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The birth of alternating sign matrices

Definition

An alternating sign matrix is a square matrix consisting of Q's, 1's
and (—1)'s such that, ignoring 0's, along each row and each
column one reads 1,—1,1,...,—1,1 (thatis, I's and (—1)'s
alternate, and at the beginning and at the end there stands a 1).

00 1 0O0°O
10 -1 100
00 1 -1 01
01 -1 100
00 1 -110
00 0O 100
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The birth of alternating sign matrices

In

Determinants and alternating sign matrices, Adv. Math. 62
(1986), 169-184

Robbins and Rumsey define a generalisation of the determinant,
the A-determinant, denoted by det).
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The birth of alternating sign matrices

In

Determinants and alternating sign matrices, Adv. Math. 62
(1986), 169-184

Robbins and Rumsey define a generalisation of the determinant,
the A-determinant, denoted by det).

Let M be an n x n matrix. Denote the submatrix of M in which

rows i1, ip, . . ., ix and columns ji, jo, ..., jkx are omitted by
M4k Then the (ordinary) determinant satisfies Jacobi's
formula

det M - det My’ = det M} - det M7 — det M] - det M2
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The birth of alternating sign matrices

Let M be an n X n matrix. Denote the submatrix of M in which

rows i1, ip, . . ., i and columns ji, jo, ..., jkx are omitted by
Mit+2Jk. Then the (ordinary) determinant satisfies Jacobi's
formula

det M - det My = det M} - det M — det MY’ - det M.
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The birth of alternating sign matrices

Let M be an n X n matrix. Denote the submatrix of M in which

rows i1, ip, . . ., i and columns ji, jo, ..., jkx are omitted by
Mit+2Jk. Then the (ordinary) determinant satisfies Jacobi's
formula

det M - det My = det M} - det M — det MY’ - det M.

Definition (ROBBINS AND RUMSEY ~ 1980)

The A\-determinant of a square matrix M is recursively defined by

dety M{ - dety M7 4 \dety M - dety M}
1 n 1

detyM =
dety M;"

)

with initial conditions dety (()) =1 and det, ((m)) = m.
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The birth of alternating sign matrices

For an n X n matrix M, we have

det,\M Z)\va negA( —I—A neg A H M :J

1<ij<n

where the sum runs over all n x n alternating sign matrices A, and
neg A is the number of (—1)s in A and

invA= E A,‘JA,'/J/,
it g
i<i’y j>j'
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The birth of alternating sign matrices

For an n X n matrix M, we have

det,\M Z)\va negA( —I—A neg A H M :J

1<ij<n

where the sum runs over all n x n alternating sign matrices A, and
neg A is the number of (—1)s in A and

invA= E A,‘JA,'/J/,
it g
i<i’y j>j'

This is the first instance of Fomin and Zelevinsky's (later) Laurent
phenomenon (2001).
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The alternating sign matrix conjecture

1 x 1 alternating sign matrices: 1
2 x 2 alternating sign matrices: 10 01
01 10
3 x 3 alternating sign matrices:
100 100 010 010
010 0 01 1 00 0 01
0 01 010 0 01 1 00
0 01 0 01 0 10
1 00 010 1 -1 1
010 100 0 10

Let A(n) denote the number of all n x n alternating sign matrices.

A(n) | 1]2]7]42]429] 7436
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The alternating sign matrix conjecture

Let A(n) denote the number of all n x n alternating sign matrices.

n [1]2|3]|4]| 5| 6
A(n) | 1]2]7]42]429 7436
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The alternating sign matrix conjecture

Let A(n) denote the number of all n x n alternating sign matrices.

n [1]2|3]|4]| 5| 6
A(n) | 1]2]7]42]429 7436

Conjecture (MILLS, ROBBINS, AND RUMSEY ~ 1980)

The number of n X n alternating sign matrices equals

”1:[1 (3i 4 1)!

P (n+0)!°
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Descending plane partitions

Definition (ANDREWS ~ 1978)

A descending plane partition is an array 7 of positive integers of

the form
T1,1 TL2 e 1M
T22 e T2 Xp
Tk, k 560 Tk g
such that

QO Mi>X> >N >k,

@ the entries along rows are weakly decreasing,

© the entries along columns are strictly decreasing,
o

the first entry in each row does not exceed the number of
entries in the preceding row but is greater than the number of
entries in its own row.
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Descending plane partitions

Proposition

Descending plane partitions of order n are in bijection with
rhombus tilings of a hexagon with side lengths n—1, n+1, n—1,
n+1, n—1, n+ 1 with a triangle of size 2 removed from the
centre, which are invariant under a rotation by 120°.

Christian Krattenthaler The history of ASMs



Descending plane partitions

Proposition

Descending plane partitions of order n are in bijection with
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Descending plane partitions

Proposition

Descending plane partitions of order n are in bijection with
rhombus tilings of a hexagon with side lengths n—1, n+1, n—1,
n+1, n—1, n+ 1 with a triangle of size 2 removed from the
centre, which are invariant under a rotation by 120°.

Theorem (ANDREWS 1979)

The number of descending plane partition of a hexagon with side
lengthsn—1,n+1, n—1,n+1 n—1, n+ 1 equals

n—1

(3i + 1)!
E) (n+i)"
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Why descending plane partitions?
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Why descending plane partitions?

Andrews introduced descending plane partitions while trying to
prove Macdonald’s conjecture (1977) on the enumeration of
cyclically symmetric plane partitions.
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Plane partitions

Definition

A plane partition in an a X b X ¢ box can be seen as a rhombus
tiling of a hexagon with side lengths a, b, c, a, b, c.
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Plane partitions

Definition

A plane partition in an a X b X ¢ box can be seen as a rhombus
tiling of a hexagon with side lengths a, b, c, a, b, c.
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Plane partitions

Definition

A plane partition in an a X b X ¢ box can be seen as a rhombus
tiling of a hexagon with side lengths a, b, c, a, b, c.
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Plane partitions

Definition

A plane partition in an a X b X ¢ box can be seen as a rhombus
tiling of a hexagon with side lengths a, b, c, a, b, c.

Plane partitions can have several symmetries.

There are 10 possible ways to combine these symmetries and
accordingly 10 symmetry classes of plane partitions.

Stanley proposed the programme of enumeration of the 10
symmetry classes of plane partitions.

Rather surprisingly, it turned out that for all the symmetry classes
there are nice compact product formulae, already proved or
conjectured.
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Symmetry classes of plane partitions

Class 1: Unrestricted Plane Partitions
Theorem (MACMAHON ~ 1900)

The number of all plane partitions contained in an a X b X ¢ box is

given by
i+j+k—-1
IR
i=1j=1k=1
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Symmetry classes of plane partitions

Class 1: Unrestricted Plane Partitions
Theorem (MACMAHON ~ 1900)

The number of all plane partitions contained in an a X b X ¢ box is
given by

i+j+k—-1
I

i=1j=1k=1

Class 2: Symmetric Plane Partitions

Theorem (ANDREWS 1978)

The number of all symmetric plane partitions contained in an
a x a x ¢ box is given by

ﬁc+2i—1 H c+i+j—1
a2 1<i<j<a itj-1
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Symmetry classes of plane partitions

Class 3: Cyclically Symmetric Plane Partitions

Theorem (ANDREWS ~ 1979)

The number of all cyclically symmetric plane partitions contained
in an a X a x a box is given by

ﬁ3i—1 I 2i +j—1 I i+j+k—1
3i -2 2i +j—2 itj+k—2

i=1 1<i<j<a 1<i<jk<a
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Symmetry classes of plane partitions

Class 3: Cyclically Symmetric Plane Partitions

Theorem (ANDREWS ~ 1979)

The number of all cyclically symmetric plane partitions contained
in an a X a x a box is given by

ﬁ3i—1 I 2i +j—1 I i+j+k—1
3i -2 2i +j—2 itj+k—2

i=1 1<i<j<a 1<i<jk<a

A g-analogue exists which was open at the time.
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Symmetry classes of plane partitions

Class 4: Totally Symmetric Plane Partitions

Conjecture (MACDONALD, ROBBINS ~ 1980)

The number of all totally symmetric plane partitions contained in
an a x a x a box is given by

1 i+j+k—-1

1<i<j<k<a' tithk=2
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Symmetry classes of plane partitions

Class 4: Totally Symmetric Plane Partitions

Conjecture (MACDONALD, ROBBINS ~ 1980)

The number of all totally symmetric plane partitions contained in
an a x a x a box is given by

11 i+j+k—-1

1<i<j<k<a' tithk=2

A g-analogue exists which was open at the time.
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Symmetry classes of plane partitions

Class 5: Self-Complementary Plane Partitions

Conjecture (ROBBINS, STANLEY ~ 1980)

The number Ps(a, b, c) of all self-complementary plane partitions
contained in an a X b X ¢ box is given by

Ps(2a,2b,2c) = Py(a, b, c)?,
Ps(2a+1,2b,2c) = Pi(a, b,c)Pi(a+ 1, b, c),
Ps(2a+1,2b+1,2¢c) = Pi(a+1,b,c)Pi(a,b+ 1, ),

where P1(a, b, c) is the number of unrestricted plane partitions in
an a X b x ¢ box.
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Symmetry classes of plane partitions

Class 6: Transpose-Complementary Plane Partitions

Conjecture (STANLEY ~ 1980)

The number of all transpose-complementary plane partitions
contained in an a X a X ¢ box is given by

<c+a—1> H 2c+i+j+1
a-1 1<i<j<a—2 et
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Symmetry classes of plane partitions

Class 6: Transpose-Complementary Plane Partitions

Conjecture (STANLEY ~ 1980)

The number of all transpose-complementary plane partitions
contained in an a X a X ¢ box is given by

<c+a—1> H 2c+i+j+1
a-1 1<i<j<a—2 et

Class 7: Symmetric Self~-Complementary Plane Partitions

Conjecture (STANLEY ~ 1980)

The number Pz(a, b, c) of all symmetric self-complementary plane
partitions contained in an a X b X ¢ box is given by

P7(2a,2a,2c) = Pi(a, a, c),
P7(2a+1,2a+1,2c) = Py(a+1,a,c).
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Symmetry classes of plane partitions

Class 8: Cyclically Symmetric Transpose-Complementary Plane
Partitions

Conjecture (STANLEY ~ 1980)

The number of all cyclically symmetric transpose-complementary
plane partitions contained in an 2a X 2a x 2a box is given by

a—1
(37 + 1)1 (6/)! (2)!
g CES I
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Symmetry classes of plane partitions

Class 8: Cyclically Symmetric Transpose-Complementary Plane
Partitions

Conjecture (STANLEY ~ 1980)

The number of all cyclically symmetric transpose-complementary
plane partitions contained in an 2a X 2a x 2a box is given by

a—1 . . .
(3i + 1)1 (6i)! (2i)!
g (4i + 1)1 (40

Class 9: Cyclically Symmetric Self~-Complementary Plane
Partitions

Conjecture (STANLEY ~ 1980)

The number of all cyclically symmetric self~-complementary plane
partitions contained in an 2a X 2a X 2a box is given by

aHl (3i + 1)12

P (a+ )12
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Symmetry classes of plane partitions

Class 10: Totally Symmetric Self~-Complementary Plane Partitions

Conjecture (ANDREWS, ROBBINS ~ 1980)

The number of all totally symmetric self~complementary plane
partitions contained in an 2a X 2a x 2a box is given by

1:[ (Bi+1)!
P (a+ 1)
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Symmetry classes of plane partitions

Class 10: Totally Symmetric Self~-Complementary Plane Partitions

Conjecture (ANDREWS, ROBBINS ~ 1980)

The number of all totally symmetric self~complementary plane
partitions contained in an 2a X 2a x 2a box is given by

The alternating sign matrix numbers again!
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Symmetry classes of alternating sign matrices
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Symmetry classes of alternating sign matrices

If there are these theorems and conjectures for symmetry classes of
plane partitions, it may be worthwhile to look at symmetry classes
of alternating sign matrices, said Mills, Robbins, and Rumsey.

It turns out that, by combining the symmetries of the square, there
are 8 symmetry classes of alternating sign matrices.
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Symmetry classes of alternating sign matrices

Class 1: Unrestricted Alternating Sign Matrices

Conjecture (ROBBINS ~ 1980)

The number of all n x n alternating sign matrices is given by
n—1

(3i +1)!
H (n+i)"

i=0
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Symmetry classes of alternating sign matrices

Class 1: Unrestricted Alternating Sign Matrices

Conjecture (ROBBINS ~ 1980)

The number of all n x n alternating sign matrices is given by
n—1

(3i +1)!
H (n+i)"

i=0

Class 2: Diagonally Symmetric Alternating Sign Matrices

No nice product formula exists.
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Symmetry classes of alternating sign matrices

Class 1: Unrestricted Alternating Sign Matrices

Conjecture (ROBBINS ~ 1980)

The number of all n x n alternating sign matrices is given by
n—1

(3i +1)!
H (n+i)"

i=0

Class 2: Diagonally Symmetric Alternating Sign Matrices
No nice product formula exists.

Class 3: Vertically Symmetric Alternating Sign Matrices
Conjecture (MILLS ~ 1980)

The number As(n) of all n x n vertically symmetric alternating
sign matrices satisfies A3(2n) = 0 and

As2n+1)  (°3))

As(n=1) " 2(%,1)
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Symmetry classes of alternating sign matrices

Class 4: Half-Turn Symmetric Alternating Sign Matrices

Conjecture (ROBBINS ~ 1980)
The number A4(n) of all n x n half-turn symmetric alternating sign

matrices satisfies

Ay2n+1) ()
Aa(2n) ()
As(2n)  4()

As(2n—1)  3(%)°
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Symmetry classes of alternating sign matrices

Class 5: Quarter-Turn Symmetric Alternating Sign Matrices
Conjecture (ROBBINS ~ 1980)

The number As(n) of all n x n quarter-turn symmetric alternating
sign matrices satisfies As(4n — 2) = 0 and
As(4n) = As(2n)A%(n),
As(4n + 1) = Ag(2n + 1)A3(n),
As(4n — 1) = Ay(2n — 1)A2(n),

where A1(n) is the number of all unrestricted n x n alternating
sigh matrices.
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Symmetry classes of alternating sign matrices

Class 6: Diagonally and Anti-Diagonally Symmetric Alternating
Sign Matrices

Conjecture (ROBBINS ~ 1980)

The number Ag(n) of all n x n diagonally and anti-diagonally
symmetric alternating sign matrices satisfies

As2n+1) _ (3)
As(2n—1) — (3—1)’

n

There exists no nice product formula for Ag(n).
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Symmetry classes of alternating sign matrices

Class 7: Vertically and Horizontally Symmetric Alternating Sign
Matrices

Conjecture (Robbins ~ 1980)

The number A7(n) of all n x n vertically and horizontally
symmetric alternating sign matrices satisfies

Ar(4n+1) _ (3n—1) (501
A7(4n—1)  (4n—1) (3n2)’
Az(4n+3)  (3n+1)(3))
Ai(An+1)  (4n+1) (%)

There exists no nice product formula for A7(2n).
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Symmetry classes of alternating sign matrices

Class 7: Vertically and Horizontally Symmetric Alternating Sign
Matrices

Conjecture (Robbins ~ 1980)

The number A7(n) of all n x n vertically and horizontally
symmetric alternating sign matrices satisfies

Ar(4n+1) _ (3n—1) (501
A7(4n—1)  (4n—1) (3n2)’
Az(4n+3)  (3n+1)(3))
Ai(An+1)  (4n+1) (%)

There exists no nice product formula for A7(2n).

Class 8: Totally Symmetric Alternating Sign Matrices

There exists no nice product formula.
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Progress
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Progress

1982: Mills, Robbins, and Rumsey prove the g-analogue for Class 3
(cyclically symmetric plane partitions).
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Progress

1982: Mills, Robbins, and Rumsey prove the g-analogue for Class 3
(cyclically symmetric plane partitions).

In his attempts to prove this conjecture, Andrews had introduced a
parametric family of plane partitions, let us call them p-descending
plane partitions. For p = 2 these are the descending plane
partitions, and for y = 0 they are in easy bijection with cyclically
symmetric plane partitions. He was able to prove a nice product
formula for p-descending plane partitions for all non-negative
integers ;1. However, a (nice) g-analogue seems to exist only for

w =0, that is, for cyclically symmetric plane partitions, and for

1 =2, that is, for descending plane partitions.
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Progress

1982: Mills, Robbins, and Rumsey prove the g-analogue for Class 3
(cyclically symmetric plane partitions).

In his attempts to prove this conjecture, Andrews had introduced a
parametric family of plane partitions, let us call them p-descending
plane partitions. For p = 2 these are the descending plane
partitions, and for y = 0 they are in easy bijection with cyclically
symmetric plane partitions. He was able to prove a nice product
formula for p-descending plane partitions for all non-negative
integers ;1. However, a (nice) g-analogue seems to exist only for

p =0, that is, for cyclically symmetric plane partitions, and for

1 =2, that is, for descending plane partitions.

Mills, Robbins, and Rumsey proved both g-analogues “in one
stroke.”
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Progress

1983: Proctor proves the conjectured formulae for Class 7
(symmetric self-complementary plane partitions).
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Progress

1983: Proctor proves the conjectured formulae for Class 7
(symmetric self-complementary plane partitions).

1984: Proctor proves the conjectured formula for Class 6
(transpose-complementary plane partitions).
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1984: Proctor proves the conjectured formula for Class 6
(transpose-complementary plane partitions).

1986: Stanley proves the conjectured formulae for Class 5
(self-complementary plane partitions).
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1983: Proctor proves the conjectured formulae for Class 7
(symmetric self-complementary plane partitions).

1984: Proctor proves the conjectured formula for Class 6
(transpose-complementary plane partitions).

1986: Stanley proves the conjectured formulae for Class 5
(self-complementary plane partitions).

1987: Mills, Robbins, and Rumsey prove the conjectured formula
for Class 8 (cyclically symmetric transpose-complementary plane
partitions).
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1983: Proctor proves the conjectured formulae for Class 7
(symmetric self-complementary plane partitions).

1984: Proctor proves the conjectured formula for Class 6
(transpose-complementary plane partitions).

1986: Stanley proves the conjectured formulae for Class 5
(self-complementary plane partitions).

1987: Mills, Robbins, and Rumsey prove the conjectured formula
for Class 8 (cyclically symmetric transpose-complementary plane
partitions).

1994: Kuperberg proves the conjectured formula for Class 9
(cyclically symmetric self-complementary plane partitions).

1994: Andrews proves the conjectured formula for Class 10 (totally
self-complementary symmetric plane partitions).
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Progress

1983: Proctor proves the conjectured formulae for Class 7
(symmetric self-complementary plane partitions).

1984: Proctor proves the conjectured formula for Class 6
(transpose-complementary plane partitions).

1986: Stanley proves the conjectured formulae for Class 5
(self-complementary plane partitions).

1987: Mills, Robbins, and Rumsey prove the conjectured formula
for Class 8 (cyclically symmetric transpose-complementary plane
partitions).

1994: Kuperberg proves the conjectured formula for Class 9
(cyclically symmetric self-complementary plane partitions).

1994: Andrews proves the conjectured formula for Class 10 (totally
self-complementary symmetric plane partitions).

1995: Stembridge proves the enumeration formula for Class 4
(totally symmetric plane partitions).
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Progress

In other words: by 1996, the programme of enumerating symmetry
classes of plane partitions had been completed except for the
g-analogue for Class 4 (totally symmetric plane partitions).
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Progress

In other words: by 1996, the programme of enumerating symmetry
classes of plane partitions had been completed except for the
g-analogue for Class 4 (totally symmetric plane partitions).

2011: Koutschan, Kauers, and Zeilberger prove the g-analogue for
Class 4.
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The alternating sign matrix theorem

PROOF OF THE ALTERNATING SIGN MATRIX CONJECTURE
Doron Zeilberger

Abstract: The number of n X n matrices whose entries are either —1, 0, or 1, whose row- and
column- sums are all 1, and such that in every row and every column the non-zero entries alternate
in sign, is proved to be [114!...(3n—2)!]/[n!(n+1)!...(2n —1)!], as conjectured by Mills, Robbins,
and Rumsey.

INTRODUCTION

The number of permutations (“houses”) that can be made using n objects (“stones”), for n < 7,
is given in Sefer Yeisira (Ch. IV, v. 12), a Cabalistic text written more than 1700 years ago.
The general formula, n!, was stated and proved about 1000 years later by Rabbi Levi Ben Gerson
(“Ralbag”). The Cabala, which is a combinatorial Theory Of Everything (both physical and
spiritual), was interested in this problem because n! is the number of inverse images 77 (w) of a

generic n—lettered word w under the canonical homomorphism 7:




PROOF OF THE ALTERNATING SIGN MATRIX CONJECTURE
Doron Zeilberger

Abstract: The number of n X 7 matrices whose entries are either —1, 0, or 1, whose row- and
column- sums are all 1, and such that in every row and every column the non-zero entries alternate
in sign, is proved to be [1!4!...(3n —2)!]/[n!(n+1)!...(2n—1)!], as conjectured by Mills, Robbins,
and Rumsey.

INTRODUCTION

The number of permutations (“houses”) that can be made using n objects (“stones”), for n < 7,
is given in Sefer Yetsira (Ch. IV, v. 12), a Cabalistic text written more than 1700 years ago.
The general formula, n!, was stated and proved about 1000 years later by Rabbi Levi Ben Gerson
(“Ralbag”). The Cabala, which is a combinatorial Theory Of Everything (both physical and
spiritual), was interested in this problem because n! is the number of inverse images = Hw) of a
generic n—lettered word w under the canonical homomorphism 7:

TR, tav) = (R, tav} /(R (bet) = (bet) X, ..., (shin) (tav) = (tav) (shin)}
The homomorphism 7 is of ccnsiderable interest, since two words wy, and w; are temura-equivalent
(anagrams) if 7(w1) = 7(wz).

A weaker, but just as important, equivalence relation on Hebrew words and sentences is the one
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The alternating sign matrix theorem

Since 3 is the cardinality of the set {X, mem, shin}, the “mother-letters”, dear to the authors
of Sefer Yetsira, they would have most likely enthusiastically approved of the generalization of
permutation matrices, alternating sign matrices, introduced by Robbins and Rumsey[RR] in their
study of a determinant-evaluation rule due to yet another wizard, the Rev. Charles Dodgson.
Rather than only use the two symbols 0,1 as entries, an alternating sign matrix is allowed the
use of the three symbols {—1,1,0} (corresponding to guilt, innocence, and the tongue of the law,
respectively). The row- and column- sums have still to be 1, and in addition, in every row and

every column, the non-zero elements, 1, —1 (right and wrong), have to alternate.

Mills, Robbins, and Rumsey[MRR1] discovered that, like their predecessors the permutations, that
are enumerated by the beautiful formula n!, these new mysterious objects seem to be enumerated

by an almost equally simple formula:

n—1

3i41)!
an= I Gy

i=0

the now famous[R][Z3] sequence 1,2,7,42,429,.. ., first encountered by George Andrews[A1].
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The alternating sign matrix theorem

The second ingredient is my third love, constant term identities introduced to me by Dick Askey.
Dennis Stanton[Stant] and John Stembridge[Ste] showed me how to crack them[Z4][Z5]. The
Stanton-Stembridge trick (see below) was indeed crucial.

The third and last ingredient, which is not mentioned explicitly, but without which this proof could
never have come to be, is my current love: computer algebra and Maple. Practically every lemma,
sublemma, subsublemma ..., was first conjectured with the aid of, and then tested by, Maple. I
thank the Maple team for creating Maple, Shalosh B. Ekhad for its diligent computations, and
James C.T. Pool for his generous permission to use the Drexel computing facilities. I am also
indebted to Russ de Flavia, our dedicated local Unix guru, for his constant technical support.
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This paper only settles the first, and simplest, conjecture, concerning the enumeration of alternating

Christian Krattenthaler The history of ASMs



The second ingredient is my third love, constant term identities introduced to me by Dick Askey.
Dennis Stanton[Stant] and John Stembridge[Ste] showed me how to crack them[Z4][Z5]. The
Stanton-Stembridge trick (see below) was indeed crucial.

The third and last ingredient, which is not mentioned explicitly, but without which this proof could
never have come to be, is my current love: computer algebra and Maple. Practically every lemma,
sublemma, subsublemma ..., was first conjectured with the aid of, and then tested by, Maple. I
thank the Maple team for creating Maple, Shalosh B. Ekhad for its diligent computations, and
James C.T. Pool for his generous permission to use the Drexel computing facilities. I am also
indebted to Russ de Flavia, our dedicated local Unix guru, for his constant technical support.

Finally, this paper would have been little more than a curiosity if not for George Andrews’[A2]
recent brilliant proof of another conjecture of Mills, Robbins, and Rumsey[MRR3] (conj. 2 of
[Stanl]), that the number of so-called Totally Symmetric, Self- Complementary Plane Partitions
(TSSCPP) is also enumerated by A,. All that I show is, that the sequence enumerating ASMs is
the same as the one enumerating TSSCPPs, and then I take a free ride on Andrews’[A2] result that
the later is indeed given by 1,2,7,42,....

I also wish to thank two anonymous reviewers of my last NSF proposal, who, in their otherwise
favorable reports, expressed skepticism that I (or anybody) will be able to solve “problem #11”,
which was the alternating sign matrix conjecture. One of the reviewers went as far as to call it
“one of the ‘Riemann Hypotheses’ of the field”. No doubt, their doubts, combined with my own
contrary and quarrelsome nature, contributed to the success of this proof.

This paper only settles the first, and simplest, conjecture, concerning the enumeration of alternating

Christian Krattenthaler The history of ASMs



thank the Maple team for creating Maple, Shalosh B. Ekhad for its diligent computations, and
James C.T. Pool for his generous permission to use the Drexel computing facilities. I am also
indebted to Russ de Flavia, our dedicated local Unix guru, for his constant technical support.

B

Finally, this paper would have been little more than a curiosity if not for George Andrews’[A2]
recent brilliant proof of another conjecture of Mills, Robbins, and Rumsey[MRR3] (conj. 2 of
[Stanl]), that the number of so-called Totally Symmetric, Self- Complementary Plane Partitions
(TSSCPP) is also enumerated by A,. All that I show is, that the sequence enumerating ASMs is
the same as the one enumerating TSSCPPs, and then I take a free ride on Andrews’[A2] result that

the later is indeed given by 1,2,7,42,....

I also wish to thank two anonymous reviewers of my last NSF proposal, who, in their otherwise
favorable reports, expressed skepticism that I (or anybody) will be able to solve “problem #11”,
which was the alternating sign matrix conjecture. One of the reviewers went as far as to call it
“one of the ‘Riemann Hypotheses’ of the field”. No doubt, their doubts, combined with my own
contrary and quarrelsome nature, contributed to the success of this proof.

This paper only settles the first, and simplest, conjecture, concerning the enumeration of alternating
sign matrices. There are many variations and refinements listed in [Stanl][R][MRR2,3]. T am sure
that the present method should be capable of proving at least some of them. It is also possible that
the present method of proof, combined with the multi-WZ method[WZ], could be used to prove a
stronger conjecture of [MRR1,2](conj. 3 of [Stanl]), directly, in which case the present paper would
furnish an alternative proof of Andrews’[A2] TSSCPP theorem.

How To Read The Proof: The proof should be read the same way as it was conceived. First
with k£ = 2, then with k£ = 3, then with ¥ = 4, and finally with general k.
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The alternating sign matrix theorem

Lemma 1: For n > k > 1, the number of n x k-Gog trapezoids equals the number of n x k-Magog
trapezoids.

[ The number of n by k Magog trapezoids, for specific n and k, is obtained by typing b(k,n); while the number of

n by k Gog trapezoids is given by m(k,n) ;. To verify lemma 1, type S1(k,n):.]
This would imply, by setting n = k, that,
Corollary 1’: For n > 1, the number of n-Gog triangles equals the number of n-Magog triangles.

Since n-Gog triangles are equi-numerous with n x n alternating sign matrices, and n-Magog tri-
angles are equi-numerous with TSSCPPs bounded in [0,2n]?, this would imply, together with
Andrews’s[A2] affirmative resolution of the TSCCPP conjecture, the following result, that was
conjectured in [MRR1].

The Alternating Sign Matrix Theorem: The number of n x n alternating sign matrices, for
n>1,is:

n—1

1’4!...(371—2 H 32+1
nl(n+1)!...(2n—1)! (n+1)
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THE ELECTRONIC JOURNAL OF COMBINATORICS 3 (2) (1996), #R13 29

We now need the following (sub)® lemma:

Subsubsubsubsubsublemma 1.2.1.2.1.1.1: Let Uj, j = 1,...,[, be quantities in an associative
algebra, then:
1 j—1
I R CATE
j=1 =1 Lh=1
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The alternating sign matrix theorem

Zeilberger's method of proof is constant term identities, and he
crucially uses Andrews’ result on the enumeration of totally
symmetric self-complementary plane partitions.

First he finds a constant-term expression for the number of n X n
alternating sign matrices. (Actually, for something more general.)

Subsequently he finds a constant-term expression for the number
of totally symmetric self-complementary plane partitions in a
2n x 2n x 2n box. (Actually, again for something more general.)

These two constant terms do not have the same form.
He symmetrises both constant terms.

Finally he shows that, after symmetrisation, both constant terms
can be manipulated into the same expression.
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The six vertex model

In 1996, Kuperberg presented a completely different proof of the
alternating sign matrix theorem, based on a recently discovered
bijection between alternating sign matrices and configurations in
the six vertex model with domain wall boundary conditions.
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The six vertex model
1 -1 0 0 0 0

N Vi Vi N N 2N Vi N
<<
Vi N N Y 4N N Vi N
00 1 000 br—< < B> < <G+
1 0 _1 1 0 0 74 A Vi N Y Vi N Vi N
0 0 1 -1 01 e R B B
Y i Y Vi N Vi Y
01 -1 100 <<
0 0 1 -1 1 0 N4 A4 Vi \4 i Y
00 1 00 1> B> < P <G+
Y Y Y Vi Y Y
<<
Y Y Y Y Y Y
—x/2 x/2
UL MO N I 1 1

where [x] = (¢°/% — /) /(q"/? — g~ 1/?).
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The six vertex model

Yo yi Y2 Y3 Ya Y5

i N pH Vi i N Vi N Vi
Xg sttt —a1—ta
Vi N 4N A 74 Vi 4N 4N
X1 A1 y
Y 4N N Y 4N 4N
X0 bttt g1 15 ig
Y Vi N Y Vi N i N \4 X g
X3 bttt b1 <41 qtg x—y
A\ 74 A\ 74 AN Y Vi N Y
X4 A1
Y Y A 74 Vi N A\ 74 Y
X5 I I I I <l <l <l
N S N T S D=
A\ 74 74 A\ 74 A 74

S

—q*2 [x—1] [x—1] [x] [x]
where [x] = (¢*/% — ¢7/?)/(¢"/* — q71/2).

Define Z(xo, ..., Xn—1, Y0, ---,¥n—1) = »_ weight(C), where the
sum is over all six vertex configurations of the n x n square.
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The six vertex model

Write Z(n; x,y) for Z(xo, -y Xn—1, Y05+ -+ Yn—1)-
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The six vertex model

Write Z(n; x,y) for Z(xo, -y Xn—1, Y05+ -+ Yn—1)-

The function Z(n; x,y) is symmetric in the x;'s and in the y;'s.

The proof is based on an instance of the Yang—Baxter equation
(star-triangle relation).
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The six vertex model

Write Z(n; x,y) for Z(xo, -y Xn—1, Y05+ -+ Yn—1)-

The function Z(n; x,y) is symmetric in the x;'s and in the y;'s

The proof is based on an instance of the Yang—Baxter equation
(star-triangle relation).

If x; = yj + 1 then

Z(n;x,y) H[X, Vi H[Xk —yjl | Z(n=1;x\xi,y\y;)
ki k#j
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The six vertex model

Write Z(n; x,y) for Z(xo, -y Xn—1, Y05+ -+ Yn—1)-

The function Z(n; x,y) is symmetric in the x;'s and in the y;'s.

The proof is based on an instance of the Yang—Baxter equation
(star-triangle relation).

If x; = yj + 1 then

Z(mx,y) =—=q 2 [ TIbi = vl | | [Tl — i1 | Z(n=1:x\xi,y\))
Py poy,

v
Lemma

The quantity Z(n;x,y) is a polynomial in g® of degree at
most n — 1.
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The six vertex model

Theorem (IZERGIN 1987)
The partition function Z(n;x,y) is given by

<H:’:_01 q(}’ifxf')/2) Hogi,j<n[Xi —yllxi —yj —1]

. (H0§j<i<n[xi - Xf']) (H0§i<j<n[yi - yj]>

det M,

where
1

M;; = .
=yl — = 1]
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The six vertex model

Theorem (IZERGIN 1987)
The partition function Z(n;x,y) is given by

<H:’:_01 q(}’ifxf')/2) Hogi,j<n[xi —yllxi —yj —1]

(H0§j<i<n[xi - xj]) (H0§i<j<n[yi B yj]> det M,

(=1)”

where
1

M; ; = .
=yl — = 1]

Now one would like to specialise x; = % and y; = 0 because with
this choice each configuration has the same weight.

In order to overcome the singularities in Izergin's formula for this
choice, one considers instead x; = 5 + (i 4+ 1)e and y; = —je.
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The six vertex model

Now one would like to specialise x; = % and y; = 0 because with
this choice each configuration has the same weight.

In order to overcome the singularities in lzergin's formula for this
choice, one considers instead x; = % +(i+1)e and y; = —je.

For this choice, the determinant can be computed by means of
Cauchy’s determinant evaluation

det < 1 > _ [Ti<icj<n(Xi = X)(Yi = Y))
1<ij<n \ Xj + Y [Ti<ijen(Xi +Y))

After this, the limit £ — 0 can be safely done.
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Symmetry classes of alternating sign matrices

Kuperberg had seen a paper by Tsuchiya (1998) which contained a
determinant formula for a class of alternating sign matrices now
called “U-turn six vertx configurations”. This gave him the idea
that, with an appropriate choice of weights, the partition functions
for the six vertex configurations corresponding to the alternating
sign matrices in symmetry classes might also be expressible as a
determinant, or a Pfaffian.
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Symmetry classes of alternating sign matrices

Kuperberg had seen a paper by Tsuchiya (1998) which contained a
determinant formula for a class of alternating sign matrices now
called “U-turn six vertx configurations”. This gave him the idea
that, with an appropriate choice of weights, the partition functions
for the six vertex configurations corresponding to the alternating
sign matrices in symmetry classes might also be expressible as a
determinant, or a Pfaffian.

In

Symmetry classes of alternating-sign matrices under one roof, Ann.
Math. 156 (2002), 835-866

he carried out that programme and settled:
@ Class 3 (vertically symmetric alternating sign matrices)
o Class 4, even case (half-turn symmetric alternating sign
matrices)
o Class 5, even case (quarter-turn symmetric alternating sign
matrices)
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Symmetry classes of alternating sign matrices

2006: Okada proves the formulae for Class 7 (vertically and
horizontally symmetric alternating sign matrices)
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Symmetry classes of alternating sign matrices

2006: Okada proves the formulae for Class 7 (vertically and
horizontally symmetric alternating sign matrices)

2006: Razumov and Stroganov prove the formula for the odd case
of Class 4 (half-turn symmetric alternating sign matrices)
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of Class 4 (half-turn symmetric alternating sign matrices)

2006: Razumov and Stroganov prove the formula for the odd case
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Symmetry classes of alternating sign matrices

2006: Okada proves the formulae for Class 7 (vertically and
horizontally symmetric alternating sign matrices)

2006: Razumov and Stroganov prove the formula for the odd case
of Class 4 (half-turn symmetric alternating sign matrices)

2006: Razumov and Stroganov prove the formula for the odd case
of Class 5 (quarter-turn symmetric alternating sign matrices)

2017: Behrend, Fischer, and Konvalinka prove the last remaining
case, Class 6 (diagonally and anti-diagonally symmetric alternating
sign matrices)

Christian Krattenthaler The history of ASMs



The operator formula

In 2006, Fischer developed a new approach to the enumeration of
alternating sign matrices, represented in terms of monotone
triangles.
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The operator formula

In 2006, Fischer developed a new approach to the enumeration of
alternating sign matrices, represented in terms of monotone

triangles.

00 1 000 111111
1 0 -1 1 00 110111
0 0 1—101_}011011
01 -1 1 00 010110
00 1 -110 001010
0 0 100 0 00100

1 23 456

1 2 456

_>2356

2 4 5

3 5

4
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The operator formula

In 2006, Fischer developed a new approach to the enumeration of
alternating sign matrices, represented in terms of monotone
triangles.
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The operator formula

In 2006, Fischer developed a new approach to the enumeration of
alternating sign matrices, represented in terms of monotone
triangles.

Definition
A monotone triangle is an array of positive integers of the form

a1l di2 ... dln
a1 a2 a2 n—1
anl

such that entries along rows are strictly increasing, entries along
columns are weakly increasing, and entries along diagonals from
lower-left to upper-right are weakly increasing.
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The operator formula

In 2006, Fischer developed a new approach to the enumeration of
alternating sign matrices, represented in terms of monotone
triangles.
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The operator formula

In 2006, Fischer developed a new approach to the enumeration of
alternating sign matrices, represented in terms of monotone
triangles.

Theorem

The number of monotone triangles with top row (ki, ko, ..., kn) is
equal to

, ki — ki

[T Gd-E.+EcE) [ 2—

1<s<t<n 1<i<j<n 4 7!
where E;p(x) := p(x + 1).
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The operator formula

In 2006, Fischer developed a new approach to the enumeration of
alternating sign matrices, represented in terms of monotone

triangles.
The number of monotone triangles with top row (ki, ko, ..., kn) is
equal to
id — E, E. E = A
H (I ks + ks kt) H J_ I )

1<s<t<n 1<i<j<n

where E;p(x) := p(x + 1).

Using this formula, Fischer gave a new proof of the (refined)
alternating sign matrix theorem, found further refinements, and
also applied similar ideas to symmetry classes of alternating sign
matrices. Another important aspect of this (and other) operator
formulae is that they can be translated into constant term fomulae
and thus build the bridge to Zeilberger's original approach.
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Alternating sign triangles
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Alternating sign triangles

An alternating sign triangle of order n is a triangular array of the
form

d11 4d1,2 413 e N . d12n—1
dp2 a3 e <. d22p-2

dn,n
with a; j € {0,1, —1} such that:
e The non-zero entries alternate in each row and each column.
e All row sums are 1.
e The topmost non-zero entry of each column is 1.
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Alternating sign triangles

An alternating sign triangle of order n is a triangular array of the
form

d11 4d1,2 413 e N . d12n—1
dp2 a3 e <. d22p-2

dn,n
with a; j € {0,1, —1} such that:
e The non-zero entries alternate in each row and each column.
e All row sums are 1.
e The topmost non-zero entry of each column is 1.

Theorem (AYYER, FISCHER, BEHREND 2016)

The number of alternating sign triangles of order n equals

n—1 .
n+ il
o (1)
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Bijections

The following objects are counted by the numbers

H Bi+1)!
L (n+i)
© n X n alternating sign matrices;

@ descending plane partitions of order n;
© totally symmetric self~-complementary plane partitions in a
(2n) x (2n) x (2n) box;

Q alternating sign triangles of size n.
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Bijections

The following objects are counted by the numbers

H Bi+1)!
L (n+i)
© n X n alternating sign matrices;

@ descending plane partitions of order n;
© totally symmetric self~-complementary plane partitions in a
(2n) x (2n) x (2n) box;

Q alternating sign triangles of size n.

What about bijections?
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Bijections

The following objects are counted by the numbers

H Bi+1)!
L (n+i)
© n X n alternating sign matrices;

@ descending plane partitions of order n;

© totally symmetric self~-complementary plane partitions in a
(2n) x (2n) x (2n) box;

Q alternating sign triangles of size n.

What about bijections?

In 2019, Fischer and Konvalinka constructed an algorithmic
bijection between alternating sign matrices and descending plane
partitions, using “sijections”.
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Refinements

Theorem (ZEILBERGER 1996)

The number of all n x n alternating sign matrices with the unique
1 in row 1 in the j-th column is given by

(j),,l(n—l—i-l,,l (3/
(n—1)! H —i—/"

where (a)m = a(a+1)---(a+m—1) form>1 and (a)o = 1.

V.
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Refinements

Theorem (ZEILBERGER 1996)

The number of all n x n alternating sign matrices with the unique
1 in row 1 in the j-th column is given by

(j),,l(n—/—i—l,,l (3/
(n—1)! H —i—/"

where (a)m = a(a+1)---(a+m—1) form>1 and (a)o = 1.

In their papers from 1983, Mills, Robbins, and Rumsey had
proposed several conjectures predicting that alternating sign
matrices with several statistics fixed would be counted by the same
numbers as descending plane partitions with certain other statistics
fixed. Their paper from 1986 contains similar conjectures for
alternating sign matrices and totally symmetric self-complementary
plane partitions.
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In 2012, Behrend, Di Francesco, and Zinn-Justin defined four
statistics v, u, p1, p2 for alternating sign matrices and for
descending plane partitions and the corresponding partition

functions
ZMM(x,y, z,z) = S xAynA ) )
AEASM(n)
ZPPP(x,y, 21, 22) = Z x”(D)yﬂ(D)zfl(D)zév(D)_
DEDPP(n)

Theorem (BEHREND, D1 FRANCESCO, AND ZINN-JUSTIN 2012)

For all positive integers n,

ZIIJASM(vaazlsz) = ZrJDPP(Xv}/?ZlaZ2)‘
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Here, for A € ASM(n),

v(A) = inv(A),

p(A) = #(=1)s in A,

p1(A) = (position of the 1 in the first row of A) — 1,
p2(A) = n — (position of the 1 in the last row of A),

(D) = #parts Djj in D for which Dj; > j —
p(D) = #parts Djj in D for which Dj <j —i,
(D) =#n'sin D,

(D) = (#(n—1)'s in D) + (#rows of length n — 1 in D).
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Many different refined enumeration results have been proved, by
— in addition to already mentioned authors — Gangl, Fonseca,
Hongesberg, Koutschan, Riegler, Saikia, Schreier-Aigner.
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Many different refined enumeration results have been proved, by
— in addition to already mentioned authors — Gangl, Fonseca,
Hongesberg, Koutschan, Riegler, Saikia, Schreier-Aigner.

Most of the refined conjectures of Mills, Robbins, and Rumsey
remain unresolved, though.
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A Gog—Magog conjecture
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A Gog—Magog conjecture

An (m, n, k)-Magog trapezoid is an array of positive integers of

the form
bii b1 ... bin
b1 b e byn—1
b ... brn—kt1

such that entries along rows are weakly increasing, entries along
columns are weakly decreasing, and such that the entries in the
first row are bounded by byj; < m+1, bip < m+2, ...,

bin < m+ n.
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A Gog—Magog conjecture
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A Gog—Magog conjecture

An (m, n, k)-Gog trapezoid is an array of positive integers of the

form
all dip ... ai,k
dani da»o ... az k
ant+1—k,1 e ant1—k,k
dnl

such that entries along rows are strictly increasing, entries along
columns are weakly increasing, and entries along diagonals from
lower-left to upper-right are weakly increasing, and such that the
entries in the right-most column are bounded by a;x < m + k,
a <m+k+1, ..., apr1—kk < m+n.
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A Gog—Magog conjecture
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A Gog—Magog conjecture

Conjecture

The number of (m, n, k)-Magog trapezoids with s Maxima in the
first row and t Minima in the last row equals the number of

(m, n, k)-Gog trapezoids with t Maxima in the right-most column
and s Minima in the left-most column. Here, a Maximum is an
entry that is equal to its upper bound, whereas a Minimum is an
entry that is 1.
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A Gog—Magog conjecture

Conjecture

The number of (m, n, k)-Magog trapezoids with s Maxima in the
first row and t Minima in the last row equals the number of

(m, n, k)-Gog trapezoids with t Maxima in the right-most column
and s Minima in the left-most column. Here, a Maximum is an
entry that is equal to its upper bound, whereas a Minimum is an
entry that is 1.

(1) With m = 0, and ignoring Maxima and Minima: —
Zeilberger's theorem
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A Gog—Magog conjecture

Conjecture

The number of (m, n, k)-Magog trapezoids with s Maxima in the
first row and t Minima in the last row equals the number of

(m, n, k)-Gog trapezoids with t Maxima in the right-most column
and s Minima in the left-most column. Here, a Maximum is an
entry that is equal to its upper bound, whereas a Minimum is an
entry that is 1.

(1) With m = 0, and ignoring Maxima and Minima: —
Zeilberger's theorem

(2) If m =0, then this was already conjectured by Mills, Robbins,
and Rumsey.
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A Gog—Magog conjecture

Conjecture

The number of (m, n, k)-Magog trapezoids with s Maxima in the
first row and t Minima in the last row equals the number of

(m, n, k)-Gog trapezoids with t Maxima in the right-most column
and s Minima in the left-most column. Here, a Maximum is an
entry that is equal to its upper bound, whereas a Minimum is an
entry that is 1.

(1) With m = 0, and ignoring Maxima and Minima: —
Zeilberger's theorem

(2) If m =0, then this was already conjectured by Mills, Robbins,
and Rumsey.

(3) For k = 1: we want to show that the number of sequences of
positive integers (a1, az, ..., ap) with ax < m+ k and with s
Maxima and t Minima is exactly the same as the number of arrays
of the same type but with t Maxima and s Minima.
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A Gog—Magog conjecture

(3) For k = 1: we want to show that the number of sequences of
positive integers (a1, a2, ..., an) with ax < m+ k and with s
Maxima and t Minima is exactly the same as the number of arrays
of the same type but with t Maxima and s Minima.
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A Gog—Magog conjecture

(3) For k = 1: we want to show that the number of sequences of
positive integers (a1, a2, ..., an) with ax < m+ k and with s
Maxima and t Minima is exactly the same as the number of arrays
of the same type but with t Maxima and s Minima.

Start with the sequence. At each step look for the left-most entry
with minimal difference to its corresponding upper-bound (i.e., find
k minimal such that (m + k) — ai is minimal). Remove it (i.e.,
remove ay), and record this difference + 1 (i.e., record

(m+ k) —ax +1).
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A Gog—Magog conjecture

Start with the sequence. At each step look for the left-most entry
with minimal difference to its corresponding upper-bound (i.e., find
k minimal such that (m + k) — ax is minimal). Remove it (i.e.,
remove ax), and record this difference + 1 (i.e., record
(m+ k) —ax+1).

EXAMPLE. n=6, m=1, s =2, t = 1: The first line indicates
the upper bounds. The second line is the sequence with which we
start. The subsequent lines show the rest of the sequence after
each step. In the right-most column the difference (m+ k) — ay is
displayed.

2
1

= W w
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= W o1 01O
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The “summary
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