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Abstract

We prove various congruences for Catalan and Motzkin numbers as well as related sequences.
The common thread is that all these sequences can be expressed in terms of binomial coefficients.
Our techniques are combinatorial and algebraic: group actions, induction, and Lucas’ congruence
for binomial coefficients come into play. A number of our results settle conjectures of Cloitre
and Zumkeller. The Thue–Morse sequence appears in several contexts.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let N denote the nonnegative integers. The divisibility of the Catalan numbers

Cn = 1

n + 1

(
2n

n

)
, n ∈ N,

by primes and prime powers has been completely determined by Alter and Kubota
[4] using arithmetic techniques. In particular, the fact that Cn is odd precisely when
n = 2h − 1 for some h ∈ N has attracted the attention of several authors including
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Central trinomial coefficients modulo 3

Theorem (Deutsch and Sagan)

Let Tn denote the n-th central trinomial coefficient, that is, the
coefficient of zn in (1 + z + z2)n. Then

Tn ≡

{
1 (mod 3), if n ∈ T (01),

0 (mod 3), otherwise.

Here, T (01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion.
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Motzkin numbers modulo 3

Theorem (Deutsch and Sagan)

The Motzkin numbers Mn satisfy

Mn ≡


1 (mod 3), if n ∈ 3T (01) or n ∈ 3T (01)− 2,

−1 (mod 3), if n ∈ 3T (01)− 1,

0 (mod 3), otherwise.

Here, T (01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion.
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Central binomial coefficients modulo 3

Theorem (Deutsch and Sagan)

The central binomial coefficients satisfy(
2n

n

)
≡

{
(−1)δ3(n) (mod 3), if n ∈ T (01),

0 (mod 3), otherwise.

Here, T (01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion, and δ3(n) denotes
the number of 1s in the ternary expansion of n.
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Catalan numbers modulo 3

Theorem (Deutsch and Sagan)

The Catalan numbers Cn satisfy

Cn ≡

{
(−1)δ

∗
3 (n+1) (mod 3), if n ∈ T ∗(01)− 1,

0 (mod 3), otherwise.

Here, T ∗(01) denotes the set of all positive integers n, where all
digits in their ternary expansion are 0 or 1 except for the
right-most digit, and δ∗3(n) denotes the number of 1s in the ternary
expansion of n ignoring the right-most digit.
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Central Eulerian numbers modulo 3

Let A(n, k) denote the number of permutations of {1, 2, . . . , n}
with exactly k − 1 descents.

Theorem (Deutsch and Sagan)

The central Eulerian numbers A(2n − 1, n) and A(2n, n) satisfy

A(2n − 1, n) ≡

{
1 (mod 3), if n ∈ T (01) + 1,

0 (mod 3), otherwise.

and

A(2n, n) ≡


1 (mod 3), if n ∈ T (01) + 1,

−1 (mod 3), if n ∈ T (01) or n ∈ T (01) + 2,

0 (mod 3), otherwise.

Here, T (01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion.
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The paper by Deutsch and Sagan contains results of similar nature
for Motzkin prefix numbers, Riordan numbers, sums of central
binomial coefficients, central Delannoy numbers, Schröder
numbers, and hex tree numbers.
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The goal of today:

Show that:

All these results are trivial c©!

There is a meta-theorem which covers them all.

One can generalize everything to congruences modulo any
power of 3.

c©Doron Zeilberger: A computer can do them!
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Generating Functions!!
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Let us have another look at the central trinomial numbers theorem:

Theorem (Deutsch and Sagan)

Let Tn denote the n-th central trinomial coefficient, that is, the
coefficient of zn in (1 + z + z2)n. Then

Tn ≡

{
1 (mod 3), if n ∈ T (01),

0 (mod 3), otherwise,

where T (01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion.

In other words: Let

Ψ(z) =
∑
k≥0

∑
n1>···>nk≥0

z3n1+3n2+···+3nk =
∞∏
j=0

(1 + z3j )

= 1 + z + z3 + z4 + z9 + z10 + z12 + z13 + · · · .

Then:
∑

n≥0 Tnzn = Ψ(z) modulo 3.
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A functional equation modulo 3 satisfied by Ψ(z)

Lemma

The series Ψ(z) =
∏∞

j=0(1 + z3j ) satisfies

Ψ2(z) =
1

1 + z
modulo 3.

Proof.

We have

Ψ2(z) =
∞∏
j=0

(1 + z3
j

)2 =
1

1 + z
(1 + z)

∞∏
j=0

(1 + z3
j

)2

=
1

1 + z
(1 + z)3

∞∏
j=1

(1 + z3
j

)2 =
1

1 + z
(1 + z3)Ψ2(z3) modulo 3

=
1

1 + z
(1 + z9)Ψ2(z9) modulo 3

= · · ·

=
1

1 + z
modulo 3.
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A functional equation modulo 3 satisfied by Ψ(z)

Lemma

The series Ψ(z) =
∏∞

j=0(1 + z3j ) satisfies

Ψ2(z) =
1

1 + z
modulo 3.

It is well-known that the generating function T (z)
∑

n≥0 Tnzn is

given by T (z) = 1/
√

1− 2z − 3z2, or, phrased differently,

(1− 2z − 3z2)T 2(z)− 1 = 0.

Morover, this functional equation determines T (z) uniquely.
Taken modulo 3, the above functional equation becomes:

(1 + z)T 2(z)− 1 = 0 modulo 3.

Consequently: ∑
n≥0

Tnzn = Ψ(z) modulo 3.
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Let us have another look at the Motzkin numbers theorem:

Theorem (Deutsch and Sagan)

The Motzkin numbers Mn satisfy

Mn ≡


1 (mod 3), if n ∈ 3T (01) or n ∈ 3T (01)− 2,

−1 (mod 3), if n ∈ 3T (01)− 1,

0 (mod 3), otherwise.

Equivalently:∑
n≥0

Mnzn = z−1 − z−2 + (1− z−1 + z−2)Ψ(z3) modulo 3

= z−1 − z−2 + (z−1 + z−2)(1 + z)Ψ(z3) modulo 3

= z−1 − z−2 + (z−1 + z−2)Ψ(z) modulo 3.
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Want to prove:∑
n≥0

Mnzn = z−1 − z−2 + (z−1 + z−2)Ψ(z) modulo 3.

It is well-known (and easy to see) that the generating function
M(z) =

∑
n≥0 Mnzn satisfies

z2M2(z) + (z − 1)M(z) + 1 = 0.

Hence, to verify the claim above, we substitute in the left-hand
side:

z2M2(z) + (z − 1)M(z) + 1 = z2
(

z−1 − z−2 + (z−1 + z−2)Ψ(z)
)2

+ (z − 1)
(

z−1 − z−2 + (z−1 + z−2)Ψ(z)
)

+ 1.

This vanishes indeed modulo 3, once we invoke the relation

Ψ2(z) =
1

1 + z
modulo 3.

“Of course,” one does not want to do this by hand, but by using
the computer.
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Let us have another look at the central binomial coefficients
theorem:

Theorem (Deutsch and Sagan)

The central binomial coefficients satisfy(
2n

n

)
≡

{
(−1)δ3(n) (mod 3), if n ∈ T (01),

0 (mod 3), otherwise,

where δ3(n) denotes the number of 1s in the ternary expansion of
n.

Equivalently: ∑
n≥0

(
2n

n

)
zn = Ψ(−−−−−−−−−z) modulo 3.
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Want to prove: ∑
n≥0

(
2n

n

)
zn = Ψ(−−−−−−−−−z) modulo 3.

It is well-known that

CB(z) =
∑
n≥0

(
2n

n

)
zn =

1√
1− 4z

,

and, hence,
(1− 4z)CB2(z)− 1 = 0.

In view of

Ψ2(−z) =
1

1− z
modulo 3,

this is obvious.
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Let us have another look at the Catalan numbers theorem:

Theorem (Deutsch and Sagan)

The Catalan numbers Cn satisfy

Cn ≡

{
(−1)δ

∗
3 (n+1) (mod 3), if n ∈ T ∗(01)− 1,

0 (mod 3), otherwise.

Here, T ∗(01) denotes the set of all positive integers n, where all
digits in their ternary expansion are 0 or 1 except for the
right-most digit, and δ∗3(n) denotes the number of 1s in the ternary
expansion of n ignoring the right-most digit.

Equivalently:∑
n≥0

Cnzn = −z−1 + (z−1 + 1 + z)Ψ(−z3) modulo 3

= −z−1 + z−1(1− z)2Ψ(−z3) modulo 3

= −z−1 + z−1(1− z)Ψ(−z) modulo 3.
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Want to prove:∑
n≥0

Cnzn = −z−1 + z−1(1− z)Ψ(−z) modulo 3.

It is well-known that the generating function C (z) =
∑

n≥0 Cnzn

satisfies

zC 2(z)− C (z) + 1 = 0.

Hence, to verify the claim above, we substitute in the left-hand
side:

zC 2(z)− C (z) + 1 = z
(
− z−1 + z−1(1− z)Ψ(−z)

)2
−
(
− z−1 + z−1(1− z)Ψ(−z)

)
+ 1.

This vanishes indeed modulo 3, once we invoke the relation

Ψ2(−z) =
1

1− z
modulo 3.

“Of course” again, one does not want to do this by hand, but by
using the computer.
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What are the common features?

In each case, the generating function satisfied a quadratic
equation (and, as a matter of fact, this applies as well for
Motzkin prefix numbers, Riordan numbers, sums of central
binomial coefficients, central Delannoy numbers, Schröder
numbers, and hex tree numbers).

In each case, one could express the generating function, after
reduction of its coefficients modulo 3, as a linear expression in
Ψ(±z).

Can this be so many accidents?
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A meta-theorem

Theorem

Let F (z) be a formal power series with integer coefficients which
satisfies a quadratic equation

c2(z)F 2(z) + c1(z)F (z) + c0(z) = 0 modulo 3,

where

1 c2(z) = ze1(1 + εzγ)e2 modulo 3, with non-negative integers
e1, e2 and ε ∈ {1,−1};

2 c2
1 (z)− c0(z)c2(z) = z2f1(1 + εzγ)2f2+1 modulo 3, with

non-negative integers f1, f2.

Then

F (z) =
c1(z)

c2(z)
± z f1(1 + εzγ)f2+1

c2(z)
Ψ(εzγ) modulo 3.
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Proof.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The corresponding choices of c2(z), c1(z), c0(z) are:

c2(z) c1(z) c0(z) c2
1 (z)− c0(z)c2(z)

mod 3

trinomial 1− 2z − 3z2 0 −1 1 + z
Motzkin z2 z − 1 1 1 + z
cent.bin. 1− 4z 0 −1 1− z
Catalan z −1 1 1− z

Motz.pref. z − 3z2 1− 3z −1 1 + z
Riordan z + z2 1 + z 1 1 + z

Delannoy 1− 6z + z2 0 −1 1 + z2

Schröder z z − 1 1 1 + z2

hex tree z2 3z − 1 1 1− z2

. . . . . . . . . . . . . . .
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Schröder z z − 1 1 1 + z2

hex tree z2 3z − 1 1 1− z2

. . . . . . . . . . . . . . .

Christian Krattenthaler and Thomas W. Müller Combinatorial sequences modulo powers of 3



Proof.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The corresponding choices of c2(z), c1(z), c0(z) are:

c2(z) c1(z) c0(z) c2
1 (z)− c0(z)c2(z)

mod 3

trinomial 1− 2z − 3z2 0 −1 1 + z
Motzkin z2 z − 1 1 1 + z
cent.bin. 1− 4z 0 −1 1− z
Catalan z −1 1 1− z

Motz.pref. z − 3z2 1− 3z −1 1 + z
Riordan z + z2 1 + z 1 1 + z

Delannoy 1− 6z + z2 0 −1 1 + z2
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Can we also do congruences modulo powers of 3?

Maybe we can express the generating functions now as polynomials
in Ψ(z) (or Ψ(−z), or Ψ(z2), or . . . )?

Certainly: (
Ψ2(z)− 1

1 + z

)α
= 0 modulo 3α.

So, in particular,(
Ψ2(z)− 1

1 + z

)3α

= 0 modulo 33
α
.

Expressing the generating function as a polynomial in Ψ(z) makes
of course only sense, if we also know how to extract coefficients
from powers Ψe(z) modulo a given power of 3; more on this later.
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The “method” for proving congruences modulo 3k

We suppose that the generating function F (z) =
∑

n≥0 fn zn

satisfies a differential equation of the form

P(z ; F (z),F ′(z),F ′′(z), . . . ,F (s)(z)) = 0,

where P is a polynomial with integer coefficients. We want to solve
the problem of determining the coefficients fn modulo powers of 3.

Idea:

Make the Ansatz

F (z) =
2·3α−1∑
i=0

ai (z)Ψi (z) modulo 33
α
,

where the ai (z)’s are (at this point) undetermined elements of
Z[z , z−1, (1 + z)−1].

Then, gradually determine approximations ai ,β(z) to ai (z) such
that the differential equation above holds modulo 3β, for
β = 1, 2, . . . , 3α.
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The “method” for proving congruences modulo 3k

The base step:

Substitute

F (z) =
2·3α−1∑
i=0

ai ,1(z)Ψi (z) modulo 3

into the differential equation, considered modulo 3,

P(z ; F (z),F ′(z),F ′′(z), . . . ,F (s)(z)) = 0 modulo 3,

use Ψ′(z) = Ψ(z)/(1 + z) modulo 3, reduce high powers of Ψ(z)
modulo the polynomial relation of degree 2 · 3α satisfied by Ψ(z),
and compare coefficients of powers Ψk(z), k = 0, 1, . . . , 2 · 3α − 1.
This yields a system of 2 · 3α (algebraic differential) equations
(modulo 3) for the unknown Laurent polynomials ai ,1(z),
i = 0, 1, . . . , 2 · 3α − 1, which may or may not have a solution.
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The “method” for proving congruences modulo 3k

The iteration:

Provided we have already found ai ,β(z), i = 0, 1, . . . , 2 · 3α − 1,
such that

F (z) =
2·3α−1∑
i=0

ai ,β(z)Ψi (z)

solves our differential equation modulo 3β, we put

ai ,β+1(z) := ai ,β(z) + 3βbi ,β+1(z), i = 0, 1, . . . , 2 · 3α − 1,

where the bi ,β+1(z)’s are (at this point) undetermined Laurent
polynomials in z . Next we substitute

F (z) =
2·3α−1∑
i=0

ai ,β+1(z)Ψi (z)

in the differential equation.
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The “method” for proving congruences modulo 3k

The iteration:

One uses
Ψ′(z) = Ψ(z)

β∑
j=0

3jz3j−1

1 + z3j
modulo 3β+1,

one reduces high powers of Ψ(z) using the polynomial relation
satisfied by Ψ(z), and one compares coefficients of powers Ψj(z),
j = 0, 1, . . . , 2 · 3α − 1. After simplification, this yields a system of
2 · 3α (linear differential) equations (modulo 3) for the unknown
Laurent polynomials bi ,β+1(z), i = 0, 1, . . . , 2 · 3α − 1, which may
or may not have a solution.
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Theorem

Let α be some positive integer. Furthermore, suppose that the
formal power series F (z) with integer coefficients satisfies the
functional-differential equation

c2(z)F 2(z) + c1(z)F (z) + c0(z)

+ 3Q(z ; F (z),F ′(z),F ′′(z), . . . ,F (s)(z)) = 0,where

1 c2(z) = ze1(1 + εzγ)e2 modulo 3, with non-negative integers
e1, e2 and ε ∈ {1,−1};

2 c2
1 (z)− c0(z)c2(z) = z2f1(1 + εzγ)2f2+1 modulo 3, with

non-negative integers f1, f2;

3 Q is a polynomial with integer coefficients.

Then F (z), when coefficients are reduced modulo 33
α

, can be
expressed as a polynomial in Ψ(εzγ) of the form

F (z) = a0(z) +
2·3α−1∑
i=0

ai (z)Ψi (εzγ) modulo 33
α
,

where the coefficients ai (z), i = 0, 1, . . . , 2 · 3α − 1, are Laurent
polynomials in z and 1 + εzγ .
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Sketch of proof.

Base step:

F (z) =
c1(z)

c2(z)
± z f1(1 + εzγ)f2+(3α+1)/2

c2(z)
Ψ3α(εzγ)

solves the equation modulo 3.

Iteration step: Works smoothly; in fact, the system of equations
which one has to solve is already in diagonal form for each
iteration.
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Motzkin numbers modulo 27

Theorem

We have∑
n≥0

Mn zn = 13z−1 + 14z−2 +
(
9z + 12 + 24z−1 + 21z−2

)
Ψ(z3)

+
(
9z5 + 12z4 + 10z3 + 23z2 + 25z + 19 + 14z−1 + 4z−2

)
Ψ3(z3)

−
(
9z7 + 3z6 + 24z5 + 30z4 + 6z3

+21z2 + 6z + 3 + 24z−1 + 12z−2
)

Ψ5(z3)

modulo 27.
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Central trinomial numbers modulo 27

Theorem

We have∑
n≥0

Tn zn = −
(
9z2 + 24z + 15

)
Ψ(z3)

+
(
15z5 + 25z4 + 4z3 + 12z2 + 10z + 19

)
Ψ3(z3)

+
(
9z8 + 6z7 + 6z6 + 9z5 + 21z4 + 3z3 + 15z + 24

)
Ψ5(z3)

modulo 27.
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Central binomial coefficients modulo 27

Theorem

We have

∑
n≥0

(
2n

n

)
zn =

(
9

1 + z

1− z
+ 3

)
Ψ(−z)− (4z + 8)Ψ3(−z)

−
(
12z2 + 12z + 3

)
Ψ5(−z) modulo 27.
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Catalan numbers modulo 27

Theorem

We have∑
n≥0

Cn zn = −13z−1 − 3
(
4 + 2z−1

)
Ψ(−z)

+
(
−8z − 14 + 4z−1

)
Ψ3(−z)

+ 3
(
z2 − 6z + 9− 4z−1

)
Ψ5(−z) modulo 27.
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Coefficient extraction

Can we extract coefficients from powers of Ψ(z) (modulo 3k)?

For accomplishing this, we need an extension of the relation

Ψ2(z) =
1

1 + z
modulo 3

to higher powers of 3. This extension comes from the identity

Ψ2(z) =
1

1 + z

∑
s≥0

∑
k1>···>ks≥0

3s
s∏

j=1

z3
kj

(1 + z3
kj

)

1 + z3
kj+1 .
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The identity again:

Ψ2(z) =
1

1 + z

∑
s≥0

3s
∑

k1>···>ks≥0

s∏
j=1

z3
kj

(1 + z3
kj

)

1 + z3
kj+1 .

Let us write

H̃a1,a2,...,as (z) :=
∑

k1>···>ks≥0

s∏
j=1

(
z3

kj
(1 + z3

kj
)

1 + z3
kj+1

)aj

.

Using this notation, the above identity can be rephrased as

Ψ2(z) =
1

1 + z

∑
s≥0

3sH̃1,1,...,1︸ ︷︷ ︸
s times

(z).

It is not difficult to see that powers of Ψ(z) can be expressed using
the series H̃a1,a2,...,ar (z).
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where the coefficients c2K (a1, a2, . . . , ar ) are suitable combinatorial
coefficients, which can be written down explicitly.
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Theorem

The binomial coefficient
(2n
n

)
, when reduced modulo 9, equals

1 0, if, and only if, n contains at least two digits 2 or the string
12 in its 3-adic expansion;

2 3, if, and only if, n contains the string 02, no other digit 2,
and an odd number of digits 1 in its 3-adic expansion;

3 6, if, and only if, n contains the string 02, no other digit 2,
and an even number of digits 1 in its 3-adic expansion;

4 1, if, and only if, the 3-adic expansion of n is an element of

{0} ∪
⋃
k≥0

(
11∗00∗

)3k+2
11∗0∗,

where the number of digits 1 is even;
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5 4, if, and only if, the 3-adic expansion of n is an element of⋃
k≥0

(
11∗00∗

)3k+1
11∗0∗,

where the number of digits 1 is even;

6 7, if, and only if, the 3-adic expansion of n is an element of⋃
k≥0

(
11∗00∗

)3k
11∗0∗,

where the number of digits 1 is even;

7 2, if, and only if, the 3-adic expansion of n is an element of⋃
k≥0

(
11∗00∗

)3k
11∗0∗,

where the number of digits 1 is odd;
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8 5, if, and only if, the 3-adic expansion of n is an element of⋃
k≥0

(
11∗00∗

)3k+1
11∗0∗,

where the number of digits 1 is odd;

9 8, if, and only if, the 3-adic expansion of n is an element of⋃
k≥0

(
11∗00∗

)3k+2
11∗0∗,

where the number of digits 1 is odd.
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Central Eulerian numbers

The Eulerian number A(n, k) is defined as the number of
permutations of {1, 2, . . . , n} with exactly k − 1 descents. It is
well-known that

A(n, k) =
k∑

j=0

(−1)k−j
(

n + 1

k − j

)
jn.

We are interested in analysing central Eulerian numbers, that is,
the numbers A(2n, n) = A(2n, n + 1) and A(2n − 1, n), modulo
powers of 3.
Problem: There is (provably?) no functional or differential
equation for the corresponding generating functions∑

n≥0 A(2n, n)zn or
∑

n≥0 A(2n − 1, n)zn.
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However: If one considers (the coefficients in the) generating
functions

∑
n≥0 A(2n, n)zn and

∑
n≥0 A(2n − 1, n)zn modulo a

fixed power of 3, 3k say, then they do satisfy functional equations,
modulo 3k !
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First key observation

Let us consider A(2n, n) = A(2n, n + 1), given explicitly by

A(2n, n + 1) =
n+1∑
j=0

(−1)n+1−j
(

2n + 1

n + 1− j

)
j2n.

Since ϕ(3β) = 2 · 3β−1 (with ϕ( . ) denoting the Euler totient
function), we have

A(2n, n + 1) ≡
n+1∑
j=0

(−1)n+1−j
(

2n + 1

n + 1− j

)
j2s (mod 3β)

for n ≡ s (mod 3β−1) and n, s ≥ 1
2(β − 1).
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Second key observation

We have

A(2n, n + 1) ≡
n+1∑
j=0

(−1)n+1−j
(

2n + 1

n + 1− j

)
j2s (mod 3β)

for n ≡ s (mod 3β−1) and n, s ≥ 1
2(β − 1).

Proposition

For any positive integer s, we have

∑
n≥0

zn
n+1∑
j=0

(−1)n+1−j
(

2n + 1

n + 1− j

)
j2s =

1

2

(
1 +
√

1 + 4z
)

(1 + 3ps(z)) ,

where ps(z) is a polynomial in z with integer coefficients, and
which satisfies ps(0) = 0.
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Proposition

For any positive integer s, we have

∑
n≥0

zn
n+1∑
j=0

(−1)n+1−j
(

2n + 1

n + 1− j

)
j2s =

1

2

(
1 +
√

1 + 4z
)

(1 + 3ps(z)) ,

where ps(z) is a polynomial in z with integer coefficients, and
which satisfies ps(0) = 0.

That is, if we denote the generating function on the left-hand side
by Es(z), then it satisfies the equation

E 2
s (z)− Es(z)− z − 3ps(z)Es(z)− z3ps(z) (2 + 3ps(z)) = 0.

This is an equation of the form

c2(z)F 2(z) + c1(z)F (z)(z) + c0(z) + 3Q(. . . ) = 0

as in our theorem!!
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1 + 4z
)

(1 + 3ps(z)) ,

where ps(z) is a polynomial in z with integer coefficients, and
which satisfies ps(0) = 0.

That is, if we denote the generating function on the left-hand side
by Es(z), then it satisfies the equation

E 2
s (z)− Es(z)− z − 3ps(z)Es(z)− z3ps(z) (2 + 3ps(z)) = 0.
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Recipe for treating central Eulerian numbers modulo 3β

First consider A(2n, n + 1) only for n ≡ s (mod 3β−1), with s
fixed.

Solve the functional equation for Es(z) modulo 3β.

Only the coefficients of zn in Es(z) with n ≡ s (mod 3β−1)
are of interest to us; compute the corresponding section of the
series.

Add the various sections for s = 0, 1, 2, . . . , 3β−1 − 1. This
yields the desired polynomial in Ψ(z).

Something similar works for A(2n − 1, n).
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The corresponding results modulo 27

Theorem

We have∑
n≥0

A(2n, n + 1) zn = 14 + 3
(
3z2 − 4z + 2

)
Ψ(z)

+
(
21z3 + 20z2 + 13z + 23

)
Ψ3(z)

+ 3
(
6z4 + 4z3 + 3z2 + 4

)
Ψ5(z) modulo 27.

Theorem

We have∑
n≥0

A(2n − 1, n) zn = −3z
(
3z2 + 5

)
Ψ(z)

+ z
(
24z3 + 15z2 + 10z + 19

)
Ψ3(z)

+ 3z
(
3z4 + 6z3 + 2z2 + 7z + 8

)
Ψ5(z) modulo 27.
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