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The birth of alternating sign matrices

Definition

An alternating sign matrix is a square matrix consisting of 0’s, 1’s
and (−1)’s such that, ignoring 0’s, along each row and each
column one reads 1,−1, 1, . . . ,−1, 1 (that is, 1’s and (−1)’s
alternate, and at the beginning and at the end there stands a 1).



0 0 1 0 0 0
1 0 −1 1 0 0
0 0 1 −1 0 1
0 1 −1 1 0 0
0 0 1 −1 1 0
0 0 0 1 0 0


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The birth of alternating sign matrices

In

Determinants and alternating sign matrices, Adv. Math. 62
(1986), 169–184

Robbins and Rumsey define a generalisation of the determinant,
the λ-determinant, denoted by detλ.

Let M be an n × n matrix. Denote the submatrix of M in which
rows i1, i2, . . . , ik and columns j1, j2, . . . , jk are omitted by
M j1,j2,...,jk

i1,i2,...,ik
. Then the (ordinary) determinant satisfies Jacobi’s

formula

detM · detM1,n
1,n = detM1

1 · detMn
n − detMn

1 · detM1
n .
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The birth of alternating sign matrices

Let M be an n × n matrix. Denote the submatrix of M in which
rows i1, i2, . . . , ik and columns j1, j2, . . . , jk are omitted by
M j1,j2,...,jk
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. Then the (ordinary) determinant satisfies Jacobi’s
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1 · detM1
n .

Definition (Robbins and Rumsey ∼ 1980)

The λ-determinant of a square matrix M is recursively defined by

detλM =
detλM

1
1 · detλM

n
n + λ detλM

n
1 · detλM

1
n

detλM
1,n
1,n

,

with initial conditions detλ
(
()
)

= 1 and detλ
(
(m)

)
= m.
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The birth of alternating sign matrices

Theorem

For an n × n matrix M, we have

detλM =
∑
A

λinvA−negA(1 + λ)negA
∏

1≤i ,j≤n
M

Ai,j

i ,j ,

where the sum runs over all n × n alternating sign matrices A, and
negA is the number of (−1)s in A and

invA =
∑

i ,j ,i ′,j ′

i<i ′, j>j ′

Ai ,jAi ′,j ′ .

This is the first instance of Fomin and Zelevinsky’s (later) Laurent
phenomenon (2001).
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The alternating sign matrix conjecture

1× 1 alternating sign matrices: 1

2× 2 alternating sign matrices:
1 0
0 1

0 1
1 0

3× 3 alternating sign matrices:

1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 −1 1
0 1 0

Let A(n) denote the number of all n × n alternating sign matrices.

n 1 2 3 4 5 6

A(n) 1 2 7 42 429 7436
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The alternating sign matrix conjecture

Let A(n) denote the number of all n × n alternating sign matrices.

n 1 2 3 4 5 6

A(n) 1 2 7 42 429 7436

Conjecture (Mills, Robbins, and Rumsey ∼ 1980)

The number of n × n alternating sign matrices equals

n−1∏
i=0

(3i + 1)!

(n + i)!
.
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Descending plane partitions

Definition (Andrews ∼ 1978)

A descending plane partition is an array π of positive integers of
the form

π1,1 π1,2 . . . . . . . . . . . . . . . . π1,λ1
π2,2 . . . . . . . . . . . . . π2,λ2

. . . . . .

πk,k . . . πk,λk

such that

1 λ1 ≥ λ2 ≥ · · · ≥ λk ≥ k ,

2 the entries along rows are weakly decreasing,

3 the entries along columns are strictly decreasing,

4 the first entry in each row does not exceed the number of
entries in the preceding row but is greater than the number of
entries in its own row.
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Descending plane partitions

Proposition

Descending plane partitions of order n are in bijection with
rhombus tilings of a hexagon with side lengths n − 1, n + 1, n − 1,
n + 1, n − 1, n + 1 with a triangle of size 2 removed from the
centre, which are invariant under a rotation by 120◦.

1
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Why descending plane partitions?

Andrews introduced descending plane partitions while trying to
prove Macdonald’s conjecture (1977) on the enumeration of
cyclically symmetric plane partitions.
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Plane partitions

Definition

A plane partition in an a× b × c box can be seen as a rhombus
tiling of a hexagon with side lengths a, b, c , a, b, c.
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Plane partitions

Definition

A plane partition in an a× b × c box can be seen as a rhombus
tiling of a hexagon with side lengths a, b, c , a, b, c.
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Plane partitions

Definition

A plane partition in an a× b × c box can be seen as a rhombus
tiling of a hexagon with side lengths a, b, c , a, b, c.

Plane partitions can have several symmetries.
There are 10 possible ways to combine these symmetries and
accordingly 10 symmetry classes of plane partitions.
Stanley proposed the programme of enumeration of the 10
symmetry classes of plane partitions.
Rather surprisingly, it turned out that for all the symmetry classes
there are nice compact product formulae, already proved or
conjectured.
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Symmetry classes of plane partitions

Class 1: Unrestricted Plane Partitions

Theorem (MacMahon ∼ 1900)

The number of all plane partitions contained in an a× b × c box is
given by

a∏
i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2
.

Class 2: Symmetric Plane Partitions

Theorem (Andrews 1978)

The number of all symmetric plane partitions contained in an
a× a× c box is given by

a∏
i=1

c + 2i − 1

2i − 1

∏
1≤i<j≤a

c + i + j − 1

i + j − 1
.
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Symmetry classes of plane partitions

Class 3: Cyclically Symmetric Plane Partitions

Theorem (Andrews ∼ 1979)

The number of all cyclically symmetric plane partitions contained
in an a× a× a box is given by

a∏
i=1

3i − 1

3i − 2

∏
1≤i<j≤a

2i + j − 1

2i + j − 2

∏
1≤i<j ,k≤a

i + j + k − 1

i + j + k − 2
.

A q-analogue exists which was open at the time.
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Symmetry classes of plane partitions

Class 4: Totally Symmetric Plane Partitions

Conjecture (Macdonald, Robbins ∼ 1980)

The number of all totally symmetric plane partitions contained in
an a× a× a box is given by∏

1≤i≤j≤k≤a

i + j + k − 1

i + j + k − 2
.

A q-analogue exists which was open at the time.
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Symmetry classes of plane partitions

Class 5: Self-Complementary Plane Partitions

Conjecture (Robbins, Stanley ∼ 1980)

The number P5(a, b, c) of all self-complementary plane partitions
contained in an a× b × c box is given by

P5(2a, 2b, 2c) = P1(a, b, c)2,

P5(2a + 1, 2b, 2c) = P1(a, b, c)P1(a + 1, b, c),

P5(2a + 1, 2b + 1, 2c) = P1(a + 1, b, c)P1(a, b + 1, c),

where P1(a, b, c) is the number of unrestricted plane partitions in
an a× b × c box.
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Symmetry classes of plane partitions

Class 6: Transpose-Complementary Plane Partitions

Conjecture (Stanley ∼ 1980)

The number of all transpose-complementary plane partitions
contained in an a× a× c box is given by(

c + a− 1

a− 1

) ∏
1≤i≤j≤a−2

2c + i + j + 1

i + j + 1
.

Class 7: Symmetric Self-Complementary Plane Partitions

Conjecture (Stanley ∼ 1980)

The number P7(a, b, c) of all symmetric self-complementary plane
partitions contained in an a× b × c box is given by

P7(2a, 2a, 2c) = P1(a, a, c),

P7(2a + 1, 2a + 1, 2c) = P1(a + 1, a, c).
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contained in an a× a× c box is given by(

c + a− 1

a− 1

) ∏
1≤i≤j≤a−2

2c + i + j + 1

i + j + 1
.

Class 7: Symmetric Self-Complementary Plane Partitions

Conjecture (Stanley ∼ 1980)
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Symmetry classes of plane partitions

Class 8: Cyclically Symmetric Transpose-Complementary Plane
Partitions

Conjecture (Stanley ∼ 1980)

The number of all cyclically symmetric transpose-complementary
plane partitions contained in an 2a× 2a× 2a box is given by

a−1∏
i=0

(3i + 1)! (6i)! (2i)!

(4i + 1)! (4i)!
.

Class 9: Cyclically Symmetric Self-Complementary Plane
Partitions

Conjecture (Stanley ∼ 1980)

The number of all cyclically symmetric self-complementary plane
partitions contained in an 2a× 2a× 2a box is given by

a−1∏
i=0

(3i + 1)!2

(a + i)!2
.
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Symmetry classes of plane partitions

Class 10: Totally Symmetric Self-Complementary Plane Partitions

Conjecture (Andrews, Robbins ∼ 1980)

The number of all totally symmetric self–complementary plane
partitions contained in an 2a× 2a× 2a box is given by

a−1∏
i=0

(3i + 1)!

(a + i)!
.
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Symmetry classes of plane partitions

Class 10: Totally Symmetric Self-Complementary Plane Partitions

Conjecture (Andrews, Robbins ∼ 1980)

The number of all totally symmetric self–complementary plane
partitions contained in an 2a× 2a× 2a box is given by

a−1∏
i=0

(3i + 1)!

(a + i)!
.

The alternating sign matrix numbers again!
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Symmetry classes of alternating sign matrices

If there are these theorems and conjectures for symmetry classes of
plane partitions, it may be worthwhile to look at symmetry classes
of alternating sign matrices, said Mills, Robbins, and Rumsey.

It turns out that, by combining the symmetries of the square, there
are 8 symmetry classes of alternating sign matrices.
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Symmetry classes of alternating sign matrices

Class 1: Unrestricted Alternating Sign Matrices

Conjecture (Robbins ∼ 1980)

The number of all n × n alternating sign matrices is given by
n−1∏
i=0

(3i + 1)!

(n + i)!
.

Class 2: Diagonally Symmetric Alternating Sign Matrices

No nice product formula exists.

Class 3: Vertically Symmetric Alternating Sign Matrices

Conjecture (Mills ∼ 1980)

The number A3(n) of all n × n vertically symmetric alternating
sign matrices satisfies A3(2n) = 0 and

A3(2n + 1)

A3(2n − 1)
=

(6n−2
2n

)
2
(4n−1

2n

) .
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Symmetry classes of alternating sign matrices
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No nice product formula exists.
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The number A3(n) of all n × n vertically symmetric alternating
sign matrices satisfies A3(2n) = 0 and

A3(2n + 1)

A3(2n − 1)
=

(6n−2
2n

)
2
(4n−1

2n

) .
Christian Krattenthaler The history of ASMs



Symmetry classes of alternating sign matrices

Class 4: Half-Turn Symmetric Alternating Sign Matrices

Conjecture (Robbins ∼ 1980)

The number A4(n) of all n× n half-turn symmetric alternating sign
matrices satisfies

A4(2n + 1)

A4(2n)
=

(3n
n

)(2n
n

) ,
A4(2n)

A4(2n − 1)
=

4
(3n
n

)
3
(2n
n

) .
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Symmetry classes of alternating sign matrices

Class 5: Quarter-Turn Symmetric Alternating Sign Matrices

Conjecture (Robbins ∼ 1980)

The number A5(n) of all n × n quarter-turn symmetric alternating
sign matrices satisfies A5(4n − 2) = 0 and

A5(4n) = A4(2n)A2
1(n),

A5(4n + 1) = A4(2n + 1)A2
1(n),

A5(4n − 1) = A4(2n − 1)A2
1(n),

where A1(n) is the number of all unrestricted n × n alternating
sign matrices.
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Symmetry classes of alternating sign matrices

Class 6: Diagonally and Anti-Diagonally Symmetric Alternating
Sign Matrices

Conjecture (Robbins ∼ 1980)

The number A6(n) of all n × n diagonally and anti-diagonally
symmetric alternating sign matrices satisfies

A6(2n + 1)

A6(2n − 1)
=

(3n
n

)(2n−1
n

) .
There exists no nice product formula for A6(n).
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Symmetry classes of alternating sign matrices

Class 7: Vertically and Horizontally Symmetric Alternating Sign
Matrices

Conjecture (Robbins ∼ 1980)

The number A7(n) of all n × n vertically and horizontally
symmetric alternating sign matrices satisfies

A7(4n + 1)

A7(4n − 1)
=

(3n − 1)

(4n − 1)

(6n−3
2n−1

)(4n−2
2n−1

) ,
A7(4n + 3)

A7(4n + 1)
=

(3n + 1)

(4n + 1)

(6n
2n

)(4n
2n

) .
There exists no nice product formula for A7(2n).

Class 8: Totally Symmetric Alternating Sign Matrices

There exists no nice product formula.
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Symmetry classes of alternating sign matrices

Class 7: Vertically and Horizontally Symmetric Alternating Sign
Matrices

Conjecture (Robbins ∼ 1980)

The number A7(n) of all n × n vertically and horizontally
symmetric alternating sign matrices satisfies

A7(4n + 1)

A7(4n − 1)
=

(3n − 1)

(4n − 1)

(6n−3
2n−1

)(4n−2
2n−1

) ,
A7(4n + 3)

A7(4n + 1)
=

(3n + 1)

(4n + 1)

(6n
2n

)(4n
2n

) .
There exists no nice product formula for A7(2n).

Class 8: Totally Symmetric Alternating Sign Matrices

There exists no nice product formula.
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Progress

1982: Mills, Robbins, and Rumsey prove the q-analogue for Class 3
(cyclically symmetric plane partitions).

In his attempts to prove this conjecture, Andrews had introduced a
parametric family of plane partitions, let us call them µ-descending
plane partitions. For µ = 2 these are the descending plane
partitions, and for µ = 0 they are in easy bijection with cyclically
symmetric plane partitions. He was able to prove a nice product
formula for µ-descending plane partitions for all non-negative
integers µ. However, a (nice) q-analogue seems to exist only for
µ = 0, that is, for cyclically symmetric plane partitions, and for
µ = 2, that is, for descending plane partitions.

Mills, Robbins, and Rumsey proved both q-analogues “in one
stroke.”
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Progress

1983: Proctor proves the conjectured formulae for Class 7
(symmetric self-complementary plane partitions).

1984: Proctor proves the conjectured formula for Class 6
(transpose-complementary plane partitions).

1986: Stanley proves the conjectured formulae for Class 5
(self-complementary plane partitions).

1987: Mills, Robbins, and Rumsey prove the conjectured formula
for Class 8 (cyclically symmetric transpose-complementary plane
partitions).

1994: Kuperberg proves the conjectured formula for Class 9
(cyclically symmetric self-complementary plane partitions).

1994: Andrews proves the conjectured formula for Class 10 (totally
self-complementary symmetric plane partitions).

1995: Stembridge proves the enumeration formula for Class 4
(totally symmetric plane partitions).
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Progress

In other words: by 1996, the programme of enumerating symmetry
classes of plane partitions had been completed except for the
q-analogue for Class 4 (totally symmetric plane partitions).

2011: Koutschan, Kauers, and Zeilberger prove the q-analogue for
Class 4.
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The alternating sign matrix theorem

Ñ>X]^G^	�n^	�:ø]ö�Z ® ô = � ^`c8:1Z;��ø]_�X]ZG�ª>�Z-��Z�X[ZRc���ZR\
=�P0ø]ö�A ® caP	�/A�6�6 ó ü;Ô & ��þ�û!ÔTü;Ô��ÅÔ . )+A
&Ór�ý�2êO0A¿rKZRS��%�KZ�X�$NZ�X�çæã0/�ÖjÚ�ã0ÛêÜ0Ú Ø�×�/]×�25ñ�×ß×�¬RÙ�ã`ÖjÚj-02aÔ�Ú 2�Ç * , ,%,%, , Ç Ë , �Iã02zÜ Ö ÝT×�Ú /�ã�ð`ð5Û Ú�ñ[ãNÖjÚ�-02�ÔÉÖ�-
ñ[-Në²Ø�Ú�25ãNÖ�-0/}Újñ�Ô�ûzO�Sº\���X]Z�ø1Z�=�P0ø]öÛ"�6 ó ü;Ô & ��þ�û Õ à��¡|	|<A
&Ór . 2rO0ACrKZRS��%�KZ�X�$NZ�XRû î ñ[-N2�Ô}Ö�ã02zÖ�Ö�×�/}ë ÚjÜC×�2EÖjÚjÖjå'â�×[ãNÖjÙT/�Ú 2<À�Ö ÝT×)ÙEØ�Ú/¬�ÙTÚ Ö�-NÙCÔÎµ©ã02zÜÕë'åuÔ�Ö�×�/}Új-NÙCÔJ» î 2zÜ0/]× Ó Ô1«1ßÚ Û Û�ÔP«�<r-CØ�Ø�Ú 2�ÔP«�<�ÙTë.Ô�×�å%2aÙTë²Ø�×�/�Ô7��ü(�[ýº�1|<�M)�ýº�M)�ý	Ôº�-,%,%,%£�û�ß+A � ^����ESVc�A5�æöaZ�^NX�� ô Z�X;A ® ÓéÓ ó ü;Ô	Ô8)Cþ�û�ü�|��©ý�|<A
&Ór�)(2�O0A¿r5ZRSf�%�KZ�X�$NZ�XRû î ÙT2aÚ é;×]Üäã}ð`ðz/1-Rã`ñ�ÝIÖ�-41äã`ñ[Ü`-N2zã0Û¢Üyê Ô�/h-R-`Öl«�Ô}åuÔ�Ö�×�ë ñ[-02;ÛR×]ñ�ÖjÙT/1×�Ô�û ô ù ® = ß+A¨=�P0ø]ö�A
® caP	�/A�6¡þ ó ü;Ô &'& þ�ûEÔ & |��[ü-��ü . A
&Ór�à�2�O0A¯r5ZRS����5Z�XZ$NZ�XRû î èzÖ�×�ë%Ø�/}ÚjÜ�ÀC×G«�èEÖ�ã02zÖ�-02IÔ}Öjå0Û¢×'ðz/1-R-hâ�-1â�Ö Ý�×�í�ã�Ø�Ô�Ú�×#ÀC×�/1« ÿ'ã`Ü�×�Û�Û�¬;«51ä-0/�/}Ú�Ô�Ú�Ü�×�2zÖjÚ Öjåßû
O�SV\���X]Z�ø1Z0=�P0ø]ö�A�øhþ ó ü;Ô & Ô?ü(Ô(��þ�û . ü . � . ýNýºA
&ÓrKW¯27O0Ayr5ZRS��%�KZ�X�$NZ�X�PNcaU�O0A =ÈA�WlX]ZR\]\1^`_EU�û î ðz/1-R-hâ�-hâ î 2zÜ0/]× Ó Ôhê´¬-«�,�å�Ô�-02Èñ�-02;ÛR×]ñRÖjÙT/]×�û:O�Sº\���X]Z�ø1Z =�P0ø]ö�A�/� ó ü;Ô & à`þ�û5ý(��üP�©ýNý8)+A
��X[S�$`SVcaP	�5ú�Z�X[\]S¢^`c�M���SV\��¢Z�Q�à�|(à . Me�æöESV\;ú�Z�X[\]S¢^`c�MCõêSV\[PNc¹à�|(à	àºA

| .
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The alternating sign matrix theorem

Zeilberger’s method of proof is constant term identities, and he
crucially uses Andrews’ result on the enumeration of totally
symmetric self-complementary plane partitions.

First he finds a constant-term expression for the number of n × n
alternating sign matrices. (Actually, for something more general.)

Subsequently he finds a constant-term expression for the number
of totally symmetric self-complementary plane partitions in a
2n × 2n × 2n box. (Actually, again for something more general.)

These two constant terms do not have the same form.

He symmetrises both constant terms.

Finally he shows that, after symmetrisation, both constant terms
can be manipulated into the same expression.
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The six vertex model

In 1996, Kuperberg presented a completely different proof of the
alternating sign matrix theorem, based on a recently discovered
bijection between alternating sign matrices and configurations in
the six vertex model with domain wall boundary conditions.
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The six vertex model
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where [x ] = (qx/2 − q−x/2)/(q1/2 − q−1/2).
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The six vertex model
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−q−x/2 −qx/2 [x − 1] [x − 1] [x ] [x ]

where [x ] = (qx/2 − q−x/2)/(q1/2 − q−1/2).

Define Z (x0, . . . , xn−1, y0, . . . , yn−1) =
∑

weight(C ), where the
sum is over all six vertex configurations of the n × n square.
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The six vertex model

Write Z (n; x, y) for Z (x0, . . . , xn−1, y0, . . . , yn−1).

Lemma

The function Z (n; x, y) is symmetric in the xi ’s and in the yi ’s.

The proof is based on an instance of the Yang–Baxter equation
(star-triangle relation).

Lemma

If xi = yj + 1 then

Z (n; x, y) = −q−1/2
∏

k 6=i

[xi − yk ]

∏
k 6=j

[xk − yj ]

Z (n−1; x\xi , y\yj)

Lemma

The quantity Z (n; x, y) is a polynomial in qx0 of degree at
most n − 1.
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The six vertex model

Theorem (Izergin 1987)

The partition function Z (n; x, y) is given by

(−1)n

(∏n−1
i=0 q(yi−xi )/2

)∏
0≤i ,j<n[xi − yj ][xi − yj − 1](∏

0≤j<i<n[xi − xj ]
)(∏

0≤i<j<n[yi − yj ]
) detM,

where

Mi ,j =
1

[xi − yj ][xi − yj − 1]
.

Now one would like to specialise xi = 1
2 and yj = 0 because with

this choice each configuration has the same weight.

In order to overcome the singularities in Izergin’s formula for this
choice, one considers instead xi = 1

2 + (i + 1)ε and yj = −jε.
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The six vertex model

Now one would like to specialise xi = 1
2 and yj = 0 because with

this choice each configuration has the same weight.

In order to overcome the singularities in Izergin’s formula for this
choice, one considers instead xi = 1

2 + (i + 1)ε and yj = −jε.

For this choice, the determinant can be computed by means of
Cauchy’s determinant evaluation

det
1≤i ,j≤n

(
1

Xi + Yj

)
=

∏
1≤i<j≤n(Xi − Xj)(Yi − Yj)∏

1≤i ,j≤n(Xi + Yj)
.

After this, the limit ε→ 0 can be safely done.
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Symmetry classes of alternating sign matrices

Kuperberg had seen a paper by Tsuchiya (1998) which contained a
determinant formula for a class of alternating sign matrices now
called “U-turn six vertx configurations”. This gave him the idea
that, with an appropriate choice of weights, the partition functions
for the six vertex configurations corresponding to the alternating
sign matrices in symmetry classes might also be expressible as a
determinant, or a Pfaffian.

In

Symmetry classes of alternating-sign matrices under one roof, Ann.
Math. 156 (2002), 835–866

he carried out that programme and settled:

Class 3 (vertically symmetric alternating sign matrices)

Class 4, even case (half-turn symmetric alternating sign
matrices)

Class 5, even case (quarter-turn symmetric alternating sign
matrices)
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Symmetry classes of alternating sign matrices

2006: Okada proves the formulae for Class 7 (vertically and
horizontally symmetric alternating sign matrices)

2006: Razumov and Stroganov prove the formula for the odd case
of Class 4 (half-turn symmetric alternating sign matrices)

2006: Razumov and Stroganov prove the formula for the odd case
of Class 5 (quarter-turn symmetric alternating sign matrices)

2017: Behrend, Fischer, and Konvalinka prove the last remaining
case, Class 6 (diagonally and anti-diagonally symmetric alternating
sign matrices)
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The operator formula

In 2006, Fischer developed a new approach to the enumeration of
alternating sign matrices, represented in terms of monotone
triangles.



0 0 1 0 0 0
1 0 −1 1 0 0
0 0 1 −1 0 1
0 1 −1 1 0 0
0 0 1 −1 1 0
0 0 0 1 0 0

 −→



1 1 1 1 1 1
1 1 0 1 1 1
0 1 1 0 1 1
0 1 0 1 1 0
0 0 1 0 1 0
0 0 0 1 0 0



−→

1 2 3 4 5 6
1 2 4 5 6
2 3 5 6
2 4 5
3 5
4
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The operator formula

In 2006, Fischer developed a new approach to the enumeration of
alternating sign matrices, represented in terms of monotone
triangles.

Definition

A monotone triangle is an array of positive integers of the form

a11 a12 . . . . . a1n
a21 a22 . . . a2,n−1

. . . . . .
an1

such that entries along rows are strictly increasing, entries along
columns are weakly increasing, and entries along diagonals from
lower-left to upper-right are weakly increasing.
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The operator formula

In 2006, Fischer developed a new approach to the enumeration of
alternating sign matrices, represented in terms of monotone
triangles.

Theorem

The number of monotone triangles with top row (k1, k2, . . . , kn) is
equal to ∏

1≤s<t≤n
(id− Eks + EksEkt )

∏
1≤i<j≤n

kj − ki
j − i

,

where Exp(x) := p(x + 1).

Using this formula, Fischer gave a new proof of the (refined)
alternating sign matrix theorem, found further refinements, and
also applied similar ideas to symmetry classes of alternating sign
matrices. Another important aspect of this (and other) operator
formulae is that they can be translated into constant term fomulae
and thus build the bridge to Zeilberger’s original approach.
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Alternating sign triangles

Definition

An alternating sign triangle of order n is a triangular array of the
form a1,1 a1,2 a1,3 . . . . . . . . . a1,2n−1

a2,2 a2,3 . . . . . . a2,2n−2
. . . . . . . . .

an,n
with ai ,j ∈ {0, 1,−1} such that:
• The non-zero entries alternate in each row and each column.
• All row sums are 1.
• The topmost non-zero entry of each column is 1.

Theorem (Ayyer, Fischer, Behrend 2016)

The number of alternating sign triangles of order n equals

n−1∏
i=0

(3i + 1)!

(n + i)!
.
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Bijections

Theorem

The following objects are counted by the numbers

n−1∏
i=0

(3i + 1)!

(n + i)!
:

1 n × n alternating sign matrices;

2 descending plane partitions of order n;

3 totally symmetric self-complementary plane partitions in a
(2n)× (2n)× (2n) box;

4 alternating sign triangles of size n.

What about bijections?

In 2019, Fischer and Konvalinka constructed an algorithmic
bijection between alternating sign matrices and descending plane
partitions, using “sijections”.
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Refinements

Theorem (Zeilberger 1996)

The number of all n × n alternating sign matrices with the unique
1 in row 1 in the j-th column is given by

(j)n−1 (n − i + 1)n−1
(n − 1)!

n−2∏
i=0

(3i + 1)!

(n + i)!
,

where (α)m = α(α + 1) · · · (α + m − 1) for m ≥ 1 and (α)0 = 1.

In their papers from 1983, Mills, Robbins, and Rumsey had
proposed several conjectures predicting that alternating sign
matrices with several statistics fixed would be counted by the same
numbers as descending plane partitions with certain other statistics
fixed. Their paper from 1986 contains similar conjectures for
alternating sign matrices and totally symmetric self-complementary
plane partitions.
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Refinements

In 2012, Behrend, Di Francesco, and Zinn-Justin defined four
statistics ν, µ, ρ1, ρ2 for alternating sign matrices and for
descending plane partitions and the corresponding partition
functions

ZASM
n (x , y , z1, z2) =

∑
A∈ASM(n)

xν(A)yµ(A)z
ρ1(A)
1 z

ρ2(A)
2

ZDPP
n (x , y , z1, z2) =

∑
D∈DPP(n)

xν(D)yµ(D)z
ρ1(D)
1 z

ρ2(D)
2 .

Theorem (Behrend, Di Francesco, and Zinn-Justin 2012)

For all positive integers n,

ZASM
n (x , y , z1, z2) = ZDPP

n (x , y , z1, z2).

Christian Krattenthaler The history of ASMs



Refinements

Here, for A ∈ ASM(n),

ν(A) = inv(A),

µ(A) = #(−1)s in A,

ρ1(A) = (position of the 1 in the first row of A)− 1,

ρ2(A) = n − (position of the 1 in the last row of A),

and

ν(D) = #parts Dij in D for which Dij > j − i ,

µ(D) = #parts Dij in D for which Dij ≤ j − i ,

ρ1(D) = #n’s in D,

ρ2(D) = (#(n − 1)’s in D) + (#rows of length n − 1 in D).
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Refinements

Many different refined enumeration results have been proved, by
— in addition to already mentioned authors — Gangl, Fonseca,
Höngesberg, Koutschan, Riegler, Saikia, Schreier-Aigner.

Most of the refined conjectures of Mills, Robbins, and Rumsey
remain unresolved, though.
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A Gog–Magog conjecture

TSSCPPs and Magog triangles
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A Gog–Magog conjecture

TSSCPPs and Magog triangles
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A Gog–Magog conjecture

Definition

An (m, n, k)-Magog trapezoid is an array of positive integers of
the form

b11 b12 . . . . . . . . b1n
b21 b22 . . . b2,n−1

. . . . . . . . . . . .

bk1 . . . bk,n−k+1

such that entries along rows are weakly increasing, entries along
columns are weakly decreasing, and such that the entries in the
first row are bounded by b11 ≤ m + 1, b12 ≤ m + 2, . . . ,
b1n ≤ m + n.
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A Gog–Magog conjecture

ASMs and monotone triangles



0 0 1 0 0 0
1 0 −1 1 0 0
0 0 1 −1 0 1
0 1 −1 1 0 0
0 0 1 −1 1 0
0 0 0 1 0 0

 −→



1 1 1 1 1 1
1 1 0 1 1 1
0 1 1 0 1 1
0 1 0 1 1 0
0 0 1 0 1 0
0 0 0 1 0 0



−→

1 2 3 4 5 6
1 2 4 5 6
2 3 5 6
2 4 5
3 5
4
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A Gog–Magog conjecture

Definition

An (m, n, k)-Gog trapezoid is an array of positive integers of the
form

a11 a12 . . . a1,k
a21 a22 . . . a2,k
. . . . . . . . .

an+1−k,1 . . . an+1−k,k

. . . . . . . . . . . .

an1

such that entries along rows are strictly increasing, entries along
columns are weakly increasing, and entries along diagonals from
lower-left to upper-right are weakly increasing, and such that the
entries in the right-most column are bounded by a1k ≤ m + k ,
a2k ≤ m + k + 1, . . . , an+1−k,k ≤ m + n.
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A Gog–Magog conjecture

Conjecture

The number of (m, n, k)-Magog trapezoids with s Maxima in the
first row and t Minima in the last row equals the number of
(m, n, k)-Gog trapezoids with t Maxima in the right-most column
and s Minima in the left-most column. Here, a Maximum is an
entry that is equal to its upper bound, whereas a Minimum is an
entry that is 1.

(1) With m = 0, and ignoring Maxima and Minima: −→
Zeilberger’s theorem

(2) If m = 0, then this was already conjectured by Mills, Robbins,
and Rumsey.

(3) For k = 1: we want to show that the number of sequences of
positive integers (a1, a2, . . . , an) with ak ≤ m + k and with s
Maxima and t Minima is exactly the same as the number of arrays
of the same type but with t Maxima and s Minima.
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Conjecture
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A Gog–Magog conjecture

(3) For k = 1: we want to show that the number of sequences of
positive integers (a1, a2, . . . , an) with ak ≤ m + k and with s
Maxima and t Minima is exactly the same as the number of arrays
of the same type but with t Maxima and s Minima.

Start with the sequence. At each step look for the left-most entry
with minimal difference to its corresponding upper-bound (i.e., find
k minimal such that (m + k)− ak is minimal). Remove it (i.e.,
remove ak), and record this difference + 1 (i.e., record
(m + k)− ak + 1).
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A Gog–Magog conjecture
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A Gog–Magog conjecture

Start with the sequence. At each step look for the left-most entry
with minimal difference to its corresponding upper-bound (i.e., find
k minimal such that (m + k)− ak is minimal). Remove it (i.e.,
remove ak), and record this difference + 1 (i.e., record
(m + k)− ak + 1).

Example. n = 6, m = 1, s = 2, t = 1: The first line indicates
the upper bounds. The second line is the sequence with which we
start. The subsequent lines show the rest of the sequence after
each step. In the right-most column the difference (m + k)− ak is
displayed.

2 3 4 5 6 7

1 3 3 5 5 6 1
1 3 5 5 6 1

1 3 5 6 2
1 3 6 2

1 3 5
1 7
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The “summary”



0 0 1 0 0 0
1 0 −1 1 0 0
0 0 1 −1 0 1
0 1 −1 1 0 0
0 0 1 −1 1 0
0 0 0 1 0 0



4 4 4 4 4 4

4 4 5 4 4 4

5 4 4 5 4 4

5 4 5 4 4 5

5 5 4 5 4 5

5 5 5 4 5 5

5 5 5 5 5 5
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.
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.

.

.
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/

.
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/
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/
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1 2 3 4 5 6
1 2 4 5 6
2 3 5 6
2 4 5
3 5
4
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