. THE CAMBRIAN LATTICES

u, and hence z ≤γ x. Since both z and x cover u, it follows that x = z, contradicting z /∈ Az.)
Moreover, Proposition 3.2.6 implies Az ⊆W〈s1〉.

(i)⇒ (ii) Suppose that [u, v]γ is nuclear and let v′ =
∨

γ Az. The existence of v′ is ensured
by Theorem 3.3.1, and since Az ( A it follows that u ≤γ v′ <γ v. Moreover, since Az ⊆ W〈s1〉
it follows from Proposition 3.2.5 that v′ =

∨
γ Az ∈W〈s1〉, and thus s1 6≤γ v′. Thus Az is the set

of atoms of [u, v′]γ, which implies that this interval is nuclear. It remains to show that v′lγ v.
It follows from u ≤γ v′ and from the associativity of ∨γ that

v =
∨

γ
A = z ∨γ

(∨
γ

Az
)
= z ∨γ v′ = (s1 ∨γ u) ∨γ v′ = s1 ∨γ (u ∨γ v′) = s1 ∨γ v′.

Since s1 6≤γ v′ we can apply Lemma 3.3.7, and we obtain v′ lγ s1 ∨γ v′ = v.
(ii) ⇒ (i) Suppose now that there exists an element v′ ∈ [u, v]γ satisfying s1 6≤γ v′ lγ v,

and suppose that the interval [u, v′]γ is nuclear. Let A′ denote the set of atoms of [u, v′]γ. It
follows from s1 6≤γ v′ that z /∈ A′ and hence A′ ⊆ Az. Since s1 ≤γ v and v′ ≤γ v it follows
from Lemma 3.3.7 that s1 ∨γ v′ = v. Now let z′ ∈ A \ A′. It follows from z′ ≤γ v and from the
associativity of ∨γ that∨

γ

(
A′ ∪ {z, z′}

)
=
(∨

γ
A′ ∨γ z

)
∨γ z′ = (v′ ∨γ z) ∨γ z′ = v ∨γ z′ = v,

and hence v =
∨

γ A, which implies that [u, v]γ is nuclear. �

In particular, the element v′ in Lemma 3.3.9(ii) is uniquely determined. We conclude
this section by stating that for a finite Coxeter group W the cardinality of Cγ is given by the
corresponding W-Catalan number.

Theorem 3.3.10 ([94, Theorem 9.1])

For any finite Coxeter group and any Coxeter element γ ∈W we have
∣∣Cγ

∣∣ = Cat(W).

3.4. Topological Properties of Closed Intervals of Cγ

Let us now investigate the topology of closed intervals of Cγ, analogously to the study
of the m-Tamari lattices in Section 2.3. In particular, we prove a result analogous to Theo-
rem 2.3.1, which implies that both generalizations of the Tamari lattices occurring in this
thesis are natural in the sense that they generalize the topological properties of the Tamari
lattices nicely.

Theorem 3.4.1

For any Coxeter group W and any Coxeter element γ ∈W every closed interval of Cγ is EL-shellable.
Moreover, the Möbius function of Cγ takes values only in {−1, 0, 1}.

Before we actually prove Theorem 3.4.1, let us recall some special cases that were previ-
ously known in the literature. For finite Coxeter groups, the result on the Möbius function
(or equivalently on the topological structure of the closed intervals) was already observed by
Reading while he investigated so-called fan posets of certain hyperplane arrangements, see
[92, Theorem 1.1].

The EL-shellability of the Cambrian lattices has first been investigated by Thomas in
[121], where he showed that they are trim if associated with Coxeter groups of type A or
of type B. (See Section 1.1.5 for the definition.) Later, Ingalls and Thomas showed that
all Cambrian lattices associated with Weyl groups are trim, see [64, Theorem 4.17]. Since
trim lattices are by definition left-modular, and left-modular lattices are EL-shellable, see



3.4. TOPOLOGICAL PROPERTIES OF CLOSED INTERVALS OF Cγ 79

Theorem 1.1.22, the first part of Theorem 3.4.1 follows in the case of Weyl groups as a corollary.
Their result was obtained by realizing the Cambrian lattices associated with a Weyl group as
a hierarchy on torsion classes of representations of certain quivers (namely the orientations of
the corresponding Coxeter diagram). The interested reader is referred to [64] for the details,
or to Thomas’ chapter in [86], where the realization of the Tamari lattice of parameter n + 1 as
a hierarchy on torsion classes of representations of the directed path of length n is described.

Triggered by our results on the topology of the γ-Cambrian semilattices, Pilaud and
Stump proved that the increasing flip poset of any subword complex of a finite Coxeter group is
EL-shellable, see [91, Theorem 4.2]. Moreover, each Cambrian lattice associated with a finite
Coxeter group is the flip poset of some subword complex, see [90, Corollary 6.31]. Hence
they recovered the first part of Theorem 3.4.1 for the finite Coxeter groups in a more general
setting.

Summarizing the previous results, we obtain the following special case of Theorem 3.4.1.

Theorem 3.4.2 ([64, 91, 92])

Let W be a finite Coxeter group, and let γ ∈ W be a Coxeter element. Then, the lattice Cγ is
EL-shellable, and it is trim when W is a Weyl group. Moreover, the Möbius function of Cγ takes
values only in {−1, 0, 1}.

As described in the previous paragraph, this theorem was proven by using many different
approaches, each of these approaches results from the research of a more general setting, and
each of these approaches yields a special case of Theorem 3.4.1 as a corollary. In this section,
we prove Theorem 3.4.1 uniformly, i.e. simultaneously for all Coxeter groups (finite or infinite)
and all Coxeter elements.

3.4.1. EL-Shellability. In the remainder of this chapter, let (W, S) be a Coxeter system
of rank n, let S = {s1, s2, . . . , sn}, and let γ = s1s2 · · · sn ∈ W be a (fixed) Coxeter element.
Whenever we speak of the rank of W, then we actually mean the rank of (W, S). Whenever
we speak of the rank of a parabolic subgroup W ′ of W, then we mean the rank of (WJ , J),
where J ⊆ S and WJ is conjugate to W ′.

Recall from the definition that the cover relations in W are uniquely determined by a
simple reflection, i.e. if w, w′ ∈ W satisfy w lS w′, then there exists some s ∈ S with w′ = ws.
The same does not necessarily hold for Cγ. If u, v ∈ Cγ with u lγ v, then there exists a chain
u = w0 lS w1 lS · · ·lS wk = v with π

γ
↓ (wi) = u for all i ∈ {0, 1, . . . , k − 1} and in general

k > 1. However, recall that every w ∈ W has a unique γ-sorting word, and this word can be
written as a subword of γ∞ in the following form:

γ(w) = sδ1,1
1 sδ1,2

2 · · · sδ1,n
n |s

δ2,1
1 sδ2,2

2 · · · sδ2,n
n | · · · |s

δl,1
1 sδl,2

2 · · · s
δl,n
n ,

for some l ∈ N with δi,j ∈ {0, 1}, i ∈ {1, 2, . . . , n}, and j ∈ {1, 2, . . . , l}, see also (3.2). Now we
define the set of filled positions of γ(w) by

(3.6) αγ(w) =
{
(i− 1)n + j | δi,j = 1

}
⊆N.

(Recall that γ(w) denotes the γ-sorting word of w.) It is immediately clear that αγ(w) depends
on the reduced decomposition of γ, even though the γ-sortability of w does not. However,
since we have chosen the fixed reduced decomposition γ = s1s2 · · · sn, this will not be an
issue. The following lemma is immediate.
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Lemma 3.4.3

If u, v ∈W with u ≤S v, then αγ(u) ⊆ αγ(v).

Proof. It is another equivalent definition of the weak order that u ≤S v if and only if
there exists a reduced decomposition of u which is a prefix of a reduced decomposition of
v, see [23, Proposition 3.1.2(iv)]. It follows that any letter appearing in γ(u) has to appear in
γ(v) as well. This is precisely the claim of this lemma. �

Example 3.4.4

Let W = A3 be generated by S = {s1, s2, s3} with (s1s2)
3 = (s1s3)

2 = (s2s3)
3 = s2

1 = s2
2 =

s2
3 = ε. Let γ = s1s2s3. The corresponding lattice Cγ is shown in Figure 31. If u = s1s2s3|s2

and v = s2s3|s2|s1, then we have αγ(u) = {1, 2, 3, 5} and αγ(v) = {2, 3, 5, 7}. It follows that
u ∈ Cγ and v /∈ Cγ.

We see immediately that w ∈ Cγ if and only if the following holds: if i ∈ αγ(w) and
i > n, then i− n ∈ αγ(w). We notice that αγ(u) contains both 5 and 2, while αγ(v) does not
contain 7− 3 = 4.

Now let us define our edge-labeling of Cγ:

(3.7) λγ : E
(
Cγ

)
→N, (u, v) 7→ min

{
i | i ∈ αγ(v) \ αγ(u)

}
.

Since for w ∈ W the set αγ(w) depends on a particular choice of a reduced decomposition of
γ so does λγ. However, since we focus on a fixed reduced decomposition of γ no problems
will occur. See Figures 31 and 32 for examples of this labeling. The following properties of λγ

are immediate.

Lemma 3.4.5

Let γ = s1s2 · · · sn, and let u, v ∈ Cγ with u ≤γ v. If i0 = min
{

i | i ∈ αγ(v) \ αγ(u)
}

, then the
following hold.

(i) The label i0 appears in every maximal chain in [u, v]γ.
(ii) The labels of a maximal chain in [u, v]γ are distinct.

Proof. (i) Suppose that this is not the case. Then there exists a maximal chain u =
w0 lγ w1 lγ · · ·lγ wk = v with λ(wi, wi+1) 6= i0 for all i ∈ {0, 1, . . . , k − 1}. This implies,
however, that i0 ∈ αγ(u) if and only if i0 ∈ αγ(v), contradicting the definition of i0.

(ii) Let u = w0 lγ w1 lγ · · ·lγ wk = v be a maximal chain in [u, v]γ, and assume that
there are i, j ∈ {0, 1, . . . , k− 1} with i < j and λ(wi, wi+1) = s = λ(wj, wj+1). By definition we
have s ∈ αγ(wi+1) and s /∈ αγ(wj). Since wi+1 ≤S wj Lemma 3.4.3 implies αγ(wi+1) ⊆ αγ(wj),
which is a contradiction. �

We prove Theorem 3.4.1 by showing that λγ is an EL-labeling for every closed interval of
Cγ, and this proof will use induction on rank and length. Thus we need to understand how
λγ behaves with respect to the recursive structure of the γ-sortable elements of W described
in Proposition 3.2.6.
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Lemma 3.4.6

Let γ = s1s2 · · · sn, and let u, v ∈ Cγ with u lγ v. We have

λγ(u, v) =


1, if s1 6≤S u and s1 ≤S v,
λs1γs1(s1u, s1v) + 1, if s1 ≤S u,
λs1γ

(
u〈s1〉, v〈s1〉

)
+ k, if s1 6≤S v and u and v first differ in their k-th block.

Proof. First let s1 6≤S u and s1 ≤S v. By definition, the letter s1 does not occur in γ(u),
but it does occur in γ(v). Moreover, if s1 occurs in γ(v), then it has to occur in the first block
of v since v is γ-sortable. Thus λγ(u, v) = 1.

Now let s1 ≤S u. By transitivity we have s1 ≤S v. It follows from Proposition 3.2.6 that s1u
and s1v are both s1γs1-sortable and that we have s1u ls1γs1 s1v. Say that λs1γs1(s1u, s1v) = k.
By construction, s1γs1(u) is precisely the subword of γ(u) starting at the second position.
Thus if we consider s1γs1(s1u) as a subword of γ∞, then we notice that the first position is
empty, and likewise for s1v. If the first position of (s1γs1)

∞ where s1u and s1v differ is k, then
the first position of γ∞ where u and v differ is k + 1. Hence λγ(u, v) = λs1γs1(s1u, s1v) + 1.

Finally let s1 6≤S v. Again by transitivity we have s1 6≤S u, and Proposition 3.2.6 implies
that u = u〈s1〉 and v = v〈s1〉 are s1γ-sortable elements of W〈s1〉. Again we have s1u ls1γ s1v.
Say that the first position filled in v〈s1〉 but not in u〈s1〉 is in the k-th block of v〈s1〉. If we
consider u〈s1〉 and v〈s1〉 as subwords of γ∞, then we have to add the letter s1 with exponent 0
to each block of u〈s1〉 and v〈s1〉. Since the first difference of u〈s1〉 and v〈s1〉 is in the k-th block,
the first difference of u and v is still in the k-th block, but each block has an additional first
letter. Hence λγ(u, v) = λs1γ

(
u〈s1〉, v〈s1〉

)
+ k. �

Example 3.4.7

Let W = B3 be generated by S = {s1, s2, s3} satisfying (s1s2)
3 = (s1s3)

2 = (s2s3)
4 = s2

1 =

s2
2 = s2

3 = ε, and let γ = s1s2s3 be a Coxeter element of B3. The corresponding lattice Cγ is
shown in Figure 32.

First consider u1 = s2s3|s2s3 and v1 = s1s2s3|s1s2s3|s1s2s3. It follows immediately that
λγ(u1, v1) = 1.

Now consider u2 = s1s2s3|s1s2 and v2 = s1s2s3|s1s2s3. Then s1u2 = s2s3s1|s2 and
s1v2 = s2s3s1|s2s3 considered as s1γs1-sorting words. We have

λs1γs1(s1u2, s1v2) = 5 and λγ(u2, v2) = 6.

Finally consider u3 = s2s3|s2 and v3 = s2s3|s2s3. The (s1γ)-sorting words of (u3)〈s1〉
and (v3)〈s1〉 written as in (3.2) are

(u3)〈s1〉 = s1
2s1

3|s1
2s0

3 and (v3)〈s1〉 = s1
2s1

3|s1
2s1

3,

and the corresponding γ-sorting words are

(u3)〈s1〉 = s0
1s1

2s1
3|s0

1s1
2s0

3 and (v3)〈s1〉 = s0
1s1

2s1
3|s0

1s1
2s1

3.

Hence λs1γ

(
u3)〈s1〉, v3)〈s1〉

)
= 4 and λγ(u3, v3) = 6.

Now we are ready to prove the first part of Theorem 3.4.1, and we state this as a separate
theorem.
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Theorem 3.4.8

Let (W, S) be a Coxeter system of rank n, where S = {s1, s2, . . . , sn}, and let γ = s1s2 · · · sn ∈ W
be a Coxeter element. The labeling λγ defined in (3.7) is an EL-labeling of every closed interval of
Cγ.

Proof. Let u, v ∈ Cγ with u ≤γ v. We need to show that there exists a unique rising
maximal chain in [u, v]γ, and that this chain is lexicographically first. We proceed by induction
on rank and length. If W has rank 2 or if `S(v) ≤ 2, then the claim is trivially true. Hence let
W have rank n and let `S(v) = k. Suppose that the claim is true for all parabolic subgroups of
W of rank < n and for all closed intervals [u′, v′]γ′ for some Coxeter element γ′ ∈ W, where
`S(v′) < k. We distinguish three cases:

(i) Let s1 ≤γ u. Then, s1 is the first letter of every γ-sorting word of every element
in [u, v]γ, and Lemma 3.3.8 implies that [u, v]γ ∼= [s1u, s1v]s1γs1 . Since `S(s1v) = k − 1 the
induction hypothesis implies the existence of a unique maximal rising chain s1u = s1x0 ls1γs1

s1x1 ls1γs1 · · · ls1γs1 s1xt = s1v that is lexicographically first among all maximal chains in
[s1u, s1v]s1γs1 . Lemma 3.4.6 implies that the corresponding chain u = x0 lγ x1 lγ · · ·lγ xt = v
is the unique maximal rising chain in [u, v]γ and that it is lexicographically first among all
maximal chains in [u, v]γ.

(ii) Let s1 6≤γ u and s1 ≤γ v. Lemma 3.3.7 implies that z = s1 ∨γ u covers u. Hence by
Lemma 3.3.8 the interval [z, v]γ is isomorphic to the interval [s1z, s1v]s1γs1 , and analogously to
(i) we can find a unique rising maximal chain in [z, v]γ that is lexicographically first among
all maximal chains in [z, v]γ, say z = x1 lγ x2 lγ · · ·lγ xt = v. Lemma 3.4.6 implies now
that λγ(u, z) = 1 and λγ(x1, x2) ≥ 2. Hence the chain C : u = x0 lγ x1 lγ · · ·lγ xt = v is
a rising maximal chain in [u, v]γ. Now suppose that there is another element z′ ∈ Cγ with
u lγ z′ ≤γ v and λγ(u, z′) = 1. By definition of λγ the letter s1 has to occur in γ(z′), which
implies s1 ≤γ z′. Thus z′ is an upper bound for both s1 and u, and by the uniqueness of
(existing) joins in Cγ it follows that z ≤γ z′. Since both z and z′ cover u it follows that z = z′.
Hence C is the lexicographically first maximal chain in [u, v]γ. Moreover, Lemma 3.4.5 implies
that the label 1 occurs in every maximal chain in [u, v]γ, which implies that C is the unique
rising chain in [u, v]γ.

(iii) Let s1 6≤γ v. In this case no element of [u, v]γ contains the letter s1 in its γ-sorting
word. Lemma 3.3.8 implies that [u, v]γ is isomorphic to the interval

[
u〈s1〉, v〈s1〉

]
s1γ

in W〈s1〉.
Since W〈s1〉 is a parabolic subgroup of W of rank n− 1, by induction hypothesis there exists
a unique maximal rising chain u〈s1〉 = (x0)〈s1〉 ls1γ (x1)〈s1〉 ls1γ · · ·ls1γ (xt)〈s1〉 = v〈s1〉 that
is lexicographically first among all maximal chains in [u〈s1〉, v〈s1〉]s1γ. Let i, j ∈ {1, 2, . . . , t}
with i < j. Say that the first block where (xi)〈s1〉 and (xi+1)〈s1〉 differ is their di-th block,
and say that the first block where (xj)〈s1〉 and (xj+1)〈s1〉 differ is their dj-th block. Since
λs1γ

(
(xi)〈s1〉, (xi+1)〈s1〉

)
< λs1γ

(
(xj)〈s1〉, (xj+1)〈s1〉

)
it follows that di ≤ dj. Lemma 3.4.6 implies

that the associated chain u = x0 lγ x1 lγ · · ·lγ xt = v is the unique rising maximal chain in
[u, v]γ and that it is lexicographically first among all maximal chains in [u, v]γ. �

The next result follows immediately from the proof of Theorem 3.4.8.

Corollary 3.4.9

Let γ = s1s2 · · · sn, and let w ∈ Cγ with `S(w) = k. Then, `
(
[ε, w]γ

)
= k.



3.4. TOPOLOGICAL PROPERTIES OF CLOSED INTERVALS OF Cγ 83

Proof. It follows from the EL-shellability of [ε, w]γ and Lemma 1.1.6 that `
(
[ε, w]γ

)
is

precisely the length of the unique rising maximal chain from ε to w. If γ(w) = si1 si2 · · · sik ,
then the chain ε = x0 lγ x1 lγ · · ·lγ xk = w, where xj = si1 si2 · · · sij for j ∈ {1, 2, . . . , k}, is
rising with respect to λγ, which implies the claim. �

3.4.2. The Möbius Function. In this section we prove the second part of Theorem 3.4.1,
namely that the Möbius function of Cγ takes only values in {−1, 0, 1}. Again we state this in
a separate theorem.

Theorem 3.4.10

Let (W, S) be a Coxeter system of rank n, where S = {s1, s2, . . . , sn}, and let γ = s1s2 · · · sn ∈ W
be a Coxeter element. If u, v ∈ Cγ with u ≤γ v, then µCγ

(u, v) ∈ {−1, 0, 1}.

Proof. In view of Proposition 1.1.14, it is sufficient to show that there exists at most one
falling chain in [u, v]γ, and again we proceed by induction on rank and length. Again we may
assume that the rank of W is at least 3 and `S(v) ≥ 3, because the result is trivial otherwise.
Hence let W have rank n, let `S(v) = k, and suppose that the claim is true for all parabolic
subgroups of W of rank < n, and for all closed intervals [u′, v′]γ′ for some Coxeter element
γ′ ∈W, where `S(v′) < k. We distinguish three cases:

(i) Let s1 ≤γ u. The result follows by induction on length, following the steps of case (i)
in the proof of Theorem 3.4.8.

(ii) Let s1 6≤γ u and s1 ≤γ v. It follows from Lemma 3.4.5(i) that the label 1 occurs in
every maximal chain u = x0 lγ x1 lγ · · ·lγ xt = v. Hence such a chain can be falling only
if λγ(xt−1, xt) = 1. If there is no element v1 ∈ [u, v]γ with v1 lγ v and λγ(v1, v) = 1, then
there is no falling maximal chain in [u, v]γ, which implies µCγ

(u, v) = 0. Otherwise consider
the interval [u, v1]γ. By the choice of v1 it follows from Lemma 3.4.5(ii) that the label 1 does
not occur in any maximal chain from u to v1, and hence every maximal falling chain from
u to v1 can be extended to a maximal falling chain from u to v. Conversely every maximal
falling chain from u to v can be restricted to a maximal falling chain from u to v1. Since
`S(v1) = k − 1, our induction hypothesis implies that there is at most one falling chain in
[u, v1], which implies the claim.

(iii) Let s1 6≤γ v. The result follows by induction on rank, following the steps of case (iii)
in the proof of Theorem 3.4.8. �

Proof of Theorem 3.4.1. This follows from Theorems 3.4.8 and 3.4.10. �

We complete this section with the characterization of the spherical intervals of Cγ.

Theorem 3.4.11

Let (W, S) be a Coxeter system of rank n, and let γ = s1s2 · · · sn ∈ W be a Coxeter element.
Further, let u, v ∈ Cγ with u ≤γ v, and let k denote the number of atoms in [u, v]γ. Then,

µCγ
(u, v) =

{
(−1)k, if [u, v]γ is nuclear,
0, otherwise.

Proof. In view of Proposition 1.1.14, we need to show that there exists a falling chain in
[u, v]γ if and only if [u, v]γ is nuclear and that this chain has length k if and only if [u, v]γ has
k atoms. Similar to the proof of Theorem 3.4.8, we proceed by induction on rank and length,
and we may assume that the rank of W is at least 3 and `S(v) ≥ 3, because the result is trivial
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otherwise. Hence let W have rank n, let `S(v) = k, and suppose that the claim is true for all
parabolic subgroups of W of rank < n, and for all closed intervals [u′, v′]γ′ for some Coxeter
element γ′ ∈W, where `S(v′) < k. We distinguish three cases:

(i) Let s1 ≤γ u. The result follows by induction on length, following the steps of case (i)
in the proof of Theorem 3.4.8.

(ii) Let s1 6≤γ u and s1 ≤γ v. If [u, v]γ is nuclear, then Lemma 3.3.9 implies that there
exists a unique element v′ ∈ Cγ with u ≤γ v′ lγ v such that [u, v′]γ is nuclear and s1 6≤γ v′.
By induction on rank it follows that there exists a maximal falling chain C′ : u = x0 lγ x1 lγ

· · ·lγ xk−1 = v′ and that [u, v′]γ has k− 1 atoms. Lemma 3.4.5 implies that 1 /∈ λγ(C′), and
Lemma 3.4.6 implies that λγ(v′, v) = 1. Thus the chain C : u = x0 lγ x1 lγ · · ·lγ xt−1 lγ xk =
v is a falling maximal chain in [u, v]γ. Lemma 3.3.9 implies now that [u, v]γ has k atoms.
Conversely suppose that C : u = x0 lγ x1 lγ · · · lγ xk = v is a falling maximal chain in
[u, v]γ. Lemma 3.4.6(i) implies that λγ(xt−1, xt) = 1, which in turn implies that s1 6≤γ xt−1.
The restricted chain C′ : u = x0 lγ x1 lγ · · ·lγ xk−1 is still falling, and by induction we see
that [u, xt−1]γ is a nuclear interval with k − 1 atoms. Since s1 6≤γ xk−1 lγ v, it follows from
Lemma 3.3.9 that [u, v]γ is nuclear and has k atoms.

(iii) Let s1 6≤γ v. The result follows by induction on rank, following the steps of case (iii)
in the proof of Theorem 3.4.8. �

Example 3.4.12

Let Ã2 be the infinite Coxeter group of rank 3, generated by S = {s0, s1, s2} with (s0s1)
3 =

(s0s2)
3 = (s1s2)

3 = s2
0 = s2

1 = s2
2 = ε, and consider the Coxeter element γ = s0s1s2. Figure 33

shows the sub-semilattice of Cγ, consisting of all elements w ∈ Cγ with `S(w) ≤ 7.

Example 3.4.13

Let C̃3 be the infinite Coxeter group of rank 4, generated by S = {s0, s1, s2, s3}with (s0s1)
4 =

(s0s2)
2 = (s0s3)

2 = (s1s2)
3 = (s1s3)

2 = (s2s3)
4 = s2

0 = s2
1 = s2

2 = s2
3 = ε, and consider the

Coxeter element γ = s0s1s2s3. Figure 34 shows the interval [ε, s0s1s2s3|s1s2s3|s1s2s3]γ in Cγ,
together with the EL-labeling defined in (3.7).

3.4.3. Trimness. Recall from Theorem 3.4.2 that the Cambrian lattices associated with a
Weyl group are trim lattices, see [64, Theorem 4.17]. We have computed the length of an
interval [ε, w]γ in Cγ for arbitrary Coxeter groups, see Corollary 3.4.9. In this section we
extend [64, Theorem 4.17] by showing that every closed interval of Cγ is in fact a trim lattice.

Theorem 3.4.14

Let (W, S) be a Coxeter system of rank n, where S = {s1, s2, . . . , sn}, and let γ = s1s2 · · · sn ∈ W
be a Coxeter element. Every closed interval of Cγ is a trim lattice.

We prove Theorem 3.4.14 in several steps, starting with the computation of the cardinal-
ity of the join- and meet-irreducible elements. Subsequently we explicitly construct a left-
modular chain.

Proposition 3.4.15

Let γ = s1s2 · · · sn, and let w ∈ Cγ with `S(w) = k. Then
∣∣∣J ([ε, w]γ

)∣∣∣ = k =
∣∣∣M(

[ε, w]γ
)∣∣∣.
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s0s1s2|s0s1 s0s1s2|s0s2

s0s1s2|s0s1|s0 s0s1s2|s0s1s2
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Figure 33. The first seven ranks of an Ã2-Cambrian semilattice with the la-
beling defined in (3.7).

Proof. First of all recall from Lemma 1.1.26 and Proposition 3.3.6 that
∣∣∣J ([ε, w]γ

)∣∣∣ =∣∣∣M(
[ε, w]γ

)∣∣∣. We will show that
∣∣∣M(

[ε, w]γ
)∣∣∣ = `S(w), and we proceed by induction on rank

and length. If W has rank 2 or if `S(w) ≤ 2, then the result is trivially true. Hence let W have
rank n, let `S(w) = k, and suppose that the claim is true for all parabolic subgroups of W of
rank < n, and for all γ′-sortable elements w′ ∈ W for some Coxeter element γ′ ∈ W with
`S(w′) < k. We distinguish two cases:

(i) Let s1 ≤γ w. Lemma 3.3.8 implies that the interval [s1, w]γ is isomorphic to the interval
[ε, s1w]s1γs1 , and by induction on length, it follows that there are k − 1 meet-irreducible ele-
ments in [s1, w]γ. Let m ∈ M

(
[s1, w]γ

)
, and suppose that m /∈ M

(
[ε, w]γ

)
. Thus there exist

distinct elements m1, m2 ∈ Cγ with m lγ m1, m2 and m1, m2 ≤γ w. Then, however, it follows
from s1 ≤γ m that m1, m2 ∈ [s1, w]γ, which contradicts m ∈ M

(
[s1, w]γ

)
. Hence every meet-

irreducible element of [s1, w]γ is also meet-irreducible in [ε, w]γ. Now we show that there
is exactly one additional meet-irreducible element in [ε, w]γ, denoted by z. Let a1, a2, . . . , at
denote the atoms of [ε, w]γ that are different from s1, and let that x = a1 ∨γ a2 ∨γ · · · ∨γ at.
If we set x′ = s1 ∨γ x, then Lemma 3.3.7 implies that x lγ x′ ≤γ w. If x′ = w, then x is
meet-irreducible in [ε, w]γ, and we set z = x. Otherwise, suppose that we can find two dis-
tinct elements y1, y2 ≤γ w that are different from x′ and that satisfy x lγ y1, y2. If we set
y′1 = s1 ∨γ y1 and y′2 = s1 ∨γ y2, then we have x′ ≤γ y′1, y′2 and the sublattice of [ε, w]γ induced
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Figure 34. An interval of a C̃3-Cambrian semilattice with the labeling defined
in (3.7).
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by the set {x, x′, y1, y2, y′1, y′2, y′1 ∨γ y′2} forms the dual of the lattice L4 from Figure 3(d), con-
tradicting the semidistributivity of Cγ. Hence x can have at most one upper cover other than
x′. If this is not the case, then x is meet-irreducible in [ε, w]γ and we set z = x. Otherwise,
denote this upper cover by y. Now we can iterate the previous reasoning with y instead of x
exactly analogously, and since [ε, w]γ is finite, we eventually find the desired meet-irreducible
element z. If u is some element in [ε, w]γ with s1 6≤γ u <γ z, then we have u <γ z and
u lγ s1 ∨γ u 6≤γ z, and it follows that u /∈ M

(
[ε, w]γ

)
. Finally, every element that lies strictly

between z and w was already considered in the induction step, since it has to be above s1.
Thus we have exactly k meet-irreducible elements in [ε, w]γ.

(ii) Let s1 6≤γ w. Lemma 3.3.8 implies [ε, w]γ ∼=
[
ε, w〈s1〉

]
s1γ

, and the result follows by
induction on rank. �

Corollary 3.4.16

Let γ = s1s2 · · · sn, and let w ∈ Cγ. Then, the interval [ε, w]γ is extremal.

Proof. This follows from Corollary 3.4.9 and Lemma 3.4.15. �

Proposition 3.4.17

Let γ = s1s2 · · · sn, and let w ∈ Cγ. Then, the interval [ε, w]γ is left-modular.

Proof. Let γ(w) = si1 si2 · · · sik be the γ-sorting word of w, and define xj = si1 si2 · · · sij for
j ∈ {1, 2, . . . , k}. We show now that the chain ε lγ x1 lγ x2 lγ · · ·lγ xk = w is left-modular.
Let j ∈ {1, 2, . . . , k}, and let y, y′ ∈ Cγ with y lγ z ≤γ w. In view of Theorem 1.1.21, it suffices
to show that

(3.8) either xj ∨γ y = xj ∨γ z or xj ∧γ y = xj ∧γ z,

and again we proceed by induction on rank and length. If W has rank 2 or if `S(w) = 2, then
the result is trivially true. Hence let W have rank n and let `S(w) = k. Suppose that the claim
is true for all parabolic subgroups of W of rank < n, and for all γ′-sortable elements w′ ∈ W
for some Coxeter element γ′ ∈W with `S(w′) < k. We distinguish two cases:

(i) Let s1 ≤γ w. In particular we have x1 = s1. Moreover, Lemma 3.3.8 implies that [s1, w]γ
is isomorphic to [ε, s1w]s1γs1 . If s1 ≤γ y, then (3.8) is satisfied by induction hypothesis.

If s1 6≤γ y but s1 ≤γ z, then Lemma 3.3.7 implies z = s1 ∨γ y, which in turn implies
xj ∨γ z = xj ∨γ (s1 ∨γ y) = xj ∨γ y. Now suppose that xj ∧γ y = xj ∧γ z. Since s1 ≤γ xj, z it
follows that s1 ≤γ xi ∧γ z = xi ∧γ y ≤γ y, which is a contradiction. Hence (3.8) is satisfied.

If s1 6≤γ z, then define y′ = s1 ∨γ y and z′ = s1 ∨γ z. Lemma 3.3.7 implies y lγ y′ and
z lγ z′ and hence y′ <γ z′. Both s1 and xj ∧γ y are lower bounds for xj and y′, which implies
that either s1 ≤γ xj ∧γ y or xj ∧γ y ≤γ s1. If s1 ≤γ xj ∧γ y, then it follows that s1 ≤γ y,
which is a contradiction. Since s1 is an atom of [ε, w]γ, we conclude thus that xj ∧γ y = ε. The
same reasoning implies xj ∧γ z = ε. By induction hypothesis and Lemma 3.3.8 we conclude
that xj is left-modular in the interval [s1, w]γ, and by definition we have (y′ ∨γ xj) ∧γ z′ =
y′ ∨γ (xj ∧γ z′). Suppose that xj ∨γ y = xj ∨γ z. This implies xj ∨γ y′ = xj ∨γ z′. Further we
obtain

y′ ∨γ z = z′ = (z′ ∨γ xj) ∧γ z′ = (y′ ∨γ xj) ∧γ z′ = y′ ∨ (xj ∧γ z′), but

y′ ∨γ (xj ∧γ z ∧γ z′) = y′ ∨γ (xj ∧γ z) = y′ ∨γ (xj ∧γ y) ≤γ y′ ∨γ (xj ∧γ y′) = y′ <γ z′,
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which contradicts the semidistributivity of [ε, w]γ. Hence (3.8) is satisfied.

(ii) Let s1 6≤γ w. Then, Lemma 3.3.8 implies [ε, w]γ ∼= [ε, w〈s1〉]s1γ, and the result follows
by induction on rank. �

Proof of Theorem 3.4.14. Corollary 3.4.16 and Proposition 3.4.17 imply that for every
w ∈ Cγ, the interval [ε, w]γ is a trim lattice. Clearly, for u, v ∈ Cγ, the interval [u, v]γ is a
subinterval of [ε, v]γ, and Theorem 1.1.23 implies that intervals of trim lattices are trim again,
which completes the proof. �

3.5. Structural Properties of Closed Intervals of Cγ

We conclude our study of the γ-Cambrian semilattices with a brief structural investi-
gation, and start with a few historical remarks. The Tamari lattices play an important role
in lattice theory, since they possess a wealth of nice structural properties. In [125, Corol-
lary, page 55], Urquhart proved that the Tamari lattices are so-called split lattices in the
sense of [78], and it follows then from [78, Theorem 5.1] that they are bounded-homomorphic
images of free lattices, and hence semidistributive. Moreover, every distributive lattice can be
embedded into a Tamari lattice, see [76, Corollary, page 288]. It was conjectured by Geyer

that every bounded-homomorphic image of a free lattice is a sublattice of some Tamari lattice,
see [58, Conjecture 3.6]. This conjecture was disproven only recently, when Santocanale

and Wehrung introduced an infinite collection of lattice-theoretic identities, for which they
showed that they hold in the Tamari lattices, but not in every finite bounded-homomorphic
image of a free lattice, see [102]. In fact, already the weak order lattice of A3 and the two Cam-
brian lattices of A3 that are not isomorphic to T4 provide counterexamples. The fact that the
weak order of a finite Coxeter group is a bounded-homomorphic image of a free lattice is due
to Caspard, Le Conte de Poly-Barbut and Morvan, see [37, Theorem 6]. Since every sub-
lattice of a bounded-homomorphic image of a free lattice is again a bounded-homomorphic
image of a free lattice, see [55, Corollary 2.17], it follows by definition that the Cambrian
lattices associated with a finite Coxeter group have this property as well.

3.5.1. Bounded-Homomorphic Images of Free Lattices. In fact, Caspard et. al. showed
that the weak order on a finite Coxeter group belongs to the class of HH-lattices, which is a
subclass of the class of bounded lattices, see Definition 3.5.4 below. We remark that the results
on the weak order obtained in [37] extend straightforwardly to closed intervals of the weak
order of an arbitrary, possibly infinite Coxeter group. We extend their ideas to prove that
every closed interval of a γ-Cambrian semilattice is an HH-lattice, where γ ∈ W is a Coxeter
element of some Coxeter group W, a result that cannot be deduced from the fact that the weak
order is an HH-lattice. It was proven explicitly in [36] that the Tamari lattices are HH-lattices
as well, an observation that motivated the research presented in this section. In particular, we
prove the following theorem.

Theorem 3.5.1

Let (W, S) be a Coxeter system of rank n, where S = {s1, s2, . . . , sn}, and let γ = s1s2 · · · sn. Every
closed interval of Cγ is an HH-lattice, and therefore a bounded-homomorphic image of a free lattice.

Recall from Section 1.1.4 that an interval [p, q] in a finite lattice P = (P,≤) is called a 2-
facet if its proper part is the disjoint union of two chains. It is immediate that in this case there
are two triples (p1, p, p2) and (q1, q, q2) associated with [p, q] that satisfy pl p1, p2 and q1, q2 l
q. These triples are called an anti-hat and a hat of P , and they are denoted by V(p1, p, p2) and
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1
1
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1
1

Figure 35. The pentagon lattice is a 2-facet. The associated hat is Λ(w, y, z2),
and the associated anti-hat is V(w, x, z1). Its Hasse diagram is labeled by a
2-facet labeling, and the identity map is a 2-facet rank function with respect
to this labeling.

Λ(q1, q, q2), respectively. Recall the definition of a 2-facet labeling from Definition 1.1.18 on
page 15.

Definition 3.5.2

Let P = (P,≤) be a lattice, and let λ be a 2-facet labeling of P . A function r : P → N is
called a 2-facet rank function of P with respect to λ if it satisfies the following property: for
every 2-facet [p, q] of P with maximal chains C and C′, where their corresponding label
sequences are λ(C) = (t1, t2, . . . , tk) and λ(C′) = (t′1, t′2, . . . , t′k′), we have

r(t1), r(tk) < r(t2), r(tk−1) < r(t3), . . . , r(t(k+1)/2+1) < r(t(k+1)/2)

if k is odd, and

r(t1), r(tk) < r(t2), r(tk−1) < r(t3), . . . , r(tk/2+2) < r(tk/2), r(tk/2+1)

if k is even, and likewise for λ(C′).

Example 3.5.3

Figure 35 shows the pentagon lattice, and the edges of its Hasse diagram are labeled by a
2-facet labeling and the identity map is a 2-facet rank function with respect to this lattice.
Further examples can be seen in Figures 36 and 37.

Definition 3.5.4 ([37, Definition 10])

A lattice P is called an HH-lattice if and only if it satisfies the following conditions:

P is finite and semidistributive;(H1)

for every anti-hat V(p1, p, p2) there exists a unique hat Λ(q1, q, q2) with
q = p1 ∨ p2 such that [p, q] is a 2-facet;(H2)

for every hat Λ(q1, q, q2) there exists a unique anti-hat V(p1, p, p2) with
p = q1 ∧ q2 such that [p, q] is a 2-facet; and(H3)

there exists a 2-facet labeling λ of P and a 2-facet rank function of P
with respect to λ.(H4)

The importance of the class of HH-lattice comes from the following result.
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Theorem 3.5.5 ([37, Corollary 1])

Every HH-lattice is a bounded-homomorphic image of a free lattice.

We prove Theorem 3.5.1 by showing conditions (H1)–(H4) step by step. We begin with an
observation on the 2-facets ofW , which is [37, Proposition 6] in the finite case.

Proposition 3.5.6

Let W be a Coxeter group, and let V(u1, u, u2) be an anti-hat of W such that u1 and u2 have an
upper bound. Then, the interval [u, u1 ∨S u2] is a 2-facet.

Proof. Since V(u1, u, u2) is an anti-hat it follows by definition that u lS u1, u2, which
implies that there are two simple reflections s1, s2 ∈ S with u1 = us1 and u2 = us2. Propo-
sition 1.2.15 implies [u, u1 ∨S u2] ∼= [ε, s1 ∨S s2], which is the weak order lattice of a dihedral
group and clearly a 2-facet. �

Now let us generalize Proposition 3.5.6 to Cγ.

Proposition 3.5.7

Let γ = s1s2 · · · sn ∈ W be a Coxeter element, and let w ∈ Cγ. If V(u1, u, u2) is an anti-hat in
[ε, w]γ, then the interval [u, u1 ∨γ u2]γ is a 2-facet.

Proof. Let v = u1 ∨γ u2, which exists by Theorem 3.3.1 since u1, u2 ≤γ w. Again we
proceed by induction on rank and length. If W is a Coxeter group of rank 2 generated by s1
and s2, then we can write W = I2(k) for some k, where (s1s2)

k = ε. There exists an anti-hat in
[ε, w]γ only if k < ∞, and w must then necessarily be the longest element of W. (Otherwise,
[ε, w]γ is a chain.) Hence this anti-hat is V(s1, ε, s2), which implies v = w, and the result
follows. If `S(w) = 2, then [ε, w] is a diamond, and the result follows. Hence let W have
rank n, and let `S(w) = k. Suppose that the claim is true for all parabolic subgroups of W
of rank < n, and for all γ′-sortable elements w′ ∈ W for some Coxeter element γ′ ∈ W with
`S(w′) < k. Without loss of generality we can assume u 6= ε since otherwise u1, u2 ∈ S, and
the result follows immediately. We distinguish two cases:

(i) Let s1 ≤γ w. If s1 ≤γ u, then Lemma 3.3.8 implies [u, v]γ ∼= [s1u, s1v]s1γs1 , and the
result follows by induction on length.

Now suppose that s1 6≤γ u and s1 ≤γ v. Suppose further that s1 6≤γ u1, u2. By
Lemma 3.3.7, we have u1 lγ s1 ∨γ u1 = u′1 and u2 lγ s1 ∨γ u2 = u′2. If u′1 6= u′2, then we
obtain a contradiction to s1 6≤γ u since u′1 and u′2 are both upper bounds for u and s1 and
[ε, w]γ is a lattice. If u′1 = u′2, then u′1 = u1 ∨γ u2 = v, and [u, v]γ is a 2-facet. However, the set
{ε, s1, u, u1, u2, v} induces a sublattice of [ε, w]γ isomorphic to L3 depicted in Figure 3(c), con-
tradicting the semidistributivity of Cγ. Without loss of generality let s1 ≤γ u1 and s1 6≤γ u2.
Lemma 3.3.7 implies u1 = s1 ∨γ u, and u2 lγ s1 ∨γ u2 = v. (Indeed, suppose that s1 ∨γ u <γ v,
then s1 and u are both lower bounds for u1 and s1 ∨γ u2, which contradicts s1 6≤γ u.) Thus
[u, v]γ is a 2-facet. If s1 ≤γ u1, u2, then we obtain a contradiction to s1 6≤γ u.

Finally let s1 6≤γ v. Lemma 3.3.8 implies that [u, v]γ ∼=
[
u〈s1〉, v〈s1〉

]
s1γ

, and the result
follows by induction on rank.

(ii) Let s1 6≤γ w. Lemma 3.3.8 implies that [ε, w]γ ∼=
[
ε, w〈s1〉

]
s1γ

, and the result follows by
induction on rank. �
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Proposition 3.5.8

Let γ = s1s2 · · · sn ∈ W be a Coxeter element, and let w ∈ Cγ. If Λ(v1, v, v2) is a hat in [ε, w]γ,
then the interval [v1 ∧γ v2, v]γ is a 2-facet.

Proof. Let u = v1 ∧γ v2, and we proceed by induction on rank and length. If W has rank
2, or `S(w) = 2, then the result is trivially true, see the first lines of the proof of Proposi-
tion 3.5.7. Hence let W have rank n and let `S(w) = k. Suppose that the claim is true for
all parabolic subgroups of W of rank < n, and for all γ′-sortable elements w′ ∈ W for some
Coxeter element γ′ ∈W with `S(w′) < k. We distinguish two cases:

(i) Let s1 ≤γ w. If s1 ≤γ u, then Lemma 3.3.8 implies [u, v]γ ∼= [s1u, s1v]s1γs1 , and the
result follows by induction on length.

Now suppose that s1 6≤γ u and s1 ≤γ v. We can assume without loss of generality that
s1 ≤γ v1 and s1 6≤γ v2. Let u1 = s1 ∨γ u. It follows from Lemma 3.3.7 that u lγ u1. If u1
is the only upper cover of u in [u, v]γ, then we obtain a contradiction to u = v1 ∧γ v2. So
let u2 be another upper cover of u in [u, v]γ. We can find u2 such that u2 ≤γ v2, and we
necessarily have s1 6≤γ u2. Let u′2 = s1 ∨γ u2. It follows from Lemma 3.3.7 that u2 lγ u′2 ≤γ v.
Now u1 and u′2 are both upper bounds of s1 and u, and it follows that u1 ≤γ u′2. Assume
that u′2 <γ v. If u′2 ≤γ v1, then we obtain a contradiction to v1 ∧γ v2 = u, and likewise if
u′2 ≤γ v2. Thus there must be some element v′ ∈ Cγ with u′2 ≤γ v′ lγ v and v′ 6= v1, v2.
Then, however, the set {u, u1, u2, u′2, v1, v2, v′, v} induces a sublattice of [ε, w]γ isomorphic to
L4 depicted in Figure 3(d), contradicting the semidistributivity of Cγ. Hence it follows that
u′2 = v and u2 = v2, which implies that [u, v] is a 2-facet.

Finally let s1 6≤γ v. Lemma 3.3.8 implies that [u, v]γ ∼=
[
u〈s1〉, v〈s1〉

]
s1γ

, and the result
follows by induction on rank.

(ii) Let s1 6≤γ w. Lemma 3.3.8 implies that [ε, w]γ ∼=
[
ε, w〈s1〉

]
s1γ

, and the result follows by
induction on rank. �

In [37], the following edge-labeling ofW was considered:

(3.9) r : E(W)→ T, (u, v) 7→ t,

where t is the unique cover reflection of v satisfying u = tv. The following result was proven
in [37] for finite Coxeter groups, but its proof can be generalized straightforwardly to closed
intervals ofW in the infinite case.

Proposition 3.5.9 ([37, Corollary 3 and Theorem 5])

The labeling r from (3.9) is a 2-facet labeling of W . Moreover, the length function `S is a 2-facet
rank function ofW with respect to r.

For our proof of Theorem 3.5.1 we use a similar labeling, but first we need some prepara-
tion.

Lemma 3.5.10

Let γ = s1s2 · · · sn, and let u, v ∈ Cγ with u lγ v. There exists a unique element wu,v ∈ W with
u ≤S wu,v lS v and π

γ
↓ (wu,v) = u.

Proof. If `S(v) = `S(u) + 1, then u lS v, and the result follows by setting wu,v = u. So
suppose that `S(v) > `S(u) + 1. Since W is graded it follows that there exists some w ∈ W
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with u <S w lS v and w /∈ Cγ. It follows from Theorem 3.3.2 that u = π
γ
↓ (u) ≤γ π

γ
↓ (w) ≤γ

π
γ
↓ (v) = v, and since u lγ v we conclude π

γ
↓ (w) = u. Suppose that there is another element

w′ with u <S w′ lS v and π
γ
↓ (w

′) = u. Then we have w ∨S w′ = v, and Theorem 3.3.3 implies

u = u ∨γ u = π
γ
↓ (w) ∨γ π

γ
↓ (w

′) = π
γ
↓ (w ∨S w′) = π

γ
↓ (v) = v,

which contradicts u lγ v. Thus we have wu,v = w, and we are done. �

The element wu,v from the previous lemma is the unique maximal element in the fiber
of u with respect to π

γ
↓ . By definition there exists some tu,v ∈ T, and some s ∈ S with

wu,v = vs = tu,vv and thus tu,v ∈ cov(v). Define an edge-labeling of Cγ by

(3.10) ϕγ : E(Cγ)→ T, (u, v) 7→ tu,v.

By definition we have ϕγ(u, v) = tu,v = r(wu,v, v). Let us investigate how this labeling behaves
with respect to induction on rank and length.

Lemma 3.5.11

Let γ = s1s2 · · · sn ∈W, and let u, v ∈ Cγ with u lγ v. We have

ϕγ(u, v) =


s1 ϕs1γs1(s1u, s1v)s1, if s1 ≤γ u,
s1, if s1 6≤γ u and s1 ≤γ v,
ϕs1γ

(
u〈s1〉, v〈s1〉

)
, if s1 6≤γ v.

Moreover, let t = ϕ(u, v), t′ = ϕs1γs1(s1u, s1v) and t〈s1〉 = ϕs1γ

(
u〈s1〉, v〈s1〉

)
. Then, we have

`S(t) =


`S(s1t′s1), if s1 ≤γ u,
1, if s1 6≤γ u and s1 ≤γ v,
`S
(
t〈s1〉

)
, if s1 6≤γ v.

Proof. Let wu,v ∈ W be the lower cover of v in W from Lemma 3.5.10, and let tu,v =
ϕγ(u, v).

Let s1 ≤γ u, and write u′ = s1u, v′ = s1v and wu′ ,v′ = s1wu,v. In view of Proposition 1.2.20
we conclude that wu′ ,v′ lS v′. Let tu′ ,v′ = r(wu′ ,v′ , v′). This means that there exists some s ∈ S
with wu′ ,v′ = v′s = tu′ ,v′v′, which implies that s1vs = tu′ ,v′ s1v. Hence vs = s1tu′ ,v′ s1v and
s1tu′ ,v′ s1 = tu,v, and we conclude

ϕγ(u, v) = r(wu,v, v) = tu,v = s1tu′ ,v′ s1 = s1r(wu′ ,v′ , v′)s1 = s1 ϕs1γs1(u
′, v′)s1.

(Note that Lemma 3.3.8 implies u′ ls1γs1 v′.) In particular, we have tu,v = vsv−1 = s1tu′ ,v′ s1,
which implies `S(tu,v) = `S(s1tu′ ,v′ s1).

Now let s1 6≤γ u, and suppose that s1 ≤γ v. Lemma 3.3.7 implies v = s1 ∨γ u, which
implies using Theorem 3.3.1 that v = s1 ∨S u. Hence s1 6≤S wu,v. Further Proposition 1.2.20
implies v = s1wu,v, and hence tu,v = ϕγ(u, v) = r(wu,v, v) = s1. Now the relation for `S(tu,v)
is immediate. Suppose that s1 6≤γ v. It follows from Proposition 3.2.6 that u = u〈s1〉 ∈ W〈s1〉
and v = v〈s1〉 ∈W〈s1〉. In particular tu,v ∈W〈s1〉. Hence

ϕγ(u, v) = ϕγ

(
u〈s1〉, v〈s1〉

)
= ϕs1γ

(
u〈s1〉, v〈s1〉

)
,

and the result for `S(tu,v) is immediate. �
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Figure 36. An A3-Cambrian lattice with the 2-facet labeling defined in (3.10).

Example 3.5.12

Figures 36 and 37 show the Tamari lattice and an interval of a Cambrian semilattice associ-
ated with the infinite Coxeter group C̃3, respectively. Both lattices are labeled by ϕγ.

Proposition 3.5.13

Let γ = s1s2 · · · sn. The map ϕγ defined in (3.10) is a 2-facet labeling of Cγ.

Proof. Let [u, v]γ be 2-facet of Cγ. By definition there exists a hat Λ(v1, v, v2) and an anti-
hat V(u1, u, u2) with v = u1 ∨γ u2 and u = v1 ∧γ v2. In view of the proofs of Propositions 3.5.7
and 3.5.8 we can assume that u2 = v2. We need to show that ϕγ(u, u1) = ϕγ(v2, v) and
ϕγ(u, u2) = ϕγ(v1, v).

In view of Lemma 3.5.10 there exist elements w1, w2 ∈ W with w1, w2 lS v and π
γ
↓ (w1) =

u1 and π
γ
↓ (w2) = u2. If we set w = w1 ∧S w2, then we notice immediately that [w, v]S is

a 2-facet in W . If w = u, then we have w1 = v1 = u1 and w2 = v2 = u2, and the result
follows from Proposition 3.5.9. So suppose that u <S w. It follows from Theorem 3.3.3 that
π

γ
↓ (w) = u. Let z ∈ W be the unique element satisfying w lS z ≤S w1. Theorem 3.3.2 implies

u ≤γ π
γ
↓ (z) ≤γ v1. If π

γ
↓ (z) = u, then we obtain

v = π
γ
↓ (v) = π

γ
↓ (z ∨S w2) = π

γ
↓ (z) ∨γ π

γ
↓ (w2) = u ∨γ v2 = v2,

which is a contradiction. Hence u <γ z. If u = z ∧S v1, then it follows from Proposition 3.5.9
that ϕγ(v2, v) = ϕγ(u, u1). If u <S z∧S v1, then we can consider the interval [u, z]S and repeat
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Figure 37. An interval of a C̃3-Cambrian semilattice with the labeling defined
in (3.10).
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u
u1

u2 = v2

π
γ
↓ (z)

v1 w

z

w1 w2

v

t

t

t

Figure 38. Illustrating the proof of Proposition 3.5.13. The rounded edges
indicate chains, the straight edges indicate cover relations, and the shaded
edges indicate fibers of π

γ
↓ .

the previous reasoning. (Notice that r(w, z) = r(w2, v) by Proposition 3.5.9, and notice that
there cannot be an element w′ ∈ W with u1 <S w′ <S w, because then Theorem 3.3.2 would
imply

u lγ u1 = π
γ
↓ (u1) ≤γ π

γ
↓ (w

′) ≤γ π
γ
↓ (w) = u,

which is a contradiction.) See Figure 38 for an illustration. The reasoning that ϕγ(u, u2) =
ϕγ(v1, v) is analogous. �

Proposition 3.5.14

Let γ = s1s2 · · · sn. The length function `S is a 2-facet rank function of Cγ with respect to ϕγ.

Proof. Let u, v ∈ Cγ with u ≤γ v such that [u, v]γ is a 2-facet. By definition there exists
a hat Λ(v1, v, v2) and an anti-hat V(u1, u, u2) with v = u1 ∨γ u2 and u = v1 ∧γ v2. In view of
the proofs of Propositions 3.5.7 and 3.5.8 we can assume that u2 = v2. We have to show that
`S satisfies the conditions in Definition 3.5.2, and we notice that nothing has to be checked for
the chain u lγ u2 lγ v.

We proceed by induction on rank and length, and if W has rank 2 or `S(v) = 2, then there
is nothing to show. Hence let W have rank n and let `S(w) = k. Suppose that the claim is true
for all parabolic subgroups of W of rank < n, and for all 2-facets [u′, v′]γ′ for some Coxeter
element γ′ ∈W with `S(v′) < k. We distinguish three cases:

(i) Let s1 ≤γ u. Denote the other chain in [u, v]γ by C : u lγ u1 lγ · · ·lγ v1 lγ v. It
follows from Lemma 3.3.8 that [u, v]γ ∼= [s1u, s1v]s1γs1 , and the corresponding chain C′ :
s1uls1γs1 s1u1 ls1γs1 · · ·ls1γs1 s1v1 ls1γs1 s1v has the label sequence ϕs1γs1(C

′) = (t′1, t′2, . . . , t′k).
Lemma 3.5.11 implies now that ϕγ(C) = (s1t′1s1, s1t′2s1, . . . , s1t′ks1), and by induction and
Lemma 3.5.11 follows that `S(s1t′ks1) = `S(t′k) < `S(t′2) = `S(s1t′2s1), and likewise for the
other relations.

(ii) Let s1 6≤γ u and s1 ≤γ v. Without loss of generality we can assume that s1 ≤γ u1 and
s1 6≤γ u2. Lemma 3.3.7 implies that u1 = s1 ∨γ u and u′ = s1 ∨γ u2, and in particular that
u2 lγ u′. Then, however, it follows that u1 and u′ are both upper bounds of s1 and u, and
since [u, v]γ is a lattice it follows that u1 <γ u′. Then v = u1 ∨γ u2 ≤γ u′ implies that v = u′.
Hence the two chains in [u, v]γ have length 2, and nothing has to be checked.
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(iii) Let s1 6≤γ v. Then s1 6≤γ u, and Lemma 3.3.8 implies that [u, v]γ ∼=
[
u〈s1〉, v〈s1〉

]
s1γ

,
and the result follows by induction on rank. �

Now everything is set to prove Theorem 3.5.1.

Proof of Theorem 3.5.1. We need to check that every closed interval of Cγ satisfies con-
ditions (H1)–(H4) from Definition 3.5.4. Let u, v ∈ Cγ with u ≤γ v, and consider the interval
[u, v]γ. Proposition 1.2.18 implies that [u, v]γ is finite, and Proposition 3.3.6 implies that [u, v]γ
is semidistributive. Hence (H1) is satisfied. Propositions 3.5.7 and 3.5.8 imply that [u, v]γ sat-
isfies (H2) and (H3). Finally Propositions 3.5.13 and 3.5.14 imply that [u, v]γ satisfies (H4). �

Remark 3.5.15

The previous reasoning implies that a result analogous to Theorem 3.5.1 holds also for
closed intervals of the weak order semilattice of W. Thus we can generalize [37, Theorem 6]
to the infinite case.

Remark 3.5.16

It follows from Theorems 1.1.28 and 3.5.1 that every closed interval of a γ-Cambrian semi-
lattice can be constructed from the one-element lattice 1 by successive interval doubling.
The edge-labeling ϕγ defined in (3.10) indicates in which order this interval doubling takes
place, by reversing this procedure. We start with an interval [u, v]γ, and successively con-
tract intervals, starting with edges whose labels have maximum length. (An interval con-
traction is the inverse of an interval doubling.) See Appendix B for an illustration.

3.5.2. Breadth. We complete our study of the γ-Cambrian semilattices by determining
their breadth. Recall that for a finite lattice P = (P,≤) the breadth of P is the least number
b(P) such that the following is satisfied: if p ∈ P can be written as p = p1 ∨ p2 ∨ · · · ∨ pk for
k > b(P), then p can already be written as the join of a b(P)-element subset of {p1, p2, . . . , pk}.
In other words b(P) is the least number such that every element in P can be written as the
join of at most b(P) elements. In this section we prove the following theorem.

Theorem 3.5.17

Let (W, S) be a Coxeter system of rank n, where S = {s1, s2, . . . , sn}, and let γ = s1s2 · · · sn ∈ W
be a Coxeter element. If u, v ∈W with u ≤S v, then

b
(
[u, v]S

)
= max

{
|cov(u−1w)| | u ≤S w ≤S v

}
.

If moreover u, v ∈ Cγ, then

b
(
[u, v]γ

)
= max

{
|cov(w) \ inv(u)| | u ≤γ w ≤γ v

}
.

We prove Theorem 3.5.17 by exploiting the fact that every element in W has a canon-
ical join-representation, see Section 1.1.6 for the definition. For that we use the following
connection between canonical join-representations and the breadth of a lattice.

Proposition 3.5.18

Let P = (P,≤) be a lattice such that every p ∈ P has a canonical join-representation, denoted by
Zp. Then, b(P) = max

{
|Zp| | p ∈ P

}
.
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Proof. Let p ∈ P such that k = |Zp| is maximal. If b(P) < k, then by definition of
the breadth, we can write p as a join of a b(P)-element subset of Zp, which contradicts the
assumption that Zp is the canonical join-representation of p.

Now suppose that b(P) > k. We can find x ∈ P and X ⊆ P with x =
∨

X and |X| = b(P).
Then it follows from the maximality of k that X cannot be the canonical join-representation of
x, and hence Zx ( X. By definition of the breadth follows x =

∨
Zx <

∨
X = x, which is a

contradiction.
Hence we have b(P) = k. �

The next proposition shows that intervals of lattices with canonical join-representations
have canonical join-representations again.

Proposition 3.5.19

Let P = (P,≤) be a lattice such that every p ∈ P has a canonical join-representation. Let [p, q]
be an interval in P , let z ∈ P with p ≤ z ≤ q, and suppose that Zz = {j1, j2, . . . , jk} is the
canonical join-representation of z in P . Define ki = p ∨ ji for i ∈ {1, 2, . . . , k}. The set

{
ki | i ∈

{1, 2, . . . , k} and ki 6= p
}

is the canonical join-representation of z in [p, q].

Proof. Define Z′z =
{

ki | i ∈ {1, 2, . . . , k} and ki 6= p
}
= {ki1 , ki2 , . . . , kil}.

It is straightforward to verify that Z′z is indeed a join-representation of z in [p, q]. Suppose
that there is some other join-representation X of z in [p, q]. This implies in particular that X
is a join-representation of z in P , and it follows that Zz refines X. Let ji ∈ Zz such that ji 6≤ p.
There exists some x ∈ X with ji ≤ x, and ki = p ∨ ji ∈ Z′z. Since p ≤ x we conclude that x is
an upper bound for both ji and p, and it follows that ki ≤ x. Thus Z′z refines X. �

Now we can prove Theorem 3.5.17.

Proof of Theorem 3.5.17. First let w ∈W, and consider the interval [ε, w]S. If Zw denotes
the canonical join-representation of w, then it follows from Theorem 3.3.4 that |Zw| = |cov(w)|,
and the claim follows immediately from Proposition 3.5.18.

Let [u, v]S be an interval of W . Proposition 1.2.15 implies [u, v]S ∼= [ε, u−1v]S. It follows
from the reasoning in the first part of this proof that

b
(
[ε, u−1v]S

)
= max

{
|cov(w)| | ε ≤S w ≤S u−1v

}
,

and in view of the present isomorphism b
(
[u, v]S

)
takes the same value. If w lies in [ε, u−1v]S,

then it can be written as w = u−1w′ for some w′ in [u, v]S.
Now suppose that u, v ∈ Cγ. For w ∈ Cγ with u ≤γ w ≤γ v let Zw denote the canonical

join-representation of w in Cγ, and let Z′w denote the canonical join-representation of w in
[u, v]γ. It follows from Theorem 3.3.4 and Proposition 3.3.5 that |Zw| = |cov(w)|, and Propo-
sition 3.5.19 implies that every j ∈ Zw with j 6≤γ u contributes to Z′w. It follows from the
reasoning in [97, Section 8] that j ∈ Zw is the unique join-irreducible element below w having
cov(j) = t for some t ∈ cov(w). Thus if j ≤γ u, then t ∈ cov(w) ∩ inv(u), and if j 6≤γ u, then
t ∈ inv(v) \ cov(w), which implies the claim. �





CHAPTER 4

The Lattices of Noncrossing Partitions

4.1. Introduction

The study of noncrossing partitions was initiated by Kreweras’ article [70], where he
thoroughly investigated noncrossing set partitions, i.e. set partitions of {1, 2, . . . , n} with the
property that for any four elements i < j < k < l the elements i and k do not lie together in
one block while j and l lie together in another block.

Example 4.1.1

Let n = 10, and consider the set partition

P =
{
{1, 3, 5, 7}, {2, 8}, {4, 6, 9, 11, 12}, {10}

}
.

This set partition is crossing, since for instance i = 1, j = 2, k = 3 and l = 8 have the
property that i and k lie together in one block while j and l lie together in another block. In
contrast the set partition

P′ =
{
{1, 8}, {2, 3, 5, 6, 7}, {4}, {9, 11, 12}, {10}

}
,

is noncrossing.

Among other things Kreweras considered these noncrossing set partitions as a poset
where the corresponding partial order is refinement, i.e. two noncrossing set partitions P1 and
P2 satisfy P1 ≤ref P2 if each block of P1 is contained in some block of P2. We denote the set of
noncrossing set partitions of {1, 2, . . . , n} by NCn, and we writeNCn =

(
NCn,≤ref

)
. Kreweras

proved that the cardinality of NCn is the n-th Catalan number Cat(n), see [70, Corollaire 4.2],
he showed that these posets are graded lattices of length n, and he computed the values of the
Möbius function for these posets. Later Simion and Ullmann proved that NCn is self-dual,
see [108].

We can graphically represent set partitions in the following way: we draw the numbers
from 1 to n on a circle, we sort the elements of each block increasingly, and we connect two
(cyclically) neighboring entries in a block by a diagonal. (Here, “cyclically” means that we also
connect the largest element in a block with the smallest element in the same block.) Finally
we draw the convex hulls of the diagonals between elements lying in the same block. In this
representation, a set partition is noncrossing if and only if these convex hulls do not cross,
see Figure 39 for an illustration, and see Figure 40 for the lattice NC4. Moreover, we can

99
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(a) The crossing set partition P
from Example 4.1.1.
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(b) The noncrossing set partition
P′ from Example 4.1.1.
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(c) The 3-divisible set partition
P′′ from Example 4.1.2.

Figure 39. Cycle diagrams of set partitions.

interpret the blocks of a set partition as cycles of a permutation in An−1, and it was observed
by Biane that the poset NCn can be interpreted as an interval of the absolute order on An−1,
see [17, Theorem 1]. Compare also Figure 40 with the highlighted interval in the poset shown
in Figure 8 on page 27.

At about the same time as Biane’s observation that NCn can be interpreted as a poset
associated with the Coxeter group An−1, Reiner independently defined noncrossing parti-
tions of type B and D in an analogous fashion as before, i.e. by defining cycle diagrams of
type B and D, and by saying when a configuration of diagonals in such a cycle diagram is
noncrossing, see [98]. He interpreted these “noncrossing partitions” as elements in the inter-
section lattice of the reflection arrangement of the corresponding Coxeter group. This was
motivated by the observation that the lattice of all set partitions under refinement is isomor-
phic to the intersection lattice of the type-A reflection arrangement. Some time later Brady

and Watt discovered that for some Coxeter group W and some Coxeter element γ ∈ W the
interval [ε, γ] in the absolute order is a lattice, see [32, 33]. In particular if W = An−1, then
this lattice agrees with NCn, and if W = Bn, then this lattice agrees with Reiner’s type-B
noncrossing partition lattice. However, for W = Dn, the lattices of Reiner do not coincide
with the ones of Brady and Watt. A realization of the noncrossing partition lattices for Dn
in terms of cycle diagrams was given in [7]. Bessis has independently made more or less the
same observation, however from a different point of view. In fact, he considered a slightly
more general setting involving the so-called well-generated complex reflection groups, and



4.1. INTRODUCTION 101

1

23

4

1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4

1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4

1

23

4

Figure 40. The lattice NC4.

he proved that the cardinality of these lattices is given by the generalized Catalan number as-
sociated with the corresponding reflection group, see [12, Proposition 5.2.1]. Interestingly the
lattices of generalized noncrossing partitions are not only interesting from a lattice-theoretic
point of view because they possess many beautiful structural properties, but they also appear
in different, seemingly unrelated fields of mathematics, such as group theory [19], topology
[12, 15, 32], free probability [18], representation theory of quivers [64], or cluster algebras [94].
See [77, 106] for surveys on this matter, or see [1, Section 4.1] for a historical overview on the
theory of noncrossing partitions.

A second, different generalization of the noncrossing set partitions was presented by
Edelman in [47], where he introduced the m-divisible noncrossing partitions, namely noncross-
ing set partitions of {1, 2, . . . , mn} with block sizes divisible by m. Analogously to the case
of ordinary noncrossing set partitions, we can illustrate these m-divisible noncrossing set
partitions by means of a cycle diagram, we denote the set of all m-divisible noncrossing set
partitions by NC(m)

n , and we denote the poset of m-divisible noncrossing set partitions under
refinement order by NC(m)

n =
(

NC(m)
n ,≤ref

)
. It turns out that this poset is a graded join-

semilattice, but it has in general no least element. Moreover, the cardinality of NC(m)
n is given

by the m, n-th Fuß-Catalan number Cat(m)(n), see [47, Lemma 4.1].

Example 4.1.2

The set partition
P′′ =

{
{1, 8, 9}, {2, 3, 4, 5, 6, 7}, {10, 11, 12}

}
is not only noncrossing, it is also 3-divisible, since its block sizes are 3, 6 and 3. The non-
crossing set partition P′ from Example 4.1.1 is only 1-divisible, since its block sizes are
2, 5, 1, 3 and 1. See Figure 39(c) for an illustration, and see Figure 41 for the poset NC(2)3 .

The two previously described generalizations of the lattice of noncrossing set partitions
have been brought together by Armstrong, who introduced in [1] the m-divisible W-noncrossing
partitions associated with a finite Coxeter group W. Bessis and Reiner observed in [16] that
this construction can be generalized straightforwardly to well-generated complex reflection
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Figure 41. The poset NC(2)3 .

groups. The m-divisible noncrossing partitions associated with well-generated complex re-
flection groups are the objects of interest in this chapter.

We first formally define complex reflection groups, (and thus generalize the real reflection
groups introduced in Section 1.2.3), then we define Armstrong’s m-divisible noncrossing par-
titions associated with a well-generated complex reflection group, and finally we investigate
the resulting posets from a topological point of view. In particular, we prove that these lattices
are EL-shellable, see Theorem 4.4.1, and we derive the value of their Möbius invariant, see
Proposition 4.4.23.

4.2. Definition and Examples

In this section we formally define complex reflection groups, and we recall their classi-
fication due to Shephard and Todd, see [104]. For any undefined notation, along with a
more detailed exposition, we refer to the monograph [73]. Subsequently we define the cen-
tral objects of this chapter: the posets of m-divisible noncrossing partitions associated with a
well-generated complex reflection group, and this construction follows [1].

4.2.1. Complex Reflection Groups. Recall from Section 1.2.3 that so far we defined a
reflection to be a linear transformation on an n-dimensional real vector space (endowed with
a symmetric bilinear form 〈·, ·〉) that sends some nonzero vector v ∈ V to its negative and that
fixes the hyperplane orthogonal to v (with respect to 〈·, ·〉) pointwise. In particular, we can
write such a reflection as

sv(u) = u− 2
〈u, v〉
〈v, v〉 v,

and it is easy to check that this is an orthogonal transformation on V having order 2. It follows
further that such a transformation has n− 1 eigenvalues equal to 1, and one eigenvalue equal
to −1.

We can generalize this definition by forgetting about the restriction that such a transfor-
mation has to have order 2, or equivalently, that it has to have a unique eigenvalue equal to
−1. Let now V be an n-dimensional complex vector space endowed with a positive definite
Hermitian form. A complex reflection is a unitary transformation on V that has finite order
and that fixes a hyperplane in V pointwise. In other words, a unitary reflection has n − 1
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eigenvalues equal to 1 and one eigenvalue equal to some root of unity. Let U(V) denote
the group of unitary transformations on V. A complex reflection group is a finite subgroup of
U(V) generated by complex reflections. (In this chapter we will only consider finite groups.)
Let W ⊆ U(V) be a complex reflection group, and denote by VW the set of fixed points of
W, i.e. VW = {v ∈ V | w(v) = v for all w ∈ W}. If W can written as a direct product
W ∼= W1×W2, where W1 and W2 are complex reflection groups acting on proper subspaces of
V, then W is reducible. Otherwise W is irreducible. We explain in Disclaimer 4.2.5 that for our
purposes it is sufficient to understand the irreducible complex reflection groups. Thus from
now on all the groups considered are supposed to be irreducible, unless otherwise stated. The
rank of W is defined as the dimension of the complement of VW in V.

Shephard and Todd have characterized the finite irreducible complex reflection groups
in [104]. Recall that a monomial matrix is a matrix in which each row and each column contains
a unique nonzero entry. The monomial (n× n)-matrices, in which the nonzero entries are d-th
roots of unity and in which the product of all nonzero entries is a d

e -th root of unity, form a
group, and we denote this group by G(d, e, n). We have the following theorem.

Theorem 4.2.1 ([104, Table VII])

A group G is a finite irreducible complex reflection group if and only if G is either isomorphic to
G(d, e, n) for some integer e dividing d, or G is isomorphic to one of 34 exceptional groups, denoted
by G4, G5, . . . , G37.

Theorem 4.2.1 extends Theorems 1.2.5 and 1.2.7 in the sense that the finite Coxeter groups
are contained in this characterization. More precisely, we have the following identification,
see [73, Example 2.11] or [35]:

• the group G(1, 1, n) for n ≥ 2 is isomorphic to the Coxeter group An−1,
• the group G(2, 1, n) for n ≥ 2 is isomorphic to the Coxeter group Bn,
• the group G(2, 2, n) for n ≥ 4 is isomorphic to the Coxeter group Dn,
• the group G(d, d, 2) for d ≥ 3 is isomorphic to the Coxeter group I2(d),
• the group G(2, 2, 3) is isomorphic to the Coxeter group A3, and
• the group G(2, 2, 2) is isomorphic to the reducible Coxeter group A1 × A1.

The exceptional irreducible Coxeter groups are among the 34 exceptional complex reflection
groups. More precisely, we have the following identification:

• the group G23 is isomorphic to the Coxeter group H3,
• the group G28 is isomorphic to the Coxeter group F4,
• the group G30 is isomorphic to the Coxeter group H4,
• the group G35 is isomorphic to the Coxeter group E6,
• the group G36 is isomorphic to the Coxeter group E7, and
• the group G37 is isomorphic to the Coxeter group E8.

Now let W be a irreducible complex reflection group of rank n, and let Sym(V∗)W denote
the invariant subring of the symmetric algebra on V∗. It is the statement of [104, Propo-
sition 5.1] that Sym(V∗)W is generated by polynomials. (In fact this property characterizes
the finite irreducible complex reflection groups.) Now fix a homogeneous polynomial basis
f1, f2, . . . , fn of Sym(V∗)W and denote their degrees by d1, d2, . . . , dn, respectively. It follows
from the results in [39] that these degrees do not depend on the actual choice of basis. Hence
we call these numbers the degrees of W. We can define the degrees of W in yet another way. Let
Sym(V∗)W

+ denote the ideal of invariants without constant term, and consider the coinvariant
algebra Sym(V∗)/Sym(V∗)W

+ . It follows from the results in [39,104] that this algebra contains
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exactly k copies of any irreducible W-representation U of dimension k. The degrees of the
homogeneous components in which these k copies of U occur are called the U-exponents of W,
and they are denoted by e1(U), e2(U), . . . , ek(U). Now it follows from [73, Section 4.1] that the
degrees of W satisfy di = ei(V) + 1 for i ∈ {1, 2, . . . , n}. Moreover, we can define the codegrees
d∗1 , d∗2 , . . . , d∗n of W by d∗i = e1(V∗)− 1 for i ∈ {1, 2, . . . , n}, see also [73, Definition 10.27]. If we
assume that the degrees of W are indexed in nondecreasing order and the codegrees of W are
indexed in nonincreasing order, then a complex reflection group is well-generated if

(4.1) di + d∗i = dn,

for all i ∈ {1, 2, . . . , n}. Equivalently, W is well-generated if it can be generated by n reflections,
where n is the rank of W, see [87]. We can conclude from [87, Table 2] that there are three
infinite families of well-generated complex reflection groups, namely G(1, 1, n) for n ≥ 2, as
well as G(d, 1, n) and G(d, d, n) for n, d ≥ 2. It follows further that 26 of the 34 exceptional
irreducible finite complex reflection groups are well-generated. We list them in Section 4.4.2.

4.2.2. Coxeter Elements and Noncrossing Partitions. Now we want to generalize the
concept of a Coxeter element to well-generated complex reflection groups. There are many
different definitions in the literature, and we follow the one given in [38]. We say that w ∈ W
is ζ-regular if w has an eigenvector to an eigenvalue ζ that does not lie in one of the reflection
hyperplanes of W, and the multiplicative order of w is a regular number for W. The following
result is due to Lehrer and Springer.

Theorem 4.2.2 ([72, Theorem C])

Let d be any integer and let W be a complex reflection group. Then, d is a regular number for W if
and only if it divides as many degrees of W as it divides codegrees of W.

While the original proof of this result was case-by-case, a uniform proof was given later
by Lehrer and Michel in [71]. Theorem 4.2.2 and (4.1) imply that dn is a regular number for
every well-generated complex reflection group. In this case we call dn the Coxeter number of W
and write h instead of dn. It follows that for any primitive h-th root of unity ζ there exists a
regular element γζ ∈ W with eigenvalue ζ, see [73, Remark 11.23]. We call such an element a
Coxeter element of W.

Remark 4.2.3

Let W be a real reflection group, and let T denote the set of reflections of W. In this case the
definition of a Coxeter element of W given here coincides with the one given in Section 1.2.4
for some Coxeter system (W, S) with S ⊆ T, see [99, Table 1].

For the rest of this chapter, unless otherwise stated, W denotes an irreducible well-
generated complex reflection group, T denotes the set of all reflections of W, ε denotes the
identity of W, and γ denotes a Coxeter element of W. Since T is a generating set of W, we
can generalize the notions of absolute length, reduced T-decomposition and absolute order,
defined in Sections 1.2.4 and 1.2.5, verbatim from finite Coxeter groups to complex reflection
groups. Let NCW(γ) = {w ∈ W | w ≤T γ}, and call the poset NCW(γ) =

(
NCW(γ),≤T

)
the

lattice of W-noncrossing partitions. The fact that NCW(γ) is indeed a lattice for any choice of
Coxeter element γ has been proven in a series of papers by different authors, see [12,14,31,33].
We remark that Brady and Watt provide a uniform proof of the lattice property of NCW(γ)
in [34] for the case where W is a Coxeter group, while the general result still relies on a
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case-by-case analysis. It follows immediately from the definition of the absolute order that
NCW(γ) is graded. Moreover, this lattice does not depend on the choice of γ.

Proposition 4.2.4 ([99, Corollary 1.6])

Let W be an irreducible well-generated complex reflection group, and let γ and γ′ be two Coxeter
elements. Then the two posets NCW(γ) and NCW(γ′) are isomorphic.

Disclaimer 4.2.5

If W is reducible, then we can write W ∼= W1 ×W2 × · · ·Wk, where W1, W2, . . . , Wk are
irreducible complex reflection groups. Moreover, if W is well-generated, then so is Wi for
each i ∈ {1, 2, . . . , k}. For i ∈ {1, 2, . . . , k} let γi be a Coxeter element of Wi. Then we can
consider the product γ = γ1γ2 · · · γk as a substitute of a Coxeter element of W. It follows
immediately that

NCW(γ) ∼= NCW1(γ1)×NCW2(γ2)× · · · × NCWk (γk).

Since we want to study the topology of the lattices NCW it is sufficient to understand the
topology of its irreducible components, and thus it is sufficient to investigate the irreducible
well-generated complex reflection groups.

In [1] Armstrong defined a generalization of NCW(γ) as follows: consider the set

NC(m)
W (γ) =

{
(w0; w1, . . . , wm) ∈ NCm+1

W (γ) | γ = w0w1 · · ·wm and
m

∑
i=0

`T(wi) = `T(γ)

}
,

and define a partial order on NC(m)
W (γ) by

(u0; u1, . . . , um) ≤T (v0; v1, . . . , vm) if and only if ui ≥T vi, for all i ∈ {1, 2, . . . , m}.

The corresponding poset NC(m)
W (γ) =

(
NC(m)

W (γ),≤
)

is called the poset of m-divisible W-
noncrossing partitions. It is in general a join-semilattice, since it has no least element, and
it is graded by the rank function rk(w0; w1, . . . , wm) = `T(w0). If m = 1, then we obtain the
previously introduced lattice of W-noncrossing partitions. Again in view of Proposition 4.2.4
the structure of the poset NC(m)

W (γ) does not depend on the particular choice of Coxeter ele-
ment γ. Thus, unless we explicitly need to considerNCW(γ) for a fixed Coxeter element γ, we
drop the Coxeter element from the notation and write NCW instead. Although Armstrong

originally considered only Coxeter groups, the same construction can be carried out in the
general setting of well-generated complex reflection groups, see [16].

Another remarkable property of NC(m)
W is that its cardinality is given by the W-Fuß-

Catalan number.

Theorem 4.2.6 ([1, 7, 13, 14, 47, 70, 98])

Let W be a well-generated complex reflection group, let d1, d2, . . . , dn denote its degrees in nonde-
creasing order and let h denote its Coxeter number. For every m > 0 we have∣∣NC(m)

W

∣∣ = n

∏
i=1

mh + di
di

= Cat(m)(W).
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Remark 4.2.7

If W = G(1, 1, n), or equivalently, if W = An−1 is the symmetric group, then the posets
NC(m)

W coincide with the classical posets of m-divisible noncrossing set partitions NC(m)
n

of Edelman. If m = 1, then we obtain the lattice of noncrossing set partitions NCn of
Kreweras.

Example 4.2.8

Consider the well-generated complex reflection group G(5, 5, 3) of rank 3. It follows for
instance from [88, Table 2] that the degrees of G(5, 5, 3) are d1 = 3, d2 = 5 and d3 = 10,
which yields the Coxeter number h = 10. Hence the lattice NCG(5,5,3) has 26 elements, and
it is depicted in Figure 43 on page 125. The labels are explained in Example 4.4.9.

4.3. Basic Properties

First we observe that the set of reflections of a complex reflection group is closed under
conjugation.

Lemma 4.3.1 ([73, Lemma 1.9])

For every t ∈ T and every w ∈W, we have w−1tw ∈ T.

For w ∈ W define the fixed space of w by Fix(w) = {v ∈ V | w(v) = v}. Let A ⊆ V be
a subspace of V. The maximal subgroup W ′ of W that fixes A pointwise is called a parabolic
subgroup of W. We have the following result.

Theorem 4.3.2 ([117, Theorem 1.5])

Every parabolic subgroup of a complex reflection group is a complex reflection group in its own
right.

By inspecting the classification of complex reflection groups we obtain the following corol-
lary.

Corollary 4.3.3 ([13, Lemma 2.7])

Every parabolic subgroup of a well-generated complex reflection group is again well-generated.

In fact we can say a bit more.

Proposition 4.3.4 ([100, Proposition 6.3(i),(ii)])

Let W be a well-generated complex reflection group, and let w ∈W. The following are equivalent:
(i) w is a Coxeter element in a parabolic subgroup of W; and

(ii) there is a Coxeter element γw ∈W such that w ≤T γw.

We call w a parabolic Coxeter element if it satisfies one of the properties stated in Proposi-
tion 4.3.4. Now fix some Coxeter element γ ∈W, and let Tγ = {t ∈ T | t ≤T γ} denote the set
of reflections of W that are contained in NCW(γ). Let us define an edge-labeling of NCW(γ)
by

(4.2) λγ : E
(
NCW(γ)

)
→ Tγ, (u, v) 7→ u−1v.



4.3. BASIC PROPERTIES 107

This labeling arises quite naturally from the definition of the absolute order, and it has some
nice properties. These properties are well-known to the community, but we give their proofs
for the sake of self-containedness.

Lemma 4.3.5

Let u, v ∈ NCW(γ) with u ≤T v. A product t1t2 · · · tk is a reduced T-decomposition of u−1v if
and only if there exists a maximal chain C : u = x0 lT x1 lT · · ·lT xk = v in NCW(γ) with
λ(C) = (t1, t2, . . . , tk).

Proof. Let C : u = x0 lT x1 lT · · ·lT xk = v be a maximal chain in [u, v] with λ(C) =
(t1, t2, . . . , tk). Since NCW(γ) is graded, we conclude that `T(u−1v) = k. By definition of λγ,
we obtain x−1

i−1xi = ti for all i ∈ {1, 2, . . . , k}. Thus

t1t2 · · · tk = x−1
0 x1x−1

1 x2 · · · x−1
k−1xk = u−1v

as desired.
Conversely let t1t2 · · · tk be a reduced T-decomposition of u−1v. Define x0 = u and

xi = ut1t2 · · · ti for i ∈ {1, 2, . . . , k}. It follows that xk = v and

x−1
i−1xi = t−1

i−1t−1
i−2 · · · t

−1
1 u−1ut1t2 · · · ti−1ti = ti

This implies xi−1 lT xi and λγ(xi−1, xi) = ti for all i ∈ {1, 2, . . . , k}. Hence C : u = x0 lT
x1 lT · · ·lT xk = v is a maximal chain in [u, v] with λ(C) = (t1, t2, . . . , tk). �

Lemma 4.3.6

Let u, v ∈ NCW(γ) with u ≤T v. The poset isomorphism f : [ε, u−1v]→ [u, v] given by f (x) = ux
satisfies λγ(x, y) = λγ

(
f (x), f (y)

)
for all cover relations (x, y) in [ε, u−1v].

Proof. Let x, y ∈ NCW(γ) with x lT y ≤T u−1v. By definition, there exists some t ∈ Tγ

with y = xt. Then we have f (y) = uy = uxt = f (x)t and thus f (x)lT f (y), and vice versa.
Hence f is indeed a poset isomorphism, and it satisfies

λγ(x, y) = x−1y = x−1u−1uy = (ux)−1uy = λγ(ux, uy) = λγ

(
f (x), f (y)

)
.

�

Furthermore the reduced T-decompositions of some w ∈ W can be obtained from one
another by repeated “shifting of letters”. This is made precise in the following lemma, which
first appeared in [1, Lemma 2.5.1] for Coxeter groups.

Lemma 4.3.7

If w = t1t2 · · · tk is a reduced T-decomposition, then so are

(4.3) t1t2 · · · ti−2ti(t−1
i ti−1ti)ti+1ti+2 · · · tk,

for i ∈ {2, 3, . . . , k} and

(4.4) t1t2 · · · ti−1(titi+1t−1
i )titi+2ti+3 · · · tk,

for all i ∈ {1, 2, . . . , k− 1}.
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Proof. Since w = t1t2 · · · tk is a reduced T-decomposition, it follows that `T(w) = k.
Clearly, for suitable i, it follows that

w = t1t2 · · · ti−2ti(t−1
i ti−1ti)ti+1ti+2 · · · tk,

and
w = t1t2 · · · ti−1(titi+1t−1

i )titi+2ti+3 · · · tk,

hence both are T-decompositions of w. Lemma 4.3.1 implies that t−1
i ti−1ti and titi+1t−1

i are
both reflections themselves, and hence `T(t−1

i ti−1ti) = `T(titi+1t−1
i ) = 1. It follows that both

T-decompositions of w are reduced. �

We notice that in (4.3) the letter ti appears in the (i− 1)-st position, and in (4.4) it appears
in the (i + 1)-st position. Hence it is justified to refer to this procedure as left or right-shifting
of w, respectively. This useful property of reduced T-decompositions has some effect on the
label sequences of closed intervals of NCW(γ). The next two results are straightforward
generalizations of the corresponding results that Athanasiadis, Brady and Watt obtained
for Coxeter groups, see [6, Lemma 3.6 and Theorem 3.5(i)], and the proofs given here are
modeled after the corresponding proofs in [6]. For some closed interval [u, v] in NCW(γ) we
abbreviate

λγ

(
[u, v]

)
=
{

λγ(C) | C is a maximal chain in [u, v]
}

.

Lemma 4.3.8

Let [u, v] be a non-singleton interval in NCW(γ).
(i) If [u, v] has rank two and (r, t) ∈ λγ

(
[u, v]

)
, then there exists some r′ ∈ Tγ with (r′, t) ∈

λγ

(
[u, v]

)
.

(ii) If t ∈ Tγ appears as a label in some element of λγ

(
[u, v]

)
, then t = λγ(u, u′) for some cover

relation (u, u′) in [u, v].
(iii) Suppose that all reflections in W have order 2. The reflections appearing as the labels of some

element of λγ

(
[u, v]

)
are pairwise distinct.

Proof. (i) Let (r, t) ∈ λγ

(
[u, v]

)
. Lemma 4.3.5 implies that u−1v = rt. Lemma 4.3.7

implies u−1v = tr′ with r′ = t−1rt, and again Lemma 4.3.5 yields (t, r′) ∈ λγ

(
[u, v]

)
.

(ii) This follows from repeated application of (i), using the fact that NCW(γ) is graded.
(iii) Let C be a maximal chain in [u, v] with λγ(C) = (t1, t2, . . . , tk). Suppose that there

exist indices i, j ∈ {1, 2, . . . , k} with i < j such that ti = tj. Lemma 4.3.5 implies u−1v =

t1t2 · · · tk. Repeated application of Lemma 4.3.7 yields u−1v = t1t2 · · · ti−1titjt′i+2t′i+3 · · · t′k.
Since ti and tj have order 2 and ti = tj they cancel, and it follows that `T(u−1v) < k, which is
a contradiction. �

Proposition 4.3.9

Let W be a well-generated complex reflection group in which every reflection has order 2, and let
γ ∈ W be a Coxeter element. For any total order on Tγ and any non-singleton interval [u, v] in
NCW(γ) the lexicographically first maximal chain in [u, v] is rising with respect to λγ.

Proof. Let [u, v] be a non-singleton interval in NCW(γ), and let ≺ be a total order on
Tγ. We proceed by induction on `T(u−1v). If `T(u−1v) = 1, then the claim is trivially true.
Let `T(u−1v) = k, and suppose that the claim is true for all intervals [ū, v̄] in NCW(γ) with
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ε

t1 t2 t2

γ

t1 t2 t3

t2 t3 t1

Figure 42. The lattice NCG(3,3,2) with the edge-labeling from (4.2).

`T(ū−1v̄) < k. It is easy to see that all cover relations (u, u′) with u′ ≤T v have different labels
with respect to λγ. Now let t = min

{
λγ(u, ut′) | t′ ∈ Tγ and ut′ ≤T v

}
, where the minimum

is taken with respect to ≺. Suppose that there is a chain in [ut, v] having an edge labeled by
some r ∈ Tγ with r ≺ t. Lemma 4.3.8(ii) implies that u lT ur ≤T v, contradicting the choice
of t. Moreover, Lemma 4.3.8(iii) implies that t does not occur as a label in λγ

(
[ut, v]

)
. By

induction hypothesis the lexicographically first maximal chain in [ut, v] is rising, and in view
of the previous reasoning we can append this chain to the edge (u, ut). This implies that the
lexicographically first maximal chain in [u, v] is rising. �

Remark 4.3.10

Proposition 4.3.9 implies that in a well-generated reflection group W, in which all reflections
have order 2, the lexicographically first maximal chain in NCW(γ) is rising with respect to
λγ and any total order on Tγ. However, in general there exist more than just this one rising
maximal chain.

Consider for instance W = G(3, 3, 2), namely the dihedral group of order 6, or equiv-
alently the symmetric group on {1, 2, 3}. Since W is a Coxeter group, every reflection has
order 2 and Proposition 4.3.9 can be applied. Let t1, t2 and t3 denote its reflections. We
can interpret these reflections as transpositions, say t1 = (1 2), t2 = (2 3) and t3 = (1 3).
Consider the Coxeter element γ = t1t2. The corresponding lattice NCG(3,3,2) is shown in
Figure 42, and the edges are labeled by λγ. We notice that among the six total orders of
Tγ = {t1, t2, t3} exactly three make λγ an EL-labeling, namely

t1 ≺ t3 ≺ t2, t2 ≺ t1 ≺ t3, t3 ≺ t2 ≺ t1,

while the other three total orders produce two increasing maximal chains.

4.4. Topological Properties

This section is dedicated to the proof of the main result of this chapter.

Theorem 4.4.1

Let W be a well-generated complex reflection group, and let γ ∈ W be a Coxeter element. Let

NC(m)
W (γ) denote the lattice that is constructed from NC(m)

W (γ) by adding a least element. Then,

NC(m)
W (γ) is EL-shellable for all m > 0.

Again this result was proven earlier for some special cases. In the case where W is a
Coxeter group, Theorem 4.4.1 is [6, Theorem 1.1] if m = 1, and it is [1, Theorem 3.7.2] if m > 1.
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But more can be said. Recall that the braid group associated with a complex reflection group,
denoted by B(W), is the fundamental group of the complement of the reflection hyperplanes
of W. We have the following result.

Proposition 4.4.2

For d, n ≥ 2, we have NCG(d,1,n)
∼= NCBn . Moreover, we have NCG25

∼= NCA3 ,NCG26
∼= NCB3

and NCG32
∼= NCA4 .

Proof. It follows for instance from [35, Table 1] that for d, n ≥ 2 we have B
(
G(d, 1, n)

) ∼=
B(Bn), and moreover that B(G25) ∼= B(A3),B(G26) ∼= B(B3), and B(G32) ∼= B(A4). In [13],
Bessis showed that NCW can be realized as a poset of so-called simple elements of B(W).
Since the braid groups in question are isomorphic, so are their simple elements, and the claim
follows. �

Remark 4.4.3

Using the braid group perspective, we can generalize Proposition 4.3.9 to all well-generated
complex reflection groups. It follows from [13, Theorem 2.2] that for every complex reflec-
tion group W there exists a complex reflection group W ′ in which all reflections have order
2 such that B(W) ∼= B(W ′). Thus it follows in this case that NCW ∼= NCW ′ , and we can
transfer the property that the lexicographically first maximal chain is rising with respect to
any total order on the reflections with this isomorphism.

In view of Disclaimer 4.2.5 it suffices to prove Theorem 4.4.1 for the remaining irreducible
well-generated complex reflection groups. More precisely, it remains to prove Theorem 4.4.1
for the groups G(d, d, n), where d, n ≥ 3, and for the exceptional well-generated complex
reflection groups that are no Coxeter groups and that do not occur in Proposition 4.4.2. We
give an explicit total order of Tγ for G(d, d, n) that makes λγ an EL-labeling of NCG(d,d,n) in
Section 4.4.1, and we treat the exceptional groups by computer in Section 4.4.2. It follows from
the proof of [1, Theorem 3.7.2] that once one has an EL-labeling of NCW it is straightforward
to construct an EL-labeling of NC(m)

W out of it. We recall this construction in Section 4.4.3. We

conclude this chapter by deriving results on the Möbius function of NC(m)
W in Section 4.4.4.

4.4.1. The Groups G(d, d, n) for d, n ≥ 3. In general the complex reflection groups G(d, e, n)
have a wreath product structure, which allows for the representation of these groups in terms
of monomial matrices, see [73, Chapter 2.2]. We call this representation the standard monomial
representation of G(d, e, n).

In the following we explicitly describe this representation for the groups G(d, d, n) for
d, n ≥ 3, and accompany these explanations by the running example of the group G(5, 5, 3).
In this representation the elements of G(d, d, n) are monomial (n × n)-matrices, where the
nonzero entries are d-th roots of unity and where the product of all nonzero entries is 1.
These matrices act as permutation matrices on the set

(4.5)
{

1(0), 2(0), . . . , n(0), 1(1), 2(1), . . . , n(2), 1(3), . . . , n(d−1)}
of integers with d colors. For all k ∈ {1, 2, . . . , n} and s ∈ {0, 1, . . . , d − 1}, we identify the
colored integer k(s) with the vector ζs

d · ek, where ek denotes the k-th unit vector of Cn and
where ζd = e2π

√
−1/d is a primitive d-th root of unity. Hence G(d, d, n) is isomorphic to a
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subgroup of the group of permutations of the set (4.5), and it consists of elements w satisfying

w
(
k(s)
)
= σ(k)(s+tk),

for some permutation σ of {1, 2, . . . , n} and some tk ∈ Z that depends on w, and where
the addition in the superscript is understood modulo d. The numbers tk have to satisfy the
property

n

∑
k=1

tk ≡ 0 (mod d).

This allows us to represent the elements of G(d, d, n) in a permutation-like fashion by(
1(0) 2(0) . . . n(0)

σ(1)(t1) σ(2)(t2) . . . σ(n)(tn)

)
.

We can thus decompose the elements of G(d, d, n) into cycles, and we use the following ab-
breviations:((

k(t1)
1 k(t2)

2 . . . k(tr)
r
))

=
(
k(t1)

1 k(t2)
2 . . . k(tr)

r
)

(
k(t1+1)

1 k(t2+1)
2 . . . k(tr+1)

r
)
· · ·
(
k(t1+d−1)

1 k(t2+d−1)
2 . . . k(tr+d−1)

r
)

and[
k(t1)

1 k(t2)
2 . . . k(tr)

r
]

s =
(
k(t1)

1 k(t2)
2 . . . k(tr)

r

k(t1+s)
1 k(t2+s)

2 . . . k(tr+s)
r . . . k(t1+(d−1)s)

1 k(t2+(d−1)s)
2 . . . k(tr+(d−1)s)

r
)
.

If s = 1, then we usually write
[
k(t1)

1 k(t2)
2 . . . k(tr)

r
]

instead of
[
k(t1)

1 k(t2)
2 . . . k(tr)

r
]

1. It is
immediate that every element of G(d, d, n) can be decomposed into “cycles” of these two
forms. Usually we write w ∈ G(d, d, n) in this “cycle notation”, and we denote by ϕ(w) the
corresponding monomial matrix.

Example 4.4.4

Consider G(5, 5, 3) and consider the element

w =

(
1(0) 2(0) 3(0)

2(2) 1(1) 3(2)

)
.

The corresponding monomial matrix is

ϕ(w) =

 0 ζ5 0
ζ2

5 0 0
0 0 ζ2

5

 .

Hence w acts on the set{
1(0), 2(0), 3(0), 1(1), 2(1), 3(1), 1(2), 2(2), 3(2), 1(3), 2(3), 3(3), 1(4), 2(4), 3(4)

}
as follows:

w
(
1(0)

)
= 2(2), w

(
2(0)

)
= 1(1), w

(
3(0)

)
= 3(2),

w
(
1(1)

)
= 2(3), w

(
2(1)

)
= 1(2), w

(
3(1)

)
= 3(3),

w
(
1(2)

)
= 2(4), w

(
2(2)

)
= 1(3), w

(
3(2)

)
= 3(4),

w
(
1(3)

)
= 2(0), w

(
2(3)

)
= 1(4), w

(
3(3)

)
= 3(0),
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w
(
1(4)

)
= 2(1), w

(
2(4)

)
= 1(0), w

(
3(4)

)
= 3(1).

The cycle decomposition of w is

w =
[
1(0) 2(2)

]
3

[
3(0)

]
2.

It is our goal to show that the labeling defined in (4.2) is an EL-labeling of NCG(d,d,n) with
respect to a suitable total order on the reflections of G(d, d, n). In order to do so, it is necessary
to understand what the reflections of G(d, d, n) look like.

Proposition 4.4.5 ([73, Proposition 2.9])

The group G(d, d, n) contains d(n
2) reflections, and the order of every reflection is 2.

Since the reflections of G(d, d, n) are unitary involutions that fix a space of codimension
1, it follows immediately that

(4.6) T =
{((

a(0) b(s)
))
| 1 ≤ a < b ≤ n, 0 ≤ s < d

}
.

Let us emphasize a certain subset of T, namely the reflections((
1(0) 2(0)

))
,
((

2(0) 3(0)
))

, · · · ,
((
(n−1)(0) n(0))), (((n−1)(0) n(1))),

and we call them the simple reflections of G(d, d, n). In what follows, we use the abbreviations
si =

((
i(0) (i+1)(0)

))
for i ∈ {1, 2, . . . , n − 1} and sn =

((
(n−1)(0) n(1))). The product γ =

s1s2 · · · sn is the group element

(4.7) γ =
[
1(0) 2(0) . . . (n−1)(0)

][
n(0)]

d−1,

which can be represented by the monomial matrix

(4.8) ϕ(γ) =



0 0 0 · · · 0 ζd 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0 0
0 0 0 · · · 0 0 ζd−1

d


.

Recall for instance from [87, Table 2] that the degrees of G(d, d, n) are

d, 2d, . . . , (n− 1)d, n,

and it follows that the Coxeter number of G(d, d, n) is h = (n− 1)d. We can check that ζh is
an eigenvalue of ϕ(γ), and an eigenvector of ϕ(γ) to ζh is for instance

(4.9) v =
(

ζn−1
h ζn−2

h . . . ζh 0
)T

,

where “T” denotes the transposition of vectors. The reflection hyperplanes of G(d, d, n) (in
standard monomial representation) are given by the equations

xi = ζs
dxj, for 1 ≤ i < j ≤ n and 0 ≤ s < d.

Hence the vector v from (4.9) is indeed ζh-regular, which makes γ a Coxeter element of
G(d, d, n). For later use, we refer to the reduced T-decomposition

(4.10) γ =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(n−1)(0) n(0)))(((n−1)(0) n(1)))
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as the simple decomposition of γ. In the remainder of this section, we will always consider the
Coxeter element γ from (4.7).

Remark 4.4.6

If we consider the subword γ̄ =
((

1(0) 2(0) . . . n(0))) = γsn, then we obtain a reduced
T-decomposition

(4.11) γ̄ =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(n−1)(0) n(0))),

which we will refer to as the simple decomposition of γ̄. More precisely, γ̄ is a Coxeter
element in a parabolic subgroup of G(d, d, n) that is isomorphic to G(1, 1, n) and has rank
n− 1. We call the reflections s1, s2, . . . , sn−1 the simple reflections of G(1, 1, n). Indeed, there
is an obvious bijection from the set {s1, s2, . . . , sn−1} to the set of adjacent transpositions of
An−1.

The groups G(d, d, n) are well-behaved in the sense that the absolute length of elements
in NCG(d,d,n) is the codimension of their fixed space.

Lemma 4.4.7 ([14, Lemma 4.1])

For w ∈ NCG(d,d,n) we have `T(w) = n− dim Fix(w).

The next proposition characterizes the set Tγ for the Coxeter element γ from (4.7).

Proposition 4.4.8

Let γ be the Coxeter element of G(d, d, n) from (4.7). We have

Tγ =
{((

a(0) b(s)
))
| 1 ≤ a < b < n, s ∈ {0, d− 1}

}
∪
{((

a(0) n(s))) | 1 ≤ a < n, 0 ≤ s < d
}

.

Proof. Proposition 4.4.5 implies that the reflections of G(d, d, n) are involutions, and it
follows from the definition that `T(t) = 1 if and only if t ∈ T. Hence Lemma 4.4.7 implies
that t ≤T γ if and only if dim Fix(tγ) = 1, where Fix(w) = {v ∈ Cn | wv = v}. For an
arbitrary vector v = (v1, v2, . . . , vn)T ∈ Cn, we have

(4.12) v′ = γv =
(

ζdvn−1, v1, v2, . . . , vn−2, ζd−1
d vn

)T
.

In what follows, we determine the dimension of Fix(tγ) for t ∈ T. We distinguish three cases:
(i) Let t =

((
a(0) b(s)

))
, where 1 ≤ a < b < n and 0 ≤ s < d. We obtain

tv′ =
(

ζdvn−1, v1, . . . , va−2, ζd−s
d vb−1, va, . . . , vb−2, ζs

dva−1, vb, . . . , vn−2, ζd−1
d vn

)T
.

Thus Fix(tγ) is given by the following system of linear equations:

v1 = ζdvn−1, v2 = v1, v3 = v2, . . . , va−1 = va−2,

va = ζd−s
d vb−1, va+1 = va, va+2 = va+1, . . . , vb−1 = vb−2,

vb = ζs
dva−1, vb+1 = vb, vb+2 = vb+1, . . . , vn−1 = vn−2,

vn = ζd−1
d vn.
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If we put these equations together, then we obtain

ζs+1
d vn−1 = ζs

dv1 = · · · = ζs
dva−1 = vb = vb+1 = · · · = vn−1,

ζd−s
d vb−1 = va = va+1 = · · · = vb−1,

ζd−1
d vn = vn.

The first line has a nontrivial solution only if s = d− 1 (which forces the components in lines
2 and 3 to be zero) and hence dim Fix(tγ) = 1. Similarly the second line has a nontrivial
solution only if s = 0 (which forces the components in lines 1 and 3 to be zero) and hence
dim Fix(tγ) = 1. Thus in these two cases we obtain t ≤T γ. Every other value of s forces all
components to be zero, which implies dim Fix(tγ) = 0 and hence t 6≤T γ.

(ii) Let t =
((

1(0) n(s))), where 0 ≤ s < d. We obtain

tv′ =
(

ζd−s−1
d vn, v1, v2, . . . , vn−2, ζs+1

d vn−1

)T
,

and analogously to (i) we see that dim Fix(tγ) = 1, which implies t ≤T γ.
(iii) Let t =

((
a(0) n(s))), where 1 < a < n and 0 ≤ s < d. We obtain

tv′ =
(

ζdvn−1, v1, v2, . . . , va−2, ζd−s−1
d vn, va, va+1, . . . , vn−2, ζs

dva−1

)T
,

and analogously to (i) we see that dim Fix(tγ) = 1, which implies t ≤T γ. �

Proposition 4.4.5 states that all reflections of G(d, d, n) have order 2. Hence we can
apply Proposition 4.3.9, and we conclude that the lexicographically first maximal chain in
NCG(d,d,n)(γ) with respect to any total order of Tγ is rising. However, Remark 4.3.10 implies
that not all total orders of Tγ make λγ an EL-labeling. We show in the remainder of this
section that the following total order of Tγ works nicely.

(4.13)

((
1(0) 2(0)

))
≺γ

((
1(0) 3(0)

))
≺γ · · · ≺γ

((
1(0) (n−1)(0)

))
≺γ

((
2(0) 3(0)

))
≺γ · · · ≺γ

((
2(0) (n−1)(0)

))
≺γ

((
3(0) 4(0)

))
≺γ · · · ≺γ

((
(n−2)(0) (n−1)(0)

))
≺γ

((
1(0) n(0))) ≺γ

((
1(0) n(d−1))) ≺γ · · · ≺γ

((
1(0) n(1)))

≺γ

((
1(0) 2(d−1))) ≺γ · · · ≺γ

((
1(0) (n−1)(d−1)))

≺γ

((
2(0) n(0))) ≺γ

((
2(0) n(d−1))) ≺γ · · · ≺γ

((
2(0) n(1)))

≺γ

((
2(0) 3(d−1))) ≺γ · · · ≺γ

((
2(0) (n−1)(d−1)))

≺γ

((
3(0) n(0))) ≺γ

((
3(0) n(d−1))) ≺γ · · · ≺γ

((
(n−1)(0) n(1))).

Example 4.4.9

Consider again G(5, 5, 3). The total order of Tγ defined in (4.13) is:((
1(0) 2(0)

))
≺γ

((
1(0) 3(0)

))
≺γ

((
1(0) 3(4)

))
≺γ

((
1(0) 3(3)

))
≺γ

((
1(0) 3(2)

))
(4.14)

≺γ

((
1(0) 3(1)

))
≺γ

((
1(0) 2(4)

))
≺γ

((
2(0) 3(0)

))
≺γ

((
2(0) 3(4)

))
≺γ

((
2(0) 3(3)

))
≺γ

((
2(0) 3(2)

))
≺γ

((
2(0) 3(1)

))
.
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Figure 43 shows the lattice NCG(5,5,3)(γ), and the integer labels correspond to positions in
the total order on Tγ, for instance the label 3 represents

((
1(0) 3(4)

))
. Likewise, the label 1·9

represents the product
((

1(0) 2(0)
))((

2(0) 3(3)
))

.

Remark 4.4.10

If n = 2, then G(d, d, 2) is isomorphic to the Coxeter group I2(d), and the total order in (4.13)
is precisely the total order given by Athanasiadis, Brady and Watt in [6, Example 3.2]. If
d = 1, then G(1, 1, n) is isomorphic to the Coxeter group An−1, and the total order in (4.13)
is precisely the total order in [6, Example 3.3]. If d = 2, then G(2, 2, n) is isomorphic to the
Coxeter group Dn, and the total order in (4.13) is precisely the total order in [6, Example 3.4].

Our goal is to prove the following theorem.

Theorem 4.4.11

Let d, n ≥ 3, let γ ∈ G(d, d, n) be the Coxeter element defined in (4.7), and let Tγ denote the set of
reflections of G(d, d, n) that are contained in NCG(d,d,n)(γ). If Tγ is ordered as in (4.13), then the
edge-labeling λγ of NCG(d,d,n)(γ) defined in (4.2) is an EL-labeling.

The proof of this theorem consists of several steps, which we present separately in the
following statements. In view of Lemma 4.3.5, we can (and will) use the terms “maximal
chain in [u, v]” and “reduced T-decomposition of u−1v” interchangeably. Hence a reduced
T-decomposition of w is rising if the corresponding maximal chain in [ε, w] is rising.

Lemma 4.4.12

If d = 1, then for every w ≤T γ there exists a unique rising reduced T-decomposition of w.

Proof. The complex reflection group G(1, 1, n) is isomorphic to the Coxeter group An−1,
and under this isomorphism, γ corresponds to the long cycle (1 2 . . . n). Then, Tγ ={((

a(0) b(0)
))
| 1 ≤ a < b ≤ n

}
and ≺γ is the lexicographic order on Tγ, and the claim follows

from [6, Theorem 3.5(ii)]. �

The next lemma states what the coatoms of NCG(d,d,n) look like.

Lemma 4.4.13

Let t ∈ Tγ. If t =
((

a(0) b(0)
))

, where 1 ≤ a < b < n, then

γt =
[
1(0) . . . a(0) (b+1)(0) . . . (n−1)(0)

][
n(0)]

d−1

((
a+1(0) . . . b(0)

))
.

If t =
((

a(0) b(d−1))), where 1 ≤ a < b < n, then

γt =
((

1(0) . . . a(0) (b+1)(d−1) . . . (n−1)(d−1)))[a+1(0) . . . b(0)
][

n(0)]
d−1.

If t =
((

a(0) n(s))), where 1 ≤ a < n and 0 ≤ s < d, then

γt =
((

1(0) . . . a(0) n(s−1) (a+1)(d−1) . . . (n−1)(d−1))).
Proof. This is a straightforward computation. �
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If we combine the previous lemma with Proposition 4.3.4, then we obtain what the para-
bolic subgroups of G(d, d, n) can possibly look like.

Lemma 4.4.14

Let W be a parabolic subgroup of G(d, d, n). If W is irreducible, then W is either isomorphic to
G(1, 1, n′) or to G(d, d, n′) for some n′ ≤ n. If W is reducible, then W is isomorphic to a direct
product of irreducible parabolic subgroups of G(d, d, n).

Proof. In view of Corollary 4.3.3 every parabolic subgroup of G(d, d, n) is well-generated.
The claim follows from [35, Fact 1.7] and [35, Table 2]. �

From now on, let ≺γ denote the total order of Tγ as defined in (4.13). First we focus on
the rank-2 intervals of NCG(d,d,n)(γ).

Lemma 4.4.15

Let w ≤T γ with `T(w) = 2. There exists a unique rising reduced T-decomposition of w with
respect to the restriction of ≺γ to the reflections in Tγ ∩ [ε, w].

Proof. Let w = t1t2 for t1, t2 ∈ Tγ. If t1 and t2 commute, then w = t1t2 = t2t1 are the
only possible reduced T-decompositions of w. Since ≺γ is a total order there is nothing to
show. Suppose that t1 and t2 do not commute. With the help of Proposition 4.4.8 we can
explicitly determine the possible forms of w. Analogously to the proof of Proposition 4.4.8,
we investigate the fixed space of w−1γ to determine which of these possibilities can actually
occur in NCG(d,d,n)(γ). The details of this investigation can be found in Appendix C.1. We
state here only the relevant cases.

(i) Let t1 =
((

a(0) b(0)
))

, t2 =
((

b(0) c(0)
))

, where 1 ≤ a < b < c < n. We have w =((
a(0) b(0) c(0)

))
, and the reduced T-decompositions of w are

w =
((

a(0) b(0)
))((

b(0) c(0)
))

=
((

b(0) c(0)
))((

a(0) c(0)
))

=
((

a(0) c(0)
))((

a(0) b(0)
))

.

According to (4.13) only w =
((

a(0) b(0)
))((

b(0) c(0)
))

is increasing.
(ii) Let t1 =

((
a(0) b(0)

))
, t2 =

((
b(0) c(d−1))), where 1 ≤ a < b < c < n. We have

w =
((

a(0) b(0) c(d−1))), and the reduced T-decompositions of w are

w =
((

a(0) b(0)
))((

b(0) c(d−1))) = ((b(0) c(d−1)))((a(0) c(d−1))) = ((a(0) c(d−1)))((a(0) b(0)
))

.

According to (4.13) only w =
((

a(0) b(0)
))((

b(0) c(d−1))) is increasing.
(iii) Let t1 =

((
a(0) b(0)

))
, t2 =

((
b(0) n(s))), where 1 ≤ a < b < n and 0 ≤ s < d. We have

w =
((

a(0) b(0) n(s))), and the reduced T-decompositions of w are

w =
((

a(0) b(0)
))((

b(0) n(s))) = ((b(0) n(s)))((a(0) n(s))) = ((a(0) n(s)))((a(0) b(0)
))

.

According to (4.13) only w =
((

a(0) b(0)
))((

b(0) n(s))) is increasing.
(iv) Let t1 =

((
b(0) c(0)

))
, t2 =

((
a(0) c(d−1))), where 1 ≤ a < b < c < n. We have

w =
((

a(0) b(d−1) c(d−1))), and the reduced T-decompositions w are

w =
((

a(0) b(d−1)))((b(0) c(0)
))

=
((

b(0) c(0)
))((

a(0) c(d−1))) = ((a(0) c(d−1)))((a(0) b(d−1))).
According to (4.13) only w =

((
b(0) c(0)

))((
a(0) c(d−1))) is increasing.
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(v) Let t1 =
((

a(0) b(d−1))), t2 =
((

a(0) n(s))), where 1 ≤ a < b < n and 0 ≤ s < d. We have
w =

((
a(0) n(s) b(d−1))), and the reduced T-decompositions of w are

w =
((

a(0) n(s)))((b(0) n(s+1))) = ((b(0) n(s+1)))((a(0) b(d−1))) = ((a(0) b(d−1)))((a(0) n(s))).
According to (4.13) only w =

((
a(0) n(s)))((b(0) n(s+1))) is increasing.

(vi) Let t1 =
((

a(0) n(s))), t2 =
((

a(0) n(t))), where 1 ≤ a < n and 0 ≤ s, t < d with t 6= s.

We have w =
[
a(0)
]

t−s

[
n(0)]−1

t−s, and the reduced T-decompositions of w are

w =
((

a(0) n(s)))((a(0) n(s+1))) = ((a(0) n(s+1)))((a(0) n(s+2)))
=
((

a(0) n(s+2)))((a(0) n(s+3))) = · · · = ((a(0) n(s−1)))((a(0) n(s))).
According to (4.13) only w =

((
a(0) n(0)))((a(0) n(1))) is increasing. �

Now we consider the intervals of NCG(d,d,n)(γ) that are isomorphic to NCG(1,1,n′) for some
n′ ≤ n.

Proposition 4.4.16

Let w ≤T γ such that the parabolic subgroup of G(d, d, n), in which w is a Coxeter element, is
isomorphic to G(1, 1, n′) for some n′ ≤ n. Then, w is of one of the following three forms:

(i) w =
((
(a+1)(0) (a+2)(0) . . . b(0)

))
, where 1 ≤ a < b < n,

(ii) w =
((

1(0) 2(0) . . . a(0) (b+1)(d−1) (b+2)(d−1) . . . (n−1)(d−1))), where 1 ≤ a < b < n,
or

(iii) w =
((

1(0) 2(0) . . . a(0) n(s−1)(a+1)(d−1) (a+2)(d−1) . . . (n−1)(d−1))), where 1 ≤ a < n.
Moreover, in each of these cases there exists a unique rising reduced T-decomposition of w with
respect to the restriction of ≺γ to the reflections in Tγ ∩ [ε, w].

Proof. The observation that w can only be of the forms (i)–(iii) is a straightforward com-
putation using Proposition 4.4.8. The proof of the second part of this proposition is rather
technical, and hence omitted here. The details can be found in Appendix C.2. We only
present the unique rising reduced T-decompositions of w for the different cases:

(i) Let w =
((
(a+1)(0) (a+2)(0) . . . b(0)

))
, where 1 ≤ a < b < n. The unique rising

reduced T-decomposition of w is

w =
((
(a+1)(0) (a+2)(0)

))((
(a+2)(0) (a+3)(0)

))
· · ·
((
(b−1)(0) b(0)

))
.

(ii) Let w =
((

1(0) 2(0) . . . a(0) (b+1)(d−1) (b+2)(d−1) . . . (n−1)(d−1))), where 1 ≤ a <
b < n. The unique rising reduced T-decomposition of w is

w =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(b+1)(0) (b+2)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) (n−1)(d−1))).

(iii) Let w =
((

1(0) 2(0) . . . a(0) n(s−1)(a+1)(d−1) (a+2)(d−1) . . . (n−1)(d−1))), where
1 ≤ a < n. The unique rising reduced T-decomposition of w is

w =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(a+1)(0) (a+2)(0)

))((
(a+2)(0) (a+3)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) n(s−1)))(((n−1)(0) n(s))).

�
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The following corollary is immediate.

Corollary 4.4.17

Let w ≤T γ such that the parabolic subgroup W of G(d, d, n), in which w is a Coxeter element, is
reducible, and hence W = W1 ×W2 × · · · ×Wl for some l. If for each i ∈ {1, 2, . . . , l}, the group
Wi is isomorphic to G(1, 1, ni) for ni ≤ n, then there exists a unique rising reduced T-decomposition
of w with respect to the restriction of ≺γ to the reflections in Tγ ∩ [ε, w].

Proof. This works analogously to the proof of Proposition 4.4.16. See Appendix C.3 for
the details. �

Finally we focus on the intervals of NCG(d,d,n)(γ) that are isomorphic to NCG(d,d,n′) for
some n′ < n.

Proposition 4.4.18

Let w ≤T γ such that the parabolic subgroup of G(d, d, n), in which w is a Coxeter element, is
isomorphic to G(d, d, n′) for some n′ < n. There exists a unique rising reduced T-decomposition of
w with respect to the restriction of ≺γ to the reflections in Tγ ∩ [ε, w].

Proof. Again we proceed by induction on `T(w), and the case `T(w) = 2 is covered
by Lemma 4.4.15. In view of Lemma 4.3.6, we can assume that w = γ, and that the claim
is true for all w′ <T w that satisfy the condition. We notice immediately that the simple
decomposition of γ, namely

γ = s1s2 · · · sn =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(n−1)(0) n(0)))(((n−1)(0) n(1)))

is rising with respect to (4.13). Let γ = t1t2 · · · tn be a rising reduced T-decomposition of
γ that is different from s1s2 · · · sn, and let k be the maximal index where tk 6= sk. If k < n,
then γsnsn−1 · · · sk+1 =

((
1(0) 2(0) . . . (k+1)(0)

))
. It follows from Proposition 4.4.16 that the

only rising reduced T-decomposition of γsnsn−1 · · · sk+1 is s1s2 · · · sk, which is a contradiction.
Hence let k = n. In view of Proposition 4.4.8, there are essentially three possible choices of tn,
and we write γ′ = γtn. Moreover, let W denote the parabolic subgroup of G(d, d, n) in which
γ′ is a Coxeter element.

(i) Let tn =
((

a(0) b(0)
))

, where 1 ≤ a < b < n. Lemma 4.4.13 implies that we can write
γ′ = w1w2 with

w1 =
[
1(0) 2(0) . . . a(0) (b+1)(0) (b+2)(0) . . . (n−1)(0)

][
n(0)]

d−1, and

w2 =
((
(a+1)(0) (a+2)(0) . . . b(0)

))
.

This implies that w1 is a Coxeter element in a parabolic subgroup W1 of G(d, d, n) isomorphic
to G(d, d, n + a − b), and w2 is a Coxeter element in a parabolic subgroup W2 of G(d, d, n)
isomorphic to G(1, 1, b − a − 1), and we can write W = W1 ×W2. By induction hypothesis
and by Proposition 4.4.16 there exist unique rising reduced T-decompositions of w1 and w2,
namely

w1 =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
a(0) (b+1)(0)

))((
(b+1)(0) (b+2)(0)

))
· · ·
((
(n−1)(0) n(0)))(((n−1)(0) n(1))), and

w2 =
((
(a+1)(0) (a+2)(0)

))((
(a+2)(0) (a+3)(0)

))
· · ·
((
(b−1)(0) b(0)

))
.
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It is immediate to see that

γ′ =
((

1(0) 2(0)
))
· · ·
((
(a−1)(0) a(0)

))((
a(0) (b+1)(0)

))((
(a+1)(0) (a+2)(0)

))
· · ·((

(b−1)(0) b(0)
))((

(b+1)(0) (b+2)(0)
))
· · ·
((
(n−1)(0) n(0)))(((n−1)(0) n(1)))

is the unique rising reduced T-decomposition of γ′ and hence has to correspond to t1t2 · · · tn−1.
However, we have for instance

((
(n−1)(0) n(1))) �γ

((
a(0) b(0)

))
= tn, which contradicts the

assumption that t1t2 · · · tn is rising.
(ii) Let tn =

((
a(0) b(d−1))), where 1 ≤ a < b < n. Lemma 4.4.13 implies that we can write

γ′ = w1w2 with

w1 =
((

1(0) 2(0) . . . a(0) (b+1)(d−1) (b+2)(d−1) . . . (n−1)(d−1))), and

w2 =
[
(a+1)(0) (a+2)(0) . . . b(0)

][
n(0)]

d−1.

This implies that w1 is a Coxeter element in a parabolic subgroup W1 of G(d, d, n) isomorphic
to G(1, 1, n + a− b− 2), and w2 is a Coxeter element in a parabolic subgroup W2 of G(d, d, n)
isomorphic to G(d, d, b − a + 1), and we can write W = W1 ×W2. By induction hypothesis
and by Proposition 4.4.16 there exist unique rising reduced T-decompositions of w1 and w2,
namely

w1 =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(b+1)(0) (b+2)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) (n−1)(d−1))), and

w2 =
((
(a+1)(0) (a+2)(0)

))((
(a+2)(0) (a+3)(0)

))
· · ·
((
(b−1)(0) b(0)

))((
b(0) n(0)))((b(0) n(1))).

It is immediate to see that

γ′ =
((

1(0) 2(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(a+1)(0) (a+2)(0)

))
· · ·
((
(b−1)(0) b(0)

))((
(b+1)(0) (b+2)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) (n−1)(d−1)))((b(0) n(0)))((b(0) n(1)))

is the unique rising reduced T-decomposition of γ′ and hence has to correspond to t1t2 · · · tn−1.
However, we have for instance

((
b(0) n(1))) �γ

((
a(0) b(d−1))) = tn, which contradicts the as-

sumption that t1t2 · · · tn is rising.
(iii) Let t =

((
a(0) n(s))), where 1 ≤ a < n− 1 and 0 ≤ s < d. Lemma 4.4.13 implies that

we can write

γ′ =
((

1(0) 2(0) . . . a(0) n(s−1)(a+1)(d−1) (a+2)(d−1) . . . (n−1)(d−1))).
In view of Proposition 4.4.16 there exists a unique rising reduced T-decomposition of γ,
namely

γ′ =
((

1(0) 2(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(a+1)(0) (a+2)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) n(s−1)))(((n−1)(0) n(s))),

and this decomposition has to correspond to t1t2 · · · tn−1. However, we have for instance((
(n−1)(0) n(s))) �γ

((
a(0) n(s))) = tn, which contradicts the assumption that t1t2 · · · tn is

rising.
(iv) Let t =

((
(n−1)(0) n(s))), where 0 ≤ s < d. It follows that s 6= 1, because otherwise

tn = sn. Lemma 4.4.13 implies that we can write

γ′ =
((

1(0) 2(0) . . . (n−1)(0) n(s−1))).
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In view of Proposition 4.4.16 there exists a unique rising reduced T-decomposition of γ,
namely

γ′ =
((

1(0) 2(0)
))
· · ·
((
(n−2)(0) (n−1)(0)

))((
(n−1)(0) n(s−1))),

and this decomposition has to correspond to t1t2 · · · tn−1. However, since s 6= 1, we have for
instance

((
(n−1)(0) n(s−1))) �γ

((
(n−1)(0) n(s))) = tn, which contradicts the assumption that

t1t2 · · · tn is rising.
Hence γ = s1s2 · · · sn is the unique rising reduced T-decomposition of γ. �

The following corollary is immediate.

Corollary 4.4.19

Let w ≤T γ such that the parabolic subgroup W of G(d, d, n), in which w is a Coxeter element, is
reducible. There exists a unique rising reduced T-decomposition of w with respect to the restriction
of ≺γ to the reflections in Tγ ∩ [ε, w].

Proof. Since W is reducible, we can write W = W1 ×W2 × · · · ×Wl for some l. It follows
for instance from [35, Fact 1.7] and [35, Table 2] that at most one Wi is isomorphic to G(d, d, n′)
for some n′ < n, and the other Wj are isomorphic to G(1, 1, nj) for nj ≤ n. The proof works
analogously to the proofs of Corollary 4.4.17 and Proposition 4.4.18. �

Now we have collected all the ingredients for the proof of Theorem 4.4.11.

Proof of Theorem 4.4.11. We need to show that under the given assumptions in every
interval [u, v] of NCG(d,d,n)(γ) there exists a unique rising maximal chain, and this maximal
chain is lexicographically first. In view of Lemma 4.3.6, it suffices to consider intervals of the
form [ε, w]. Proposition 4.4.5 implies that all reflections of G(d, d, n) have order two. Hence
we can apply Proposition 4.3.9, and we obtain that the lexicographically first maximal chain
in [ε, w] is rising. Now, Propositions 4.4.16 and 4.4.18 as well as Corollaries 4.4.17 and 4.4.19
imply together with Lemma 4.3.5 that there is exactly one rising maximal chain in [ε, w], and
we are done. �

Example 4.4.20

The lattice NCG(5,5,3)(γ) with the edge-labeling λγ is depicted in Figure 43. The labels are
explained in Example 4.4.9. Indeed, this labeling is an EL-labeling, and the unique rising
maximal chain from ε to γ is indicated by thick edges.

4.4.2. The Exceptional Groups. In this section we prove Theorem 4.4.1 for the exceptional
well-generated complex reflection groups and m = 1 by computing a total order on Tγ that
makes the labeling λγ an EL-labeling of the corresponding lattice of noncrossing partitions.
This computation is done by a computer program, called Lins [81]. Given a well-generated
complex reflection group W, Lins computes some Coxeter element γ ∈ W and starts with an
arbitrary total order on Tγ. It successively adapts this total order until for each rank-2 interval
only one rising maximal chain remains. In the end it checks that this total order indeed
makes λγ an EL-labeling for the whole lattice NCW(γ). (The observation that this process
always works led us to Conjecture 4.4.28 in Section 4.4.5.) This algorithm, however, is not
deterministic meaning that different runs of Lins may produce different total orders. It uses
Michel’s GAP-distribution [80] and Borchmann’s FCA-tool [28] for computing the chains
of the lattice. For more information on Formal Concept Analysis (FCA), see the monograph
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ε
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12 2 1 6 8 11 3 5 9 7 8 4

Figure 43. The lattice NCG(5,5,3)(γ) with the edge-labeling from (4.2). The
labels are explained in Example 4.4.9.

[57]. Lins outputs several files, including some GAP scripts, a file containing the labeled
chains as well as a file containing the total order on Tγ. For that it names the reflections
of W abstractly by sk, where k ∈

{
1, 2, . . . , |NCW(γ)|

}
. The index k comes from the internal

representation of the group elements of W in GAP. This naming is deterministic, and it can
be resolved with the GAP script used by Lins, which can separately be downloaded from
http://homepage.univie.ac.at/henri.muehle/files/lins. The following theorem is the
main result of this section.

Theorem 4.4.21

The lattice NCW is EL-shellable for every exceptional well-generated complex reflection group.

Proof. We distinguish different classes of exceptional well-generated complex reflection
groups.

(i) The groups G23, G28, G30, G35, G36, G37. These are the exceptional complex reflection
groups that are isomorphic to the exceptional Coxeter groups, see [35, p. 6]. Hence the claim
follows from [6].

(ii) The groups G25, G26, G32. By Proposition 4.4.2, the lattices of noncrossing partitions
associated with these groups are isomorphic to the lattices of noncrossing partitions of the
Coxeter groups A3, B3 and A4, respectively. Hence the claim follows again from [6].

(iii) The groups G4, G5, G6, G8, G9, G10, G14, G16, G17, G18, G20, G21. These groups are the
exceptional well-generated complex reflection groups of rank 2. Hence their associated lattices
of noncrossing partitions have rank 2 as well, and thus each such lattice is isomorphic to some

http://homepage.univie.ac.at/henri.muehle/files/lins
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Group Total order

G24
s26 ≺ s5 ≺ s3 ≺ s29 ≺ s21 ≺ s28 ≺ s18 ≺ s7 ≺ s2 ≺ s4 ≺ s11 ≺ s8

≺ s23 ≺ s25

G27
s23 ≺ s38 ≺ s42 ≺ s15 ≺ s36 ≺ s29 ≺ s33 ≺ s27 ≺ s18 ≺ s13 ≺ s4

≺ s3 ≺ s2 ≺ s8 ≺ s5 ≺ s21 ≺ s17 ≺ s34 ≺ s37 ≺ s30

G29

s101 ≺ s4 ≺ s76 ≺ s109 ≺ s8 ≺ s105 ≺ s64 ≺ s47 ≺ s6 ≺ s33 ≺ s68

≺ s13 ≺ s20 ≺ s39 ≺ s93 ≺ s9 ≺ s88 ≺ s2 ≺ s70 ≺ s28 ≺ s110

≺ s25 ≺ s53 ≺ s3 ≺ s18

G33

s5 ≺ s13 ≺ s7 ≺ s33 ≺ s56 ≺ s19 ≺ s36 ≺ s58 ≺ s47 ≺ s182 ≺ s16

≺ s17 ≺ s224 ≺ s281 ≺ s297 ≺ s42 ≺ s179 ≺ s217 ≺ s89 ≺ s128

≺ s86 ≺ s110 ≺ s2 ≺ s172 ≺ s277 ≺ s169 ≺ s76 ≺ s68 ≺ s3 ≺ s12

G34

s1568 ≺ s937 ≺ s1361 ≺ s213 ≺ s13 ≺ s142 ≺ s669 ≺ s888 ≺ s58 ≺ s7

≺ s65 ≺ s67 ≺ s480 ≺ s295 ≺ s8 ≺ s37 ≺ s40 ≺ s256 ≺ s714

≺ s1060 ≺ s1447 ≺ s17 ≺ s3 ≺ s117 ≺ s53 ≺ s1252 ≺ s639 ≺ s62

≺ s6 ≺ s702 ≺ s915 ≺ s1043 ≺ s43 ≺ s359 ≺ s428 ≺ s23 ≺ s4

≺ s75 ≺ s127 ≺ s191 ≺ s368 ≺ s157 ≺ s648 ≺ s1234 ≺ s181 ≺ s2

≺ s683 ≺ s49 ≺ s264 ≺ s235 ≺ s905 ≺ s1241 ≺ s60 ≺ s1558 ≺ s1353

≺ s319

Figure 44. Explicit total orders of the reflections in NCW(γ), where W ∈
{G24, G27, G29, G33, G34}, that make λγ an EL-labeling.

lattice of noncrossing partitions of some Coxeter group I2(d) for some d. Once more, the claim
follows from [6].

(iv) The groups G24, G27, G29, G33, G34. These groups are the remaining groups whose
lattices of noncrossing partitions are not related to any previously known case. Figure 44
provides total orders of the reflections of NCW(γ), where W is one of these groups, and
where γ is a particular choice Coxeter element. These orders were computed with Lins. �

4.4.3. The Case m > 1. In this section we prove the general case of Theorem 4.4.1, namely
where m > 1. We basically apply the same construction that Armstrong and Thomas have
applied in their proof of [1, Theorem 3.7.2], which is Theorem 4.4.1 restricted to finite Coxeter
groups. This construction uses several structural properties of NC(m)

W that were presented in
[1] provided that W is a Coxeter group. However, all of these properties generalize straightfor-
wardly to well-generated complex reflection groups. Thus we can now proof Theorem 4.4.1.

Proof of Theorem 4.4.1. First suppose that m = 1. In this case the claim follows from
[6, Theorem 1.1] and from Proposition 4.4.2 and Theorems 4.4.11 and 4.4.21.
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Now let m > 1, let W be a well-generated complex reflection group and let γ ∈ W be a
fixed Coxeter element. Moreover, let ≺γ be a total order of Tγ such that λγ is an EL-labeling
of NCW(γ). In particular, let us write Tγ = {t1, t2, . . . , tN} where the elements are ordered
increasingly with respect to ≺γ.

We first define an EL-labeling of NCWm , where Wm denotes the m-fold direct prod-
uct of W with itself. For i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , N}, define a vector ti,j =

(ε, ε, . . . , ε, tj, ε, ε, . . . , ε)T, where tj ∈ Tγ appears in the i-th coordinate. Define the set Tm
γ =

{ti,j | 1 ≤ i ≤ m, 1 ≤ j ≤ N}, and consider the edge-labeling

λm
γ : E

(
NCWm(γ)

)
→ Tm

γ ,(
(u1, u2, . . . , um), (v1, v2, . . . , vm)

)
7→
(
λγ(u1, v1), λγ(u2, v2), . . . , λγ(um, vm)

)
,

where we use the additional convention that λγ(w, w) = ε for all W ∈ NCW(γ). If we consider
the following total order ≺m

γ of Tm
γ :

t1,1 ≺m
γ t1,2 ≺m

γ · · · ≺m
γ t1,N ≺m

γ t2,1 ≺m
γ t2,2 ≺m

γ · · · ≺m
γ t2,N ≺m

γ t3,1 ≺m
γ · · · ≺m

γ tm,N ,

then [21, Theorem 4.3] implies that λm
γ is an EL-labeling of NCWm(γ). A straightforward

generalization of [1, Lemma 3.4.3] implies that NC(m)
W (γ) is an up-set in the dual of NCWm(γ),

i.e. it is a subposet of the dual of NCWm(γ) that is closed under taking upper covers. It
follows immediately that λm

γ restricts to an edge-labeling of NC(m)
W (γ) by reversing the order

≺m
γ . Recall that NC(m)

W (γ) is the lattice that is constructed from NC(m)
W (γ) by adding a least

element 0. Armstrong and Thomas introduce an abstract symbol δ, and define an edge-

labeling λ
(m)
γ of NC(m)

W (γ) as follows: let T(m)
γ = Tm

γ ∪ {δ} and define

λ
(m)
γ : E

(
NC(m)

W (γ)
)
→ T(m)

γ , (u, v) 7→
{

δ, if u = 0,
λm

γ (v, u), otherwise.

Consider the following total order ≺(m)
γ on T(m)

γ :

(4.15) tm,N ≺
(m)
γ tm,N−1 ≺

(m)
γ · · · ≺(m)

γ tm,1 ≺
(m)
γ tm−1,N

≺(m)
γ tm−1,N−1 ≺

(m)
γ · · · ≺(m)

γ t2,1 ≺
(m)
γ δ ≺(m)

γ t1,N ≺
(m)
γ t1,N−1 ≺

(m)
γ · · · ≺(m)

γ t1,1.

The proof that λ
(m)
γ is an EL-labeling of NC(m)

W (γ), when T(m)
γ is ordered by ≺(m)

γ works now
verbatim to the proof of [1, Theorem 3.7.2]. �

Example 4.4.22

Let us again consider the group G(5, 5, 3), let γ be the Coxeter element of G(5, 5, 3) as
defined in (4.7), and identify the reflections in Tγ by their position in (4.14). For m = 2 the

total order of T(2)
γ according to (4.15) is:

(ε, 12) ≺(2)
γ (ε, 11) ≺(2)

γ (ε, 10) ≺(2)
γ (ε, 9) ≺(2)

γ (ε, 8) ≺(2)
γ (ε, 7)

≺(2)
γ (ε, 6) ≺(2)

γ (ε, 5) ≺(2)
γ (ε, 4) ≺(2)

γ (ε, 3) ≺(2)
γ (ε, 2)

≺(2)
γ (ε, 1) ≺(2)

γ δ ≺(2)
γ (12, ε) ≺(2)

γ (11, ε) ≺(2)
γ (10, ε)
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0

(ε; 1·12, 11) (ε; 12, 6·11) (ε; 2·12, 6) (ε; 1·8·12, ε) (ε; 8·12, 7)

(1; 12, 11) (2; 12, 6) (2; 1·12, ε) (8; 12, 7) (8; 2·12, ε) (1; 8·12, ε)

(1·8; 12, ε)

δ δ δ δ δ

(6, ε)

(ε, 11)

(ε, 7)

(ε, 11)

(ε, 6)(7, ε) (ε, 6)(11, ε)

(6, ε)

(7, ε)

(11, ε)

(ε, 7)

(ε, 11) (ε, 6) (6, ε) (ε, 7) (7, ε) (11, ε)

Figure 45. An interval in NC(2)G(5,5,3)(γ) with the labeling λ
(2)
γ . The labels are

explained in Example 4.4.9.

(ε; 1·8, 12)

(2; 1, 12) (1; 8, 12) (3; 1·8, ε) (8; 2, 12)

(1·8; ε, 12) (2·6; 1, ε) (1·9; 8, ε) (3·8; 2, ε)

(1·8·12; ε, ε)

(8, ε) (2, ε) (ε, 12) (1, ε)

(1, ε)

(ε, 12) (8, ε) (ε, 12) (8, ε)

(2, ε) (1, ε)(2, ε)

(ε, 12)

(ε, 12) (1, ε) (8, ε) (2, ε)

Figure 46. Another interval inNC(2)G(5,5,3)(γ) with the labeling λ
(2)
γ . The labels

are explained in Example 4.4.9.

≺(2)
γ (9, ε) ≺(2)

γ (8, ε) ≺(2)
γ (7, ε) ≺(2)

γ (6, ε) ≺(2)
γ (5, ε)

≺(2)
γ (4, ε) ≺(2)

γ (3, ε) ≺(2)
γ (2, ε) ≺(2)

γ (1, ε).

The tuple (ε, 8), for instance, represents the tuple
(

ε,
((

2(0) 3(0)
)))

. Figures 45 and 46 display

two intervals of NC(2)G(5,5,3)(γ) with the EL-labeling λ
(2)
γ . The nodes in each of these lattices

are labeled by tuples that correspond to 2-divisible noncrossing partitions of G(5, 5, 3) anal-
ogously to the labeling of the nodes of NCG(5,5,3)(γ) in Figure 43. In each figure the unique
rising maximal chain is indicated by thick edges.

4.4.4. The Möbius Function. In this section, we use Theorem 4.4.1 to compute the Möbius

invariant of a certain subposet of NC(m)
W , where W is a well-generated complex reflection

group. More precisely, we obtain the following result.
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Proposition 4.4.23

Let W be a well-generated complex reflection group, let γ ∈ W be a Coxeter element, and let

m > 0. Further, let N̂C(m)
W (γ) denote the lattice that arises from NC(m)

W (γ) by removing the
minimal elements and adding a least element instead. We have

µ
(
N̂C(m)

W (γ)
)
= Cat(−m−1)(W)− Cat(−m)(W).

Proof. This result was proven in [123] in the case that W is a Coxeter group by using an

EL-labeling of NC(m)
W (γ). In view of Theorem 4.4.1 we can find an EL-labeling of NC(m)

W (γ)
for every well-generated complex reflection group W, and thus we can carry over the proof of
[123, Theorem 1.1] essentially verbatim. �

We immediately obtain the following corollary, which was first observed for Coxeter
groups in [2, Theorem 3]. The enumerative part for well-generated complex reflection groups
is [2, Theorem 9].

Corollary 4.4.24

Let W be a well-generated complex reflection group of rank n, and let m > 0. The order complex of
the poset NC(m)

W with maximal and minimal elements removed is homotopy equivalent to a wedge of

(−1)n
(

Cat(−m−1)(W)− Cat(−m)(W)
)

-many (n− 2)-spheres.

Proof. By combining Proposition 1.1.14 with Theorems 1.1.16 and 1.1.5 we see that the
order complex in question is homotopy equivalent to a wedge of (n− 2) spheres. The number

of spheres involved is given by the Möbius invariant of the lattice N̂C(m)
W (γ) from Proposi-

tion 4.4.23, and we are done. �

Example 4.4.25

Let us finish the running example of G(5, 5, 3). For m = 1, we have

Cat(−1)(G(5, 5, 3)) = 0 and Cat(−2)(G(5, 5, 3)) = −17.

According to Corollary 4.4.24, the truncated order complex of NCG(5,5,3) is homotopy
equivalent to a wedge of 17 one-dimensional spheres, and it follows from Theorem 1.1.16
that there must be 17 falling maximal chains in NCG(5,5,3). This can be checked easily by
inspecting Figure 43. According to Proposition 4.4.23, the Möbius invariant of NCG(5,5,3) is
given by µ

(
NCG(5,5,3)

)
= −17, which can again be checked by inspecting Figure 43.

4.4.5. Towards a Uniform Approach. In this section we sketch a possible uniform ap-
proach to Theorem 4.4.1. It suffices to have a uniform approach for the case m = 1 since the
transition from m = 1 to m > 1 does not involve any case-by-case analysis. Moreover, in the
case where W is a Coxeter group Theorem 1 in [6] provides a uniform proof of Theorem 4.4.1,
while our generalization of their result relies on a case-by-case analysis of the well-generated
complex reflection groups that are no Coxeter groups. However, we conjecture that the ideas
used in [6] might indeed yield a uniform proof of Theorem 4.4.1, once they are properly gen-
eralized to the complex case. In [6, Definition 3.1] Athanasiadis, Brady and Watt define a
reflection ordering that is compatible with a chosen Coxeter element. Subsequently they show
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in [6, Theorem 3.5(ii)] that if Tγ is ordered by such a compatible reflection ordering, then λγ is
an EL-labeling of NCW(γ) provided that W is a Weyl group. Moreover, in [6, Section 4] they
uniformly construct a compatible reflection ordering for all Coxeter groups, and they show
that this yields an EL-labeling of the corresponding lattice of noncrossing partitions. In the
next definition we generalize this concept.

Definition 4.4.26

Let W be a well-generated complex reflection group, let γ ∈ W be a Coxeter element. A
total order ≺ of Tγ is γ-compatible if for every rank-2 interval of NCW(γ) there exists a
unique rising maximal chain with respect to the edge-labeling λγ defined in (4.2).

We have the following nice property.

Proposition 4.4.27

Let W be a well-generated complex reflection group, and let γ ∈ W be a Coxeter element. Then,
there exists a γ-compatible reflection order of Tγ.

Proof. Theorem 4.1 in [6] states (uniformly) that for every Coxeter group there exists
Coxeter element γ such that we can find a γ-compatible reflection order (in the sense of [6]).
Since these orders are also γ-compatible in our sense Proposition 4.2.4 implies that the claim
holds for Coxeter groups.

Proposition 4.4.2 implies that NCG(d,1,n)
∼= NCBn , and in view of the previous paragraph,

we conclude that the claim is true for the groups G(d, 1, n), where d, n ≥ 2.
Now suppose that W = G(d, d, n) for d, n ≥ 3. Lemma 4.4.15 implies that the total order of

Tγ defined in (4.13) is γ-compatible in our sense, where γ is the Coxeter element of G(d, d, n)
defined in (4.7). Again Proposition 4.2.4 implies that the claim is true for all Coxeter elements
of G(d, d, n).

Finally for the exceptional well-generated complex reflection group, the claim can be
checked by computer, for instance using the computer program Lins [81]. �

We conjecture the following property of γ-compatible reflection orders.

Conjecture 4.4.28

Let W be a well-generated complex reflection group, and let γ ∈W be a Coxeter element. If ≺γ is a
γ-compatible reflection order of Tγ, then λγ is an EL-labeling of NCW(γ).

Admittedly, the proof of Proposition 4.4.27 is not uniform. However, there might be hope
to find a uniform γ-compatible reflection order in our sense. We complete this chapter with
another conjecture. Let us first recall some notation.

Definition 4.4.29

Let P = (P,≤) be a bounded graded poset with greatest element 1̂, and let a1, a2, . . . , as
denote the atoms of P . Then, P admits a recursive atom order if and only if P has either
length 1, or there exists a total order a1 ≺ a2 ≺ · · · ≺ as that satisfies the following:

(i) for all j ∈ {1, 2, . . . , s}, the interval [aj, 1̂] admits a recursive atom order in which the
atoms of [aj, 1̂] that come first in this ordering are those that cover some ai for i < j,
and
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(ii) for all i, j ∈ {1, 2, . . . , s} with i < j and some y ∈ P with ai, aj ≤ y, there exists some
k ∈ {1, 2, . . . , j} and some z ∈ P with ak, aj l z ≤ y.

The total order ≺ is then called a recursive atom order.

Conjecture 4.4.30

Let W be a well-generated complex reflection group, and let γ ∈ W be a Coxeter element. Every
γ-compatible reflection order of Tγ is a recursive atom order of NCW(γ).

The importance of recursive atom orders was explained in [24], where it was shown that
a graded bounded poset admits a recursive atom order if and only if it is CL-shellable, see
[24, Theorem 3.2]. The exact definition of CL-shellability is too technical for the purpose of
this section. It was shown that every EL-shellable poset is CL-shellable, and that all the results
on EL-shellable posets in Section 1.1.4 also hold for CL-shellable posets. However, it is not
known whether both concepts are equivalent. Thus if we could prove Conjecture 4.4.30, the
we would obtain a uniform proof of a (possibly) slightly weaker version of Theorem 4.4.1. We
conclude this section by proving the first half of Conjecture 4.4.30.

Lemma 4.4.31

Let w ∈ NCW(γ) with `T(w) = 2, and let ≺ denote the restriction of a γ-compatible reflection
order of NCW(γ) to the interval [ε, w]. If w = rt is the unique rising reduced T-decomposition of
w, then r is minimal and t is maximal with respect to ≺.

Proof. The fact that w = rt is the unique rising reduced T-decomposition of w follows by
definition. Let rmin denote the minimal reflection below w with respect to ≺. By definition,
there exists a reduced T-decomposition w = rmint1 for some t1 ∈ Tγ ∩ [ε, w]. Since rmin is
minimal it follows that rmin ≺ t1 and hence r = rmin. Now let rmax denote the maximal reflec-
tion below w with respect to ≺. Again, by definition, there exists a reduced T-decomposition
w = rmaxt2 for some t2 ∈ Tγ ∩ [ε, w]. In view of Lemma 4.3.7, there exists another reduced
T-decomposition w = t3rmax, where t3 = (r−1

maxt2rmax). Since rmax is maximal it follows that
t3 ≺ rmax and hence t = rmax. �

Lemma 4.4.32

Let ≺ be a γ-compatible reflection order of Tγ. For w ≤T γ the order ≺ restricts to a w-compatible
reflection order of Tw.

Proof. Let w ≤T γ. We can assume that `T(w) ≥ 2, because the claim is trivial otherwise.
Let w′ ≤T w with `T(w′) = 2, and let w′ = rt be the unique rising reduced T-decomposition
of w′ with respect to ≺, which exists since w′ ≤T γ and ≺ is γ-compatible. Now, however, it
is immediately clear that w′ = rt is also the unique rising T-decomposition of w′ with respect
to the restriction of ≺ to [ε, w] since Tw ⊆ Tγ. �

Proposition 4.4.33

If ≺ is a γ-compatible reflection order of Tγ, then it satisfies Property (i) in Definition 4.4.29.
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Proof. We proceed by induction on `T(γ). If `T(γ) ≤ 2, then the claim is trivially true. So
let `T(γ) ≥ 3, and suppose that the claim is true for all parabolic Coxeter elements w <T γ.
Let ≺ be a γ-compatible reflection order of Tγ, and label the elements of Tγ accordingly,
i.e. Tγ = {t1, t2, . . . , tN} with ti ≺ tj if and only if i < j. Fix tj ∈ Tγ. It follows from
Lemma 4.3.6 that [tj, γ] ∼= [ε, t−1

j γ]. Write w = t−1
j γ. In view of Proposition 4.3.4 the element

w is a parabolic Coxeter element with `T(w) < `T(γ), and Lemma 4.4.32 implies that ≺
restricts to a w-compatible reflection order of Tw. Thus by induction hypothesis we conclude
that the isomorphism from Lemma 4.3.6 yields a total order of the atoms of [tj, γ], which
satisfies Property (i) in Definition 4.4.29, and we will denote this order by @. Let a1, a2, . . . , as
denote the atoms of [tj, γ] indexed increasingly with respect to @. Let F(j) denote the subset
of {a1, a2, . . . , as} consisting of the elements that cover some ti for i < j. We need to show
that the elements in F(j) come first in the total order @, and we proceed by contradiction.
Suppose that there are indices k, l ∈ {1, 2, . . . , s} such that ak @ al , but ak /∈ F(j) and al ∈ F(j).
In particular, there exists some ti ∈ Tγ with ti lT al and ti ≺ tj. Since tj lT ak, we can write
ak = tjr for some r ∈ Tγ, and since ak /∈ F(j), we conclude tj ≺ r. Analogously, since tj lT al ,
we can write al = tjr′ for some r′ ∈ Tγ. Moreover, since ≺ is γ-compatible, there exist two
unique reflections r1, r2 ∈ Tγ with al = r1r2 and r1 ≺ r2. It follows from Lemma 4.4.31 and
from ti ≺ tj that r1 6= tj which implies r′ ≺ tj. We conclude from Lemma 4.3.6 that ak @ al

implies t−1
j ak ≺ t−1

j al . We obtain

tj ≺ r = (t−1
j tj)r = t−1

j (tjr) = t−1
j ak ≺ t−1

j al = t−1
j (tjr′) = (t−1

j tj)r′ = r′ ≺ tj,

which is a contradiction. Hence the proof is complete. �

The property described in Proposition 4.4.33 can be seen as an CL-shellability-analogue
of Proposition 4.3.9.



CHAPTER 5

Epilogue

5.1. Conclusion

In this thesis we have investigated the structure and the topology of several different
classes of posets. In particular, we have considered the m-Tamari lattices, the Cambrian semi-
lattices and the lattices of noncrossing partitions. These posets belong to two closely related
frameworks: on the one hand, they are in some way associated with Coxeter groups, and on
the other hand their cardinality is (in the finite case) given by the Fuß-Catalan numbers. In
particular, the classical Fuß-Catalan numbers are intrinsically connected to the Coxeter group
of type A. More precisely, we have Cat(m)(n) = Cat(m)(An−1).

From a topological point of view we have shown that these posets have the homotopy
type of a wedge of spheres, see Theorems 2.3.1, 3.4.1, and 4.4.1, and thus a particularly nice
topological structure. For some special cases, these results were already available in the lit-
erature, and we could extend these results to the most general case. We have obtained our
results by defining a special edge-labeling for each of these classes of posets. Subsequently,
we have shown that these labelings are EL-labelings, which then implied the claims. We
remark that these edge-labelings are uniform in the sense that they do not rely on the classi-
fication of Coxeter groups. However, for the lattices of noncrossing partitions, the proof that
the corresponding labeling is an EL-labeling is not obtained in a uniform way, but required a
case-by-case analysis instead. This case-by-case analysis, on the other hand, strongly suggests
that there is a uniform approach to Theorem 4.4.1, see Conjecture 4.4.28. Subsequently, we
have used these edge-labelings for the computation of the Möbius function for each of these
classes of posets.

We have additionally investigated the Cambrian semilattices from a structural point of
view, and our results can be transferred immediately to the m-Tamari lattices since the latter
can be seen as intervals in some special Cambrian semilattices. In particular, we have shown
that each closed interval in a Cambrian semilattice is a bounded-homomorphic image of a
free lattice, see Theorem 3.5.1. It is an immediate consequence of this result that each such
interval can be constructed from the one-element lattice by a series of consecutive interval
doublings. We have obtained this result by means of another edge-labeling that has been
defined uniformly for all Cambrian semilattices. This edge-labeling indicates precisely what
the sequence of interval doublings looks like.

129
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5.2. Future Work

Let us now restrict our attention to finite Coxeter groups. It follows from Remark 3.2.2
that the family of the m-Tamari lattices and the family of the Cambrian lattices both have a
common member: the Tamari lattices. It is well known that the cardinality of the Tamari lattice
Tn is given by the Catalan number Cat(n). The m-Tamari lattices and the Cambrian lattices
can be seen as two orthogonal generalizations of the Tamari lattice in the following sense:
the cardinality of the m-Tamari lattice T (m)

n is given by the Fuß-Catalan number Cat(m)(n),
and the cardinality of the Cambrian lattice Cγ associated with a finite Coxeter group W is
given (for all Coxeter elements γ ∈ W) by the Coxeter-Catalan number Cat(W). It is now
an immediate question whether we can unify both generalizations towards a family of posets
parametrized by a Coxeter group W and a positive integer m such that their cardinality is
given by the corresponding Coxeter-Fuß-Catalan number Cat(m)(W). Moreover, such a gen-
eralization should yield the Cambrian lattices in the case m = 1, and it should yield the
m-Tamari lattices in the case W = An. We have presented an approach towards such a gener-
alization in Section 2.4.4 using the m-cover posets, and this approach worked beautifully for
the dihedral groups. However, we were unable to generalize this to other Coxeter groups. In
this section, we discuss another approach towards this generalization.

5.2.1. Generalized Flip Posets of Triangulations. Recall from Section 3.1 that Reading

originally defined the Cambrian lattices as flip posets on triangulations of convex polygons.
Recall further that there is a classical generalization of triangulations of convex polygons
that involves the Fuß-Catalan numbers. It was observed by Fuß in [126] that the number
of dissections of a convex (mn + 2)-gon into (m + 2)-gons is given by Cat(m)(n). We mimic
Reading’s construction of convex (mn + 2)-gons using a map f : {1, 2, . . . , mn} → {−1, 1}.
We draw the vertices 0 and mn + 1 on a horizontal line, the horizon, and for i ∈ {1, 2, . . . , mn}
we place the vertex i strictly between the vertices i− 1 and i + 1. We place it below the horizon
if and only if f (i) = −1 and above otherwise. We can make sure that this construction yields
a convex (mn + 2)-gon in which no m + 2 vertices are collinear. We denote this polygon by
Q( f )

mn , and we denote the set of dissections of Q( f )
mn into (m + 2)-gons by ∆(m)

(
Q( f )

mn
)
. Again a

dissection D ∈ ∆(m)
(
Q( f )

mn
)

is completely determined by its diagonals, namely lines connecting
two vertices i and j with i 6≡ j ± 1 (mod mn + 2). In contrast to the case of triangulations,
removing a diagonal d from D yields a (2m + 2)-gon, and we have in general more than
one possibility of inserting another diagonal such that we obtain a different dissection D′ ∈
∆(m)

(
Q( f )

mn
)
. The two most natural choices are either “sliding” the diagonal d one step to

the left (i.e. clockwise) or one step to the right (i.e. counter-clockwise). See Figure 47 for an
example. We observe that in the case m = 1 both of these operations coincide with Reading’s
flip operation described in Section 3.1.

Now we can again construct partial orders ≤left and ≤right on ∆(m)
(
Q( f )

mn
)

whose cover
relations are given by left or right-slides, respectively. For the right-slide posets we recover
the property that going up means increasing the slope, however it is not yet clear how to

formalize this property for the left-slide posets. Figure 48 shows the posets
(

∆(2)(Q( f )
6
)
,≤left

)
and

(
∆(2)(Q( f )

6
)
,≤right

)
, where f (i) = −1 for i ∈ {1, 2, . . . , 6}. We notice that none of these

posets is isomorphic to the 2-Tamari lattice T (2)
3 as displayed in Figure 49. In fact, only the

left-slide poset in Figure 48(a) is a lattice, while the right-slide poset is not. However, these
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A triangulation D ∈ ∆(2)(Q6).

Right-sliding the highlighted
diagonal.

Left-sliding the highlighted
diagonal.

Figure 47. Illustration of diagonal slides.

posets share many enumerative properties with the 2-Tamari lattice T (2)
3 . We conclude the

following open problem.

Open Problem 5.2.1

Investigate the posets
(

∆(m)
(
Q( f )

mn
)
,≤left

)
and

(
∆(m)

(
Q( f )

mn
)
,≤right

)
for the various choices

of maps f : {1, 2, . . . , mn} → {−1, 1}. In particular, investigate their connection to the
m-Tamari lattices T (m)

n .

In Figure 50, the left- and the right-slide posets of ∆(2)(Q( f ′)
6
)

for f ′(1) = f ′(2) = f ′(3) =
1 and f ′(4) = f ′(5) = f ′(6) = −1 are shown. We notice that these posets are isomorphic, and
they share some enumerative properties of T (2)

3 , but not all of them. The table in Figure 51
lists the similarities and the differences of the posets discussed in this section.

5.2.2. Connection to Generalized Cluster Algebras. The sliding posets from the previous
section might also have a close connection to the generalized Cluster algebras, defined by
Fomin and Reading in [53]. Let us first consider the case m = 1. In his thesis, Stasheff

realized the associahedron as a simplicial complex whose vertices are triangulations of a
convex polygon and whose facets are diagonals of this same polygon, [114]. The dual of
this complex was later generalized to finite Weyl groups by Fomin and Zelevinsky as the
so-called cluster complex, see [54].

Hence the cluster complex associated with the Coxeter group of type A is the dual of the
associahedron, and it can thus be seen as a simplicial complex whose vertices are diagonals
of a convex polygon. A Fuß-Catalan generalization of this complex was later given by Reiner

in type A and by Athanasiadis in type B, and it was thoroughly studied by Tzanaki, see
[124]. Not long after that Fomin and Reading defined in [53] m-cluster complexes for all
Weyl groups, which include the previously mentioned complexes. One remarkable property
that all of these complexes have in common is that the cardinality of their vertices is given by
the Fuß-Catalan number associated with the Weyl group for which this complex was defined.
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(a) The poset
(

∆(2)(Q( f )
6
)
,≤left

)
. (b) The poset

(
∆(2)(Q( f )

6
)
,≤right

)
.

Figure 48. The left- and right-slide posets of ∆(2)(Q( f )
6
)
, where f (i) = −1 for

i ∈ {1, 2, . . . , 6}.

Figure 49. The 2-Tamari lattice T (2)
3 again.
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(a) The poset
(

∆(2)(Q( f ′)
6
)
,≤left

)
. (b) The poset

(
∆(2)(Q( f ′)

6
)
,≤right

)
.

Figure 50. The left- and right-slide posets of ∆(2)(Q( f ′)
6
)
, where f ′(1) =

f ′(2) = f ′(3) = 1 and f ′(4) = f ′(5) = f ′(6) = −1.

T (2)
3

(
∆(2)(Q( f )

6
)
,≤left

) (
∆(2)(Q( f )

6
)
,≤right

) (
∆(2)(Q( f ′)

6
)
,≤left

)
lattice yes yes no yes

vertices 12 12 12 12
edges 16 16 16 16

intervals 58 58 59 62
Möbius values {−1, 0, 1} {−1, 0, 1} {−1, 0, 1} {−1, 0, 1}
Möbius vector (16, 111, 17) (16, 111, 17) (17, 109, 18) (16, 111, 17)

cover vector (1, 6, 5) (1, 6, 5) (1, 6, 5) (1, 6, 5)

Figure 51. Comparing different sliding posets with the m-Tamari lattice for
m = 2 and n = 3. For j ∈ {1, 2, 3}, the j-th entry of the Möbius vector
corresponds to the number of pairs (p, q) in the corresponding poset with
µ(p, q) = j − 2, and the j-th entry of the cover vector corresponds to the
number of elements in the corresponding poset with j− 1 upper covers.

The m-cluster complex of type A can be realized as a simplicial complex whose vertices are
diagonals of some polygon, and whose facets are (m + 2)-angulations of this same polygon.
Hence its dual would be a simplicial complex having (m + 2)-angulations of some polygon as
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vertices. An extensive overview on the combinatorial properties of these m-cluster complexes
can be found in [1, Section 5.2].

The previously described construction suggests an intriguing connection between the du-
als of the m-cluster complexes and the sliding posets introduced in the previous section. Since
we have seen that the lattice T (2)

3 does not arise as a sliding poset of quadrangulations of a
convex hexagon, we conclude that the m-Tamari lattice might not be included in a suitable
Fuß-Catalan-generalization of the family of Cambrian lattices associated with finite Coxeter
groups. We end this thesis with the following open problem.

Open Problem 5.2.2

Define “m-Tamari like” lattices for all finite Coxeter groups such that in type A one obtains
the m-Tamari lattices, and in type I one obtains our lattices C〈m〉k from Section 2.4.4.



APPENDIX A

Tables for the Cardinalities of m-Cover
Posets of Some Cambrian Lattices and Their

Lattice Completions

A.1. Type A

Example A.1.1

Let W = A3 with Coxeter diagram s1 s2 s3 . The table in Figure 52 lists the cardinalities

of DM
((

C〈m〉γ ,≤γ

))
for m ∈ {1, 2, 3, 4}. The sequence of m-Catalan numbers for A3 starts

with
14, 55, 140, 285, . . . .

Example A.1.2

Let W = A4 with Coxeter diagram s1 s2 s3 s4 . The table in Figure 53 lists the

cardinalities of DM
((

C〈m〉γ ,≤γ

))
for m ∈ {1, 2, 3, 4}. The sequence of m-Catalan numbers

for A4 starts with
42, 273, 969, 2530, . . . .

A.2. Type B

m = 1 m = 2 m = 3 m = 4
γ = s1s2s3 14 55 140 285
γ = s1s3s2 14 56 146 305
γ = s2s1s3 14 59 162 355
γ = s3s2s1 14 55 140 285∣∣C〈m〉γ

∣∣ 14 45 94 161

Figure 52. The cardinalities of DM
((

C〈m〉γ ,≤γ

))
for W = A3 and m ∈ {1, 2, 3, 4}.
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m = 1 m = 2 m = 3 m = 4
γ = s1s2s3s4 42 273 969 2530
γ = s1s3s2s4 42 308 1252 3741
γ = s1s4s2s3 42 282 1045 2860
γ = s1s4s3s2 42 282 1045 2860
γ = s2s3s1s4 42 305 1211 3510
γ = s3s2s1s4 42 305 1211 3510
γ = s4s2s3s1 42 308 1252 3741
γ = s4s3s2s1 42 273 969 2530∣∣C〈m〉γ

∣∣ 42 163 364 645

Figure 53. The cardinalities of DM
((

C〈m〉γ ,≤γ

))
for W = A4 and m ∈ {1, 2, 3, 4}.

m = 1 m = 2 m = 3 m = 4
γ = s1s2s3 20 88 242 525
γ = s1s3s2 20 89 249 550
γ = s2s1s3 20 97 292 685
γ = s3s2s1 20 85 226 475∣∣C〈m〉γ

∣∣ 20 66 139 239

Figure 54. The cardinalities of DM
((

C〈m〉γ ,≤γ

))
for W = B3 and m ∈ {1, 2, 3, 4}.

Example A.2.1

Let W = B3 with Coxeter diagram s1 s2 s3
4 . The table in Figure 54 lists the cardinalities

of DM
((

C〈m〉γ ,≤γ

))
for m ∈ {1, 2, 3, 4}. The sequence of m-Catalan numbers for B3 starts

with
20, 84, 220, 455, . . . .

Example A.2.2

Let W = B4 with Coxeter diagram s1 s2 s3 s4
4 . The table in Figure 55 lists the

cardinalities of DM
((

C〈m〉γ ,≤γ

))
for m ∈ {1, 2, 3, 4}. The sequence of m-Catalan numbers

for B4 starts with
70, 495, 1820, 4845, . . . .

A.3. Type D

Example A.3.1

Let W = D4 with Coxeter diagram s1 s3 s2

s4

. The table in Figure 56 lists the cardinal-

ities of DM
((

C〈m〉γ ,≤γ

))
for m ∈ {1, 2, 3, 4}. The sequence of m-Catalan numbers for D4
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m = 1 m = 2 m = 3 m = 4
γ = s1s2s3s4 70 547 2216 6455
γ = s1s3s2s4 70 619 2870 9504
γ = s1s4s2s3 70 558 2339 7085
γ = s1s4s3s2 70 555 2330 7099
γ = s2s3s1s4 70 643 3023 10035
γ = s3s2s1s4 70 598 2642 8320
γ = s4s2s3s1 70 630 2959 9886
γ = s4s3s2s1 70 510 1948 5405∣∣C〈m〉γ

∣∣ 70 275 616 1093

Figure 55. The cardinalities of DM
((

C〈m〉γ ,≤γ

))
for W = B4 and m ∈ {1, 2, 3, 4}.

m = 1 m = 2 m = 3 m = 4
γ = s1s2s3s4 50 358 1382 3895
γ = s1s3s2s4 50 381 1574 4741
γ = s1s4s2s3 50 394 1761 5936
γ = s1s4s3s2 50 358 1382 3895
γ = s2s3s1s4 50 381 1574 4741
γ = s3s2s1s4 50 445 2135 7353
γ = s4s2s3s1 50 358 1382 3895
γ = s4s3s2s1 50 381 1574 4741∣∣C〈m〉γ

∣∣ 50 195 436 773

Figure 56. The cardinalities of DM
((

C〈m〉γ ,≤γ

))
for W = D4 and m ∈ {1, 2, 3, 4}.

starts with
50, 336, 1210, 3185, . . . .

A.4. Type F

Example A.4.1

Let W = F4 with Coxeter diagram s1 s2 s3 s4
4 . The table in Figure 57 lists the

cardinalities of DM
((

C〈m〉γ ,≤γ

))
for m ∈ {1, 2, 3, 4}. The sequence of m-Catalan numbers

for F4 starts with
105, 780, 2926, 7875, . . . .

A.5. Type H

Example A.5.1

Let W = H3 with Coxeter diagram s1 s2 s3
5 . The table in Figure 58 lists the cardinali-

ties of DM
((

C〈m〉γ ,≤γ

))
. The sequence of m-Catalan numbers for H3 starts with

32, 143, 384, 805, . . . .
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m = 1 m = 2 m = 3 m = 4
γ = s1s2s3s4 105 960 4497 15062
γ = s1s3s2s4 105 1218 7280 30545
γ = s1s4s2s3 105 1065 5754 22561
γ = s1s4s3s2 105 1065 5754 22561
γ = s2s3s1s4 105 1192 6666 25687
γ = s3s2s1s4 105 1192 6666 25687
γ = s4s2s3s1 105 1218 7280 30545
γ = s4s3s2s1 105 960 4497 15062∣∣C〈m〉γ

∣∣ 105 415 931 1653

Figure 57. The cardinalities of DM
((

C〈m〉γ ,≤γ

))
for W = F4 and m ∈ {1, 2, 3, 4}.

m = 1 m = 2 m = 3 m = 4
γ = s1s2s3 32 165 506 1195
γ = s1s3s2 32 165 515 1248
γ = s2s1s3 32 184 622 1598
γ = s3s2s1 32 152 436 975∣∣C〈m〉γ

∣∣ 32 108 229 395

Figure 58. The cardinalities of DM
((

C〈m〉γ ,≤γ

))
for W = H3 and m ∈ {1, 2, 3, 4}.

m = 1 m = 2 m = 3 m = 4
γ = s1s2s3s4 280 4034 26659 117284
γ = s1s3s2s4 280 4407 32502 159432
γ = s1s4s2s3 280 4074 28649 136802
γ = s1s4s3s2 280 4148 30861 158395
γ = s2s3s1s4 280 4792 37444 191441
γ = s3s2s1s4 280 4264 30813 149662
γ = s4s2s3s1 280 4630 37529 205236
γ = s4s3s2s1 280 3676 24213 111275∣∣C〈m〉γ

∣∣ 280 1115 2506 4453

Figure 59. The cardinalities of DM
((

C〈m〉γ ,≤γ

))
for W = H4 and m ∈ {1, 2, 3, 4}.

Example A.5.2

Let W = H4 with Coxeter diagram s1 s2 s3 s4
5 . The table in Figure 59 lists the

cardinalities of DM
((

C〈m〉γ ,≤γ

))
for m ∈ {1, 2, 3, 4}. The sequence of m-Catalan numbers

for H4 starts with
280, 2232, 8602, 23485, . . . .



APPENDIX B

Deconstructing T4 by Successive Interval
Contracting

Figure 60 shows how to deconstruct T4 by successive contraction of intervals. These
contractions are made with respect to the edge-labeling defined in (3.10). We successively
contract those intervals of T4 in which the longest edge-labels occur. This means that we
remove the edges with these longest labels from the Hasse diagram of T4 and we identify
“opposite” edges, which by construction have the same labels.
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Figure 60. Contracting Intervals of T4.



APPENDIX C

The Details of the Proofs in Section 4.4.1

The proofs of the intermediate steps leading to the proof of Theorem 4.4.11 are rather
technical, and we have thus omitted the details in the text. For the sake of completeness, we
provide the details in this appendix, after recalling the respective statements.

C.1. The Proof of Lemma 4.4.15
Lemma C.1.1

Let w ≤T γ with `T(w) = 2. There exists a unique rising reduced T-decomposition of w with
respect to the restriction of ≺γ to the reflections in Tγ ∩ [ε, w].

Proof. Let w = t1t2 for t1, t2 ∈ Tγ. If t1 and t2 commute, then w = t1t2 = t2t1 are
the only possible reduced T-decompositions of w. Since ≺γ is a total order there is nothing
to show. Suppose that t1 and t2 do not commute. With the help of Proposition 4.4.8, we can
explicitly determine the possible forms of w. Analogously to the proof of Proposition 4.4.8, we
investigate the fixed space of w−1γ to determine which of these possibilities can actually occur
in NCG(d,d,n)(γ). Recall from (4.12) that for an arbitrary vector v = (v1, v2, . . . , vn)T ∈ Cn, we
have

v′ = γv =
(

ζdvn−1, v1, v2, . . . , vn−2, ζd−1
d vn

)T
.

(i) Let t1 =
((

a(0) b(0)
))

, t2 =
((

b(0) c(0)
))

, where 1 ≤ a < b < c < n. We have w =((
a(0) b(0) c(0)

))
, and thus

w−1v′ =
(

ζdvn−1, v1, . . . , vb−1, . . . , vc−1, . . . , va−1, . . . , vn−2, ζd−1
d vn

)T
,

and it follows that w ≤T γ. Hence w−1 =
((

a(0) c(0) b(0)
))
6≤T γ. The reduced T-decompositions

of w are

w =
((

a(0) b(0)
))((

b(0) c(0)
))

=
((

b(0) c(0)
))((

a(0) c(0)
))

=
((

a(0) c(0)
))((

a(0) b(0)
))

,

and according to (4.13) only w =
((

a(0) b(0)
))((

b(0) c(0)
))

is increasing.
(ii) Let t1 =

((
a(0) b(0)

))
, t2 =

((
a(0) c(0)

))
, where 1 ≤ a < b < c < n. We have w =((

a(0) c(0) b(0)
))

, and this was already considered in (i).
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(iii) Let t1 =
((

a(0) b(0)
))

, t2 =
((

a(0) b(d−1))), where 1 ≤ a < b < n. We have w =[
a(0)
][

b(0)
]−1, and

w−1v′ =
(

ζdvn−1, v1, . . . , ζdva−1, . . . , ζd−1
d vb−1, . . . , vn−2, ζd−1

d vn

)T
,

and it follows that w 6≤T γ. On the other hand we have

wv′ =
(

ζdvn−1, v1, . . . , ζd−1
d va−1, . . . , ζdvb−1, . . . , vn−2, ζd−1

d vn

)T
,

and it follows again that w−1 6≤T γ.
(iv) Let t1 =

((
a(0) b(0)

))
, t2 =

((
b(0) c(d−1))), where 1 ≤ a < b < c < n. We have

w =
((

a(0) b(0) c(d−1))), and

w−1v′ =
(

ζdvn−1, v1, . . . , vb−1, . . . , ζdvc−1, . . . , ζd−1
d va−1, . . . , vn−2, ζd−1

d vn

)T
,

and it follows that w ≤T γ. Hence w−1 =
((

a(0) c(d−1) b(0)
))
6≤T γ. The reduced T-

decompositions of w are

w =
((

a(0) b(0)
))((

b(0) c(d−1))) = ((b(0) c(d−1)))((a(0) c(d−1))) = ((a(0) c(d−1)))((a(0) b(0)
))

,

and according to (4.13) only w =
((

a(0) b(0)
))((

b(0) c(d−1))) is increasing.
(v) Let t1 =

((
a(0) b(0)

))
, t2 =

((
a(0) c(d−1))), where 1 ≤ a < b < c < n. We have

w =
((

a(0) c(d−1) b(0)
))

, and this was already considered in (iv).
(vi) Let t1 =

((
a(0) b(0)

))
, t2 =

((
b(0) n(s))), where 1 ≤ a < b < n and 0 ≤ s < d. We have

w =
((

a(0) b(0) n(s))), and

w−1v′ =
(

ζdvn−1, v1, . . . , vb−1, . . . , ζd−1−s
d vn, . . . , vn−2, ζs

dva−1

)T
,

and it follows that w ≤T γ. Hence w−1 =
((

a(0) n(s) b(0)
))
6≤T γ. The reduced T-decompositions

of w are

w =
((

a(0) b(0)
))((

b(0) n(s))) = ((b(0) n(s)))((a(0) n(s))) = ((a(0) n(s)))((a(0) b(0)
))

,

and according to (4.13) only w =
((

a(0) b(0)
))((

b(0) n(s))) is increasing.
(vii) Let t1 =

((
a(0) b(0)

))
, t2 =

((
a(0) n(s))), where 1 ≤ a < b < n and 0 ≤ s < d. We have

w =
((

a(0) n(s) b(0)
))

, and this was already considered in (vi).
(viii) Let t1 =

((
a(0) c(0)

))
, t2 =

((
b(0) c(0)

))
, where 1 ≤ a < b < c < n. We have

w =
((

a(0) c(0) b(0)
))

, and

w−1v′ =
(

ζdvn−1, v1, . . . , vc−1, . . . , va−1, . . . , vb−1, . . . , vn−2, ζd−1
d vn

)T
,

and it follows that w 6≤T γ. On the other hand w−1 =
((

a(0) b(0) c(0)
))

was considered in (i).
(ix) Let t1 =

((
a(0) c(0)

))
, t2 =

((
a(0) b(d−1))), where 1 ≤ a < b < c < n. We have

w =
((

a(0) b(d−1) c(0)
))

, and

w−1v′ =
(

ζdvn−1, v1, . . . , ζdvb−1, . . . , ζd−1
d vc−1, . . . , va−1, . . . , vn−2, ζd−1

d vn

)T
,

and it follows that w 6≤T γ. On the other hand w−1 =
((

a(0) c(0) b(d−1))), and

wv′ =
(

ζdvn−1, v1, . . . , vc−1, . . . , ζd−1
d va−1, . . . , ζdvb−1, . . . , vn−2, ζd−1

d vn

)T
,

and it follows again that w 6≤T γ.
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(x) Let t1 =
((

a(0) c(0)
))

, t2 =
((

b(0) c(d−1))), where 1 ≤ a < b < c < n. We have
w =

((
a(0) c(0) b(1)

))
, and

w−1v′ =
(

ζdvn−1, v1, . . . , vc−1, . . . , ζdva−1, . . . , ζd−1
d vb−1, . . . , vn−2, ζd−1

d vn

)T
,

and it follows that w 6≤T γ. On the other hand w−1 =
((

a(0) b(1) c(0)
))

, and

wv′ =
(

ζdvn−1, v1, . . . , ζd−1
d vb−1, . . . , ζdvc−1, . . . , va−1, . . . , vn−2, ζd−1

d vn

)T
,

and it follows again that w−1 6≤T γ.
(xi) Let t1 =

((
b(0) c(0)

))
, t2 =

((
a(0) c(d−1))), where 1 ≤ a < b < c < n. We have

w =
((

a(0) b(d−1) c(d−1))), and

wv′ =
(

ζdvn−1, v1, . . . , ζdvb−1, . . . , vc−1, . . . , ζd−1
d va−1, . . . , vn−2, ζd−1

d vn

)T
,

and it follows that w ≤T γ. Hence w−1 =
((

a(0) c(d−1) b(d−1))) 6≤T γ. The reduced T-
decompositions of w are

w =
((

a(0) b(d−1)))((b(0) c(0)
))

=
((

b(0) c(0)
))((

a(0) c(d−1))) = ((a(0) c(d−1)))((a(0) b(d−1))),
and according to (4.13) only w =

((
b(0) c(0)

))((
a(0) c(d−1))) is increasing.

(xii) Let t1 =
((

b(0) c(0)
))

, t2 =
((

a(0) b(d−1))), where 1 ≤ a < b < c < n. We have
w =

((
a(0) c(d−1) b(d−1))), and this was already considered in (xi).

(xiii) Let t1 =
((

a(0) b(d−1))), t2 =
((

b(0) c(d−1))), where 1 ≤ a < b < c < n. We have
w =

((
a(0) b(d−1) c(d−2))), and

w−1v′ =
(

ζdvn−1, v1, . . . , ζdvb−1, . . . , ζdvc−1, . . . , ζd−2
d va−1, . . . , vn−2, ζd−1

d vn

)T
,

and it follows that w 6≤T γ. On the other hand w−1 =
((

a(0) c(d−2) b(d−1))), and

wv′ =
(

ζdvn−1, v1, . . . , ζd−2
d vc−1, . . . , ζd−1

d va−1, . . . , ζd−1
d vb−1, . . . , vn−2, ζd−1

d vn

)T
,

and it follows again that w−1 6≤T γ.
(xiv) Let t1 =

((
a(0) b(d−1))), t2 =

((
a(0) c(d−1))), where 1 ≤ a < b < c < n. We have

w =
((

a(0) c(d−1) b(d−1))), and this was already considered in (xii). On the other hand we have
w−1 =

((
a(0) b(d−1) c(d−1))), and this was already considered in (xi).

(xv) Let t1 =
((

a(0) b(d−1))), t2 =
((

a(0) n(s))), where 1 ≤ a < b < n and 0 ≤ s < d. We
have w =

((
a(0) n(s) b(d−1))), and

w−1v′ =
(

ζdvn−1, v1, . . . , ζd−1−s
d vn, . . . , ζd−1

d va−1, . . . , vn−2, ζs+1
d vb−1

)T
,

and it follows that w ≤T γ. Hence w−1 =
((

a(0) b(d−1) n(s))) 6≤T γ. The reduced T-
decompositions of w are

w =
((

a(0) n(s)))((b(0) n(s+1))) = ((b(0) n(s+1)))((a(0) b(d−1))) = ((a(0) b(d−1)))((a(0) n(s))),
and according to (4.13) only w =

((
a(0) n(s)))((b(0) n(s+1))) is increasing.

(xvi) Let t1 =
((

a(0) b(d−1))), t2 =
((

b(0) n(s))), where 1 ≤ a < b < c < n. We have
w =

((
a(0) b(d−1) n(s−1))), and this was already considered in (xv).

(xvii) Let t1 =
((

a(0) c(d−1))), t2 =
((

b(0) c(d−1))), where 1 ≤ a < b < c < n. We have
w =

((
a(0) c(d−1) b(0)

))
, and this was already considered in (iv).
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(xviii) Let t1 =
((

a(0) n(s))), t2 =
((

a(0) n(t))), where 1 ≤ a < n and 0 ≤ s, t < d with t 6= s.

We have w =
[
a(0)
]

t−s

[
n(0)]−1

t−s, and

w−1v′ =
(

ζdvn−1, v1, . . . , ζs−t
d va−1, . . . , vn−2, ζt−1−s

d vn

)T
,

and it follows that w ≤T γ if and only if t = s + 1. In this case the reduced T-decompositions
of w are

w =
((

a(0) n(s)))((a(0) n(s+1))) = ((a(0) n(s+1)))((a(0) n(s+2)))
=
((

a(0) n(s+2)))((a(0) n(s+3))) = · · · = ((a(0) n(s−1)))((a(0) n(s))).
and according to (4.13) only w =

((
a(0) n(0)))((a(0) n(1))) is increasing.

Thus the proof is complete. �

C.2. The Proof of Proposition 4.4.16

Proposition C.2.1

Let w ≤T γ such that the parabolic subgroup of G(d, d, n), in which w is a Coxeter element, is
isomorphic to G(1, 1, n′) for some n′ ≤ n. Then, w is of one of the following three forms:

(i) w =
((
(a+1)(0) (a+2)(0) . . . b(0)

))
, where 1 ≤ a < b < n,

(ii) w =
((

1(0) 2(0) . . . a(0) (b+1)(d−1) (b+2)(d−1) . . . (n−1)(d−1))), where 1 ≤ a < b < n,
or

(iii) w =
((

1(0) 2(0) . . . a(0) n(s−1)(a+1)(d−1) (a+2)(d−1) . . . (n−1)(d−1))), where 1 ≤ a < n.
Moreover, in each of these cases there exists a unique rising reduced T-decomposition of w with
respect to the restriction of ≺γ to the reflections in Tγ ∩ [ε, w].

Proof. The observation that w can only be of the forms (i)–(iii) is a straightforward com-
putation using Proposition 4.4.8. For the second part of the proposition, we proceed by in-
duction on `T(w). If `T(w) = 2, then the claim follows from Lemma 4.4.15. Suppose that
`T(w) = k, and suppose that the claim is true for all suitable w′ with `T(w′) < k.

(i) Let w =
((
(a+1)(0) (a+2)(0) . . . b(0)

))
, where 1 ≤ a < b < n. Consider the decomposi-

tion of w according to (4.11):

w =
((
(a+1)(0) (a+2)(0)

))((
(a+2)(0) (a+3)(0)

))
· · ·
((
(b−1)(0) b(0)

))
.

We notice that this decomposition is rising with respect to (4.13), and the claim follows now
analogously to the proof of Lemma 4.4.12.

(ii) Let w =
((

1(0) 2(0) . . . a(0) (b+1)(d−1) (b+2)(d−1) . . . (n−1)(d−1))), where 1 ≤ a <
b < n. Again consider the decomposition of w according to (4.11):

w =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
a(0) (b+1)(d−1)))((

(b+1)(0) (b+2)(0)
))
· · ·
((
(n−2)(0) (n−1)(0)

))
.

We notice that this decomposition is not rising with respect to (4.13). However, repeated
left-shifting yields

(C.1) w =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(b+1)(0) (b+2)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) (n−1)(d−1))),
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and this decomposition is rising with respect to (4.13). We need to show that this is the
only rising reduced T-decomposition of w. Suppose that w = t1t2 · · · tk is a rising reduced
T-decomposition of w that is different from (C.1). Suppose that i is the maximal index where
this decomposition differs from (C.1). If i < k, then t1t2 · · · ti is a product of at most two cycles
of the form (i), and it follows that t1t2 · · · ti is rising only if tj is the j-th factor in (C.1) for all
j ∈ {1, 2, . . . , i}, which is a contradiction. Now let i = k, and consider the word w′ = wtk.
It follows by induction hypothesis that the product of the first k − 1 factors in (C.1) is the
unique rising reduced T-decomposition of w′. In view of Lemma 4.3.7 and Proposition 4.4.8
the reflection tk can only be of one of the following four forms.
(iia) Let tk =

((
a(0) (n−1)(d−1))). Then, tk is the k-th factor in (C.1), and we obtain a contra-

diction.
(iib) Let tk =

((
a(0) c(d−1))), where b + 1 ≤ c < n− 1. We have

w′ =
((

1(0) 2(0) . . . a(0) (c+1)(d−1) (c+2)(d−1) . . . (n−1)(d−1)))(((b+1)(0) (b+2)(0) . . . c(0)
))

.

Hence we can write w′ = w′1w′2, where w′1 is again of type (ii) and w′2 is of type (i). In
particular `T(w′1), `T(w′2) < k, so by induction hypothesis w′1 and w′2 possess a unique rising
decomposition, namely

w′1 =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(c+1)(0) (c+2)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) (n−1)(d−1))),

and
w′2 =

((
(b+1)(0) (b+2)(0)

))((
(b+2)(0) (b+3)(0)

))
· · ·
((
(c−1)(0) c(0)

))
.

Now we can quickly verify that

w′ =
((

1(0) 2(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(b+1)(0) (b+2)(0)

))
· · ·
((
(c−1)(0) c(0)

))((
(c+1)(0) (c+2)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) (n−1)(d−1))),

is the unique rising decomposition of w′ and hence has to correspond to t1t2 · · · tk−1. (In-
deed, first concatenate the rising decompositions of w′1 and w′2, and observe that the resulting
decomposition is not rising. Then, shift the first factor, say r, of the rising decomposition of
w′2 as far to the left as possible such that the resulting prefix, say r1r2 · · · rl , is rising, where
r1r2 · · · rl−1 is a prefix of the rising decomposition of w′1 and rl = r. Then, observe that shift-
ing r further to the left yields a non-rising prefix r′1r′2 · · · r′l . Proceed analogously until you
have reached the last factor of the rising decomposition of w′2.) However, we have for instance((

a(0) (n−1(d−1))) �γ

((
a(0) c(d−1))) = tk, which contradicts the assumption that t1t2 · · · tk is

rising.
(iic) Let tk =

((
c(0) (c+1)(0)

))
, where b + 1 ≤ c < n− 1. We have

w′ =
((

1(0) . . . a(0) (b+1)(d−1) (b+2)(d−1) . . . c(d−1) (c+2)(d−1) (c+3)(d−1) . . . (n−1)(d−1))),
and `T(w′) < k. Moreover, w′ is again of type (ii), so by induction hypothesis there exists a
unique rising reduced T-decomposition of w′, namely

w′ =
((

1(0) 2(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(b+1)(0) (b+2)(0)

))
· · ·
((
(c−1)(0) c(0)

))((
c(0) c+2(0)

))((
(c+2)(0) (c+3)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) (n−1)(d−1))),

and thus this decomposition has to correspond to t1t2 · · · tk−1. However, we have for instance((
a(0) (n−1)(d−1))) �γ

((
c(0) (c+1)(0)

))
= tk, which contradicts the assumption that t1t2 · · · tk
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is rising.
(iid) Let tk =

((
c(0) (c+1)(0)

))
, where 1 ≤ c < a. We have

w′ =
((

1(0) . . . c(0) (c + 2)(0) (c+3)(0) . . . a(0) (b+1)(d−1) (b+2)(d−1) . . . (n−1)(d−1))),
and `T(w′) < k. Moreover, w′ is again of type (ii), so by induction hypothesis there exists a
unique rising reduced T decomposition of w′, namely

w′ =
((

1(0) 2(0)
))
· · ·
((

c(0) (c+2)(0)
))((

(c+2)(0) (c+3)(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(b+1)(0) (b+2)(0)

))((
(b+2)(0) (b+3)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) (n−1)(d−1))),

and thus this decomposition has to correspond to t1t2 · · · tk−1. However, we have for instance((
a(0) (n−1)(d−1))) �γ

((
c(0) (c+1)(0)

))
= tk, which contradicts the assumption that t1t2 · · · tk

is rising.
Hence the reduced T-decomposition of w in (C.1) is the unique rising reduced T-decomposition.

(iii) Let w =
((

1(0) 2(0) . . . a(0) n(s−1)(a+1)(d−1) (a+2)(d−1) . . . (n−1)(d−1))), where
1 ≤ a < n. Again consider the decomposition of w according to (4.11):

w =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
a(0) n(s−1)))(((a+1)(0) n(s)))((

(a+1)(0) (a+2)(0)
))((

(a+2)(0) (a+3)(0)
))
· · ·
((
(n−2)(0) (n−1)(0)

))
.

We notice that this decomposition is not rising with respect to (4.13). However, repeated
left-shifting yields

(C.2) w =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(a+1)(0) (a+2)(0)

))((
(a+2)(0) (a+3)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) n(s−1)))(((n−1)(0) n(s))),

and this decomposition is rising with respect to (4.13). We need to show that this is the only
rising reduced T-decomposition of w. Again we suppose that w = t1t2 · · · tk is a rising re-
duced T-decomposition of w that is different from (C.2), and analogously to (ii) it suffices to
investigate w′ = wtk. In view of Lemma 4.3.7 and Proposition 4.4.8 the reflection tk can only
be of one of the following five forms.
(iiia) Let tk =

((
(n−1)(0) n(s))). Then, tk is the k-th factor in (C.2), and we obtain a contradic-

tion.
(iiib) Let tk =

((
c(0) n(s))), where a + 1 ≤ c < n− 1. We have

w′ =
((

1(0) 2(0) . . . a(0) n(s−1) (c+1)(d−1) (c+2)(d−1) . . . (n−1)(d−1)))((
(a+1)(0) (a+2)(0) . . . c(0)

))
.

Hence we can write w′ = w′1w′2, where w′1 is again of type (iii) and w′2 is of type (i). In particu-
lar `T(w′1), `T(w′2) < k, so by induction hypothesis we can find a unique rising decomposition
of w′ analogously to (iib), namely

w′ =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(a+1)(0) (a+2)(0)

))
· · ·
((
(c−1)(0) c(0)

))((
(c+1)(0) (c+2)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) n(s−1)))(((n−1)(0) n(s))),

and thus this decomposition has to correspond to t1t2 · · · tk−1. However, we have for instance((
(n−1)(0) n(s))) �γ

((
c(0) n(s))) = tk, which implies that there exists no rising reduced T-

decomposition of w in this case.
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(iiic) Let tk =
((

c(0) n(s−1))), where a ≤ c < n− 1. We have

w′ =
((

1(0) 2(0) . . . a(0) n(s−1) (c+1)(0) (c+2)(0) . . . (n−1)(0)
))((
(a+1)(0) (a+2)(0) . . . c(0)

))
.

Hence we can write w′ = w′1w′2, where w′1 is again of type (iii) and w′2 is of type (i). In particu-
lar `T(w′1), `T(w′2) < k, so by induction hypothesis we can find a unique rising decomposition
of w′ analogously to (iiib), namely

w′ =
((

1(0) 2(0)
))((

2(0) 3(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(a+1)(0) (a+2)(0)

))
· · ·
((
(c−1)(0) c(0)

))((
(c+1)(0) (c+2)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
c(0) n(s−1)))(((n−1)(0) n(s−1))),

and thus this decomposition has to correspond to t1t2 · · · tk−1. However, we have for instance((
(n−1)(0) n(s−1))) �γ

((
c(0) n(s−1))) = tk, which contradicts the assumption that t1t2 · · · tk is

rising.
(iiid) Let tk =

((
c(0) (c+1)(0)

))
, where a + 1 ≤ c < n− 1. We have

w′ =
((

1(0) . . . a(0) n(s−1) (a+1)(d−1) . . . c(d−1) (c+2)(d−1) (c+3)(d−1) . . . (n−1)(d−1))),
and `T(w′) < k. Moreover, w′ is again of type (iii), so by induction hypothesis there exists a
unique rising reduced T decomposition of w′, namely

w′ =
((

1(0) 2(0)
))
· · ·
((
(a−1)(0) a(0)

))((
(a+1)(0) (a+2)(0)

))
· · ·
((
(c−1)(0) c(0)

))((
c(0) c+2(0)

))((
(c+2)(0) (c+3)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) (n−1)(s−1)))(((n−1)(0) n(s))),

and thus this decomposition has to correspond to t1t2 · · · tk−1. However, we have for instance((
(n−1)(0) n(s))) �γ

((
c(0) (c+1)(0)

))
= tk, which contradicts the assumption that t1t2 · · · tk is

rising.
(iiie) Let tk =

((
c(0) (c+1)(0)

))
, where 1 ≤ c < a. We have

w′ =
((

1(0) . . . c(0) (c + 2)(0) (c+3)(0) . . . a(0) n(s−1) (a+1)(d−1) . . . (n−1)(d−1))),
and `T(w′) < k. Moreover, w′ is again of type (iii), so by induction hypothesis there exists a
unique rising reduced T decomposition of w′, namely

w′ =
((

1(0) 2(0)
))
· · ·
((
(c−1)(0) c(0)

))((
c(0) (c+2)(0)

))((
(c+2)(0) (c+3)(0)

))
· · ·
((
(a−1)(0) a(0)

))((
(a+1)(0) (a+2)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
a(0) n(s−1)))(((n−1)(0) n(s))),

and thus this decomposition has to correspond to t1t2 · · · tk−1. However, we have for instance((
(n−1)(0) n(s))) �γ

((
c(0) (c+1)(0)

))
= tk, which contradicts the assumption that t1t2 · · · tk is

rising.
Hence the reduced T-decomposition of w in (C.2) is the unique rising reduced T-decomposition,
and the proof is complete. �

C.3. The Proof of Corollary 4.4.17

Corollary C.3.1

Let w ≤T γ such that the parabolic subgroup W of G(d, d, n), in which w is a Coxeter element, is
reducible, and hence W = W1 ×W2 × · · · ×Wl for some l. If for each i ∈ {1, 2, . . . , l}, the group
Wi is isomorphic to G(1, 1, ni) for ni ≤ n, then there exists a unique rising reduced T-decomposition
of w with respect to the restriction of ≺γ to the reflections in Tγ ∩ [ε, w].
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Proof. First suppose that l = 2. In particular, we can write w = w1w2, where w1 and w2
commute. In view of Proposition 4.4.16, each of w1 and w2 can be of three possible forms.
Since they commute it suffices to consider the following cases:

(i) Let w1 =
((

a(0) . . . b(0)
))

and w2 =
((

c(0) . . . e(0)
))

, where a < b < e + 1 < d. Propo-
sition 4.4.16 implies that each of w1 and w2 has a unique rising reduced T-decomposition,
namely

w1 =
((

a(0) (a+1)(0)
))((

(a+1)(0) (a+2)(0)
))
· · ·
((
(b−1)(0) b(0)

))
, and

w2 =
((

c(0) (c+1)(0)
))((

(c+1)(0) (c+2)(0)
))
· · ·
((
(e−1)(0) e(0)

))
,

and the concatenation w1w2 is clearly the unique rising reduced T-decomposition of w.
(ii) Let w1 =

((
a(0) . . . b(0)

))
and w2 =

((
c(0) . . . e(d−1) . . . (n−1)(d−1))), where a <

b < c + 1 < e. Again Proposition 4.4.16 implies that each of w1 and w2 has a unique rising
reduced T-decomposition, namely

w1 =
((

a(0) (a+1)(0)
))((

(a+1)(0) (a+2)(0)
))
· · ·
((
(b−1)(0) b(0)

))
, and

w2 =
((

c(0) (c+1)(0)
))((

(c+1)(0) (c+2)(0)
))
· · ·
((
(e−2)(0) (e−1)(0)

))((
e(0) (e+1)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
(e−1)(0) (n−1)(d−1))),

and the concatenation w1w2 is clearly the unique rising reduced T-decomposition of w.
(iii) Let w1 =

((
a(0) . . . b(0)

))
and w2 =

((
c(0) . . . e(d−1) n(s−1) (e+1)(d−1) . . . (n−

1)(d−1))), where a < b < c + 1 < e. Again Proposition 4.4.16 implies that each of w1 and w2
has a unique rising reduced T-decomposition, namely

w1 =
((

a(0) (a+1)(0)
))((

(a+1)(0) (a+2)(0)
))
· · ·
((
(b−1)(0) b(0)

))
, and

w2 =
((

c(0) (c+1)(0)
))((

(c+1)(0) (c+2)(0)
))
· · ·
((
(e−2)(0) (e−1)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
(e−1)(0) (n−1)(d−1)))((e(0) n(s)))(((n−1)(0) n(s))),

and the concatenation w1w2 is clearly the unique rising reduced T-decomposition of w.
(iv) Let w1 =

((
a(0) . . . b(d−1) . . . (c−1)(d−1))) and w2 =

((
c(0) . . . e(d−1) . . . (n−

1)(d−1))), where a < b < c + 1 < e. Again Proposition 4.4.16 implies that each of w1 and w2
has a unique rising reduced T-decomposition, namely

w1 =
((

a(0) (a+1)(0)
))((

(a+1)(0) (a+2)(0)
))
· · ·
((
(b−2)(0) (b−1)(0)

))((
b(0) (b+1)(0)

))
· · ·
((
(c−2)(0) (c−1)(0)

))((
(b−1)(0) (c−1)(d−1))), and

w2 =
((

c(0) (c+1)(0)
))((

(c+1)(0) (c+2)(0)
))
· · ·
((
(e−2)(0) (e−1)(0)

))((
e(0) (e+1)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
(e−1)(0) (n−1)(d−1))).

Since w1 and w2 commute, it is easy to see that there is a unique rising reduced T-decomposition
of w, namely

w =
((

a(0) (a+1)(0)
))
· · ·
((
(b−2)(0) (b−1)(0)

))((
b(0) (b+1)(0)

))
· · ·
((
(c−2)(0) (c−1)(0)

))((
c(0) (c+1)(0)

))
· · ·
((
(e−2)(0) (e−1)(0)

))((
e(0) (e+1)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
(b−1)(0) (c−1)(d−1)))(((e−1)(0) (n−1)(d−1))).

(v) Let w1 =
((

a(0) . . . b(d−1) . . . (c−1)(d−1))) and w2 =
((

c(0) . . . e(d−1) n(s−1) (e+
1)(d−1) . . . (n−1)(d−1))), where a < b < c + 1 < e. Again Proposition 4.4.16 implies that each
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of w1 and w2 has a unique rising reduced T-decomposition, namely

w1 =
((

a(0) (a+1)(0)
))((

(a+1)(0) (a+2)(0)
))
· · ·
((
(b−2)(0) (b−1)(0)

))((
b(0) (b+1)(0)

))
· · ·
((
(c−2)(0) (c−1)(0)

))((
(b−1)(0) (c−1)(d−1))), and

w2 =
((

c(0) (c+1)(0)
))((

(c+1)(0) (c+2)(0)
))
· · ·
((
(e−2)(0) (e−1)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
(e−1)(0) (n−1)(d−1)))((e(0) n(s)))(((n−1)(0) n(s))).

Since w1 and w2 commute, it is easy to see that there is a unique rising reduced T-decomposition
of w, namely

w =
((

a(0) (a+1)(0)
))
· · ·
((
(b−2)(0) (b−1)(0)

))((
b(0) (b+1)(0)

))
· · ·
((
(c−2)(0) (c−1)(0)

))((
c(0) (c+1)(0)

))
· · ·
((
(e−2)(0) (e−1)(0)

))
· · ·
((
(n−2)(0) (n−1)(0)

))((
(b−1)(0) (c−1)(d−1)))(((e−1)(0) (n−1)(d−1)))((e(0) n(s)))(((n−1)(0) n(s))).

The case that both w1 and w2 are of type (iii) in Proposition 4.4.16 cannot occur, since in
this case w1 and w2 would not commute. The proof for l > 2 works analogously. �
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