The poset of bipartitions

Gábor Hetyei¹ Christian Krattenthaler²

¹Department of Mathematics and Statistics University of North Carolina at Charlotte http://www.math.uncc.edu/~ghetyei/

²Fakultät für Mathematik Universität Wien http://www.mat.univie.ac.at/~kratt.

Let X be a totally ordered alphabet, w a word of length n with letters from X. The *major index* of w is

$$maj(w) = \sum_{i=1}^{n-1} i\chi(w_i > w_{i+1}).$$

/⊒ > < ∃ >

Let X be a totally ordered alphabet, w a word of length n with letters from X. The *major index* of w is

$$maj(w) = \sum_{i=1}^{n-1} i\chi(w_i > w_{i+1}).$$

The *inversion number* of w is

$$\mathsf{inv}(w) = \sum_{1 \le i < j \le n} \chi(w_i > w_j).$$

Let X be a totally ordered alphabet, w a word of length n with letters from X. The *major index* of w is

$$maj(w) = \sum_{i=1}^{n-1} i\chi(w_i > w_{i+1}).$$

The *inversion number* of w is

$$\mathsf{inv}(w) = \sum_{1 \le i < j \le n} \chi(w_i > w_j).$$

Theorem (MacMahon)

The inversion number and major index statistics are equidistributed over each rearrangement class $R(a_1, a_2, ..., a_k)$.

 $R(a_1, a_2, \ldots, a_k)$ is the set of all words consisting of a_i letters i, $1 \le i \le k$.

Generalization to relations

э

(日) (同) (三) (三)

Generalization to relations

Let $U \subseteq X \times X$ be a relation, w a word of length n with letters from X. We define

$$\mathsf{maj}_U(w) = \sum_{i=1}^{n-1} i \chi((w_i, w_{i+1}) \in U)$$
 and

э

A D

Generalization to relations

Let $U \subseteq X \times X$ be a relation, w a word of length n with letters from X. We define

$$\mathsf{maj}_U(w) = \sum_{i=1}^{n-1} i \chi((w_i, w_{i+1}) \in U)$$
 and

$$\operatorname{inv}_U(w) = \sum_{1 \le i < j \le n} \chi((w_i, w_j) \in U).$$

э

A D

Generalization to relations

Let $U \subseteq X \times X$ be a relation, w a word of length n with letters from X. We define

$$\mathsf{maj}_U(w) = \sum_{i=1}^{n-1} i \chi((w_i, w_{i+1}) \in U)$$
 and

$$\mathsf{inv}_U(w) = \sum_{1 \le i < j \le n} \chi((w_i, w_j) \in U).$$

Theorem (Foata–Zeilberger)

The statistics $\operatorname{maj}_{U}(w)$ and $\operatorname{inv}_{U}(w)$ are equidistributed over each rearrangement class $R(a_1, a_2, \ldots, a_k)$ if an only if U is a bipartitional relation.

▲□ ► < □ ► </p>

The definition of a bipartitional relation

(日) (同) (三) (三)

э

The definition of a bipartitional relation

Definition (G.-N. Han, rephrased)

A relation $U \subseteq X \times X$ on a finite set X is a *bipartitional relation*, if both U and $(X \times X) \setminus U$ are transitive.

The definition of a bipartitional relation

Definition (G.-N. Han, rephrased)

A relation $U \subseteq X \times X$ on a finite set X is a *bipartitional relation*, if both U and $(X \times X) \setminus U$ are transitive.

Definition (Foata-Zeilberger)

Let (B_1, B_2, \ldots, B_k) be an ordered partition of X, and $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in \{0, 1\}^k$. The bipartitional relation U represented as $U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \ldots, B_k^{\varepsilon_k})$ is

$$(x,y) \in U \iff \left\{ egin{array}{ll} x \in B_i ext{ and } y \in B_j ext{ for some } i < j, \ & ext{ or } x, y \in B_i ext{ for some } i ext{ satisfying } arepsilon_i = 1. \end{array}
ight.$$

The definition of a bipartitional relation

Definition (Foata-Zeilberger)

Let (B_1, B_2, \ldots, B_k) be an ordered partition of X, and $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in \{0, 1\}^k$. The bipartitional relation U represented as $U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \ldots, B_k^{\varepsilon_k})$ is

$$(x,y) \in U \iff \begin{cases} x \in B_i \text{ and } y \in B_j \text{ for some } i < j, \\ \text{or} \\ x, y \in B_i \text{ for some } i \text{ satisfying } \varepsilon_i = 1 \end{cases}$$

The definition of a bipartitional relation

Definition (Foata-Zeilberger)

Let (B_1, B_2, \ldots, B_k) be an ordered partition of X, and $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in \{0, 1\}^k$. The bipartitional relation U represented as $U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \ldots, B_k^{\varepsilon_k})$ is

$$(x,y) \in U \iff \left\{ egin{array}{ll} x \in B_i ext{ and } y \in B_j ext{ for some } i < j, \ & ext{ or } x, y \in B_i ext{ for some } i ext{ satisfying } arepsilon_i = 1 \end{array}
ight.$$

Example

$$U = \{(3,1), (3,2), (1,1), (1,2), (2,1), (2,2)\}$$

is represented as

$$U({3}^0, {1,2}^1), \text{ or as } U({3}, {\underline{1}, \underline{2}}).$$

Gábor Hetyei and Christian Krattenthaler

The poset of bipartitions

We denote the set of bipartitional relations on X by Bip(X).

▲□ ► < □ ► </p>

$\mathsf{Bip}(\{1,2\})$

æ

Gábor Hetyei and Christian Krattenthaler The poset of bipartitions

Quick facts about Bip(X)

æ

(日) (同) (三) (三)

Quick facts about Bip(X)

• It is a graded poset with unique minimum element $U(\{1, 2, ..., n\}) = \emptyset$ and unique maximum element $U(\{\underline{1}, \underline{2}, ..., \underline{n}\}) = X \times X$.

A 10

Quick facts about Bip(X)

• It is a graded poset with unique minimum element $U(\{1, 2, ..., n\}) = \emptyset$ and unique maximum element $U(\{\underline{1}, \underline{2}, ..., \underline{n}\}) = X \times X$.

• It is self-dual under complementation: $X \times X \setminus U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \dots, B_k^{\varepsilon_k}) = U(B_k^{1-\varepsilon_{k-1}}, B_{k-1}^{1-\varepsilon_{k-1}}, \dots, B_1^{1-\varepsilon_1}).$

Quick facts about Bip(X)

- It is a graded poset with unique minimum element $U(\{1, 2, ..., n\}) = \emptyset$ and unique maximum element $U(\{\underline{1}, \underline{2}, ..., \underline{n}\}) = X \times X$.
- It is self-dual under complementation: $X \times X \setminus U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \dots, B_k^{\varepsilon_k}) = U(B_k^{1-\varepsilon_{k-1}}, B_{k-1}^{1-\varepsilon_{k-1}}, \dots, B_1^{1-\varepsilon_1}).$
- It is a lattice. (Join U ∨ V is transitive closure of U ∪ V ∪ U ∘ V)

Quick facts about Bip(X)

- It is a graded poset with unique minimum element $U(\{1, 2, ..., n\}) = \emptyset$ and unique maximum element $U(\{\underline{1}, \underline{2}, ..., \underline{n}\}) = X \times X$.
- It is self-dual under complementation: $X \times X \setminus U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \dots, B_k^{\varepsilon_k}) = U(B_k^{1-\varepsilon_{k-1}}, B_{k-1}^{1-\varepsilon_{k-1}}, \dots, B_1^{1-\varepsilon_1}).$
- It is a lattice. (Join U ∨ V is transitive closure of U ∪ V ∪ U ∘ V)
- It is not even modular.

The *Möbius function* is an important invariant of a poset. It is a function μ which assigns to each interval in a poset an integer. By definition, it is the inverse with respect to convolution of the socalled *zeta function*. In simple terms, this is

$$\mu([x, x]) = 1$$
 for all x ,
 $\sum_{z:x \le z \le y} \mu([x, z]) = 0$ for all $x < y$.

An annoyingly simple conjecture

The *Möbius function* is an important invariant of a poset. It is a function μ which assigns to each interval in a poset an integer. By definition, it is the inverse with respect to convolution of the socalled *zeta function*. In simple terms, this is

$$\mu([x, x]) = 1$$
 for all x , $\sum_{z: x \le z \le y} \mu([x, z]) = 0$ for all $x < y$.

Conjecture (1996)

The Möbius function of any interval in Bip(X) is 0,1 or -1.

An annoyingly simple conjecture

Conjecture (1996)

The Möbius function of any interval in Bip(X) is 0,1 or -1.

No idea how to prove it for over a decade.

An annoyingly simple conjecture

Conjecture (1996)

The Möbius function of any interval in Bip(X) is 0,1 or -1.

No idea how to prove it for over a decade.

Corollary (2009)

The above conjecture is true.

An annoyingly simple conjecture

Conjecture (1996)

The Möbius function of any interval in Bip(X) is 0,1 or -1.

No idea how to prove it for over a decade.

Corollary (2009)

The above conjecture is true.

The precise theorems will be stated at the end of this talk.

Order complex of a poset

э

Order complex of a poset

Definition

Let P be a partially ordered set (poset). The order complex $\Delta(P)$ of P is the simplicial complex

$$\Delta(P) = \{\{x_1, \ldots, x_k\} : x_1 < \cdots < x_k \text{ in } P\}.$$

Order complex of a poset

Definition

Let P be a partially ordered set (poset). The order complex $\Delta(P)$ of P is the simplicial complex

$$\Delta(P) = \{\{x_1,\ldots,x_k\} : x_1 < \cdots < x_k \text{ in } P\}.$$

Theorem (P. Hall)

Let P be a partially ordered set (poset) with minimum $\hat{0}$ and maximum $\hat{1}.$ We have

$$\mu\left([\hat{0},\hat{1}]\right) = \widetilde{\chi}\left(\Delta(P \setminus \{\hat{0},\hat{1}\})\right),$$

where $\tilde{\chi}(.)$ denotes the reduced Euler characteristics.

Order complex of a poset

Theorem (P. Hall)

Let P be a partially ordered set (poset) with minimum $\hat{0}$ and maximum $\hat{1}$. Then we have

$$\mu\left([\hat{0},\hat{1}]\right) = \widetilde{\chi}\left(\Delta(P \setminus \{\hat{0},\hat{1}\})\right),$$

where $\tilde{\chi}(.)$ denotes the reduced Euler characteristics.

The reduced Euler characteristics $\widetilde{\chi}(\Delta)$ of a simplicial complex Δ is

$$-1 + f_0 - f_1 + f_2 - + \cdots$$

where f_i denotes the number of faces (cells) of Δ of dimension i (i.e., containing i + 1 elements).

Forman's discrete Morse theory for engineers

< □ > < 同 > < 三 >

-

э

Forman's discrete Morse theory for engineers

• Involves constructing an acyclic matching on the Hasse diagram of the face poset of a simplicial complex

Forman's discrete Morse theory for engineers

- Involves constructing an acyclic matching on the Hasse diagram of the face poset of a simplicial complex
- Unmatched cells are called *critical*.

Forman's discrete Morse theory for engineers

- Involves constructing an acyclic matching on the Hasse diagram of the face poset of a simplicial complex
- Unmatched cells are called *critical*.
- If there is no critical cell then the complex is contractible.

Forman's discrete Morse theory for engineers

- Involves constructing an acyclic matching on the Hasse diagram of the face poset of a simplicial complex
- Unmatched cells are called *critical*.
- If there is no critical cell then the complex is contractible.
- If there is exactly one critical cell, then the complex is homotopy equivalent to a sphere of the dimension of that critical cell.

Forman's discrete Morse theory for engineers

- Involves constructing an acyclic matching on the Hasse diagram of the face poset of a simplicial complex
- Unmatched cells are called *critical*.
- If there is no critical cell then the complex is contractible.
- If there is exactly one critical cell, then the complex is homotopy equivalent to a sphere of the dimension of that critical cell.

In particular: If P is a poset with minimum $\hat{0}$ and maximum $\hat{1}$, then:

4 3 b

- if $\Delta(P \setminus \{\hat{0}, \hat{1}\})$ is contractible, then $\mu\left([\hat{0}, \hat{1}]\right) = 0$.
- if Δ(P \ {0, 1}) is homotopy equivalent to a sphere of dimension m, then μ ([0, 1]) = (−1)^m.

The Babson–Hersh implementation for order complexes

(日)

The Babson–Hersh implementation for order complexes

Given a graded poset P of rank n + 1, we need:

A 1

The Babson–Hersh implementation for order complexes

Given a graded poset P of rank n + 1, we need:

an appropriate enumeration C₁, C₂,... of the maximal chains of Δ(P \ {Ô, Î});

The Babson–Hersh implementation for order complexes

Given a graded poset P of rank n + 1, we need:

- an appropriate enumeration C₁, C₂,... of the maximal chains of Δ(P \ {Ô, Î});
- for each chain C_i, one reads off a system I(C_i) of intervals contained in {1, 2, ..., n};

The Babson–Hersh implementation for order complexes

Given a graded poset P of rank n + 1, we need:

- an appropriate enumeration C₁, C₂,... of the maximal chains of Δ(P \ {Ô, Î});
- for each chain C_i, one reads off a system I(C_i) of intervals contained in {1, 2, ..., n};
- from the interval systems, one can construct an acyclic matching on the face poset of the order complex;

The Babson–Hersh implementation for order complexes

Given a graded poset P of rank n + 1, we need:

- an appropriate enumeration C₁, C₂,... of the maximal chains of Δ(P \ {Ô, Î});
- for each chain C_i, one reads off a system I(C_i) of intervals contained in {1, 2, ..., n};
- from the interval systems, one can construct an acyclic matching on the face poset of the order complex;
- properties of the interval system of a maximal chain *C_i* tell one which cells are the critical cells under this matching.

The main result for Bip(X)

æ

<ロト <部ト < 注ト < 注ト

The main result for Bip(X)

Theorem

 $\triangle(Bip(X) \setminus \{\emptyset, X \times X\})$ is homotopy equivalent to a sphere of dimension |X| - 2.

Image: A image: A

The main result for Bip(X)

Theorem

 $\triangle(Bip(X) \setminus \{\emptyset, X \times X\})$ is homotopy equivalent to a sphere of dimension |X| - 2.

Corollary

We have $\mu([\emptyset, X \times X]) = (-1)^{|X|}$.

(日)

Generalization to regular intervals

э

(日) (同) (三) (三)

Generalization to regular intervals

Definition

We say that an interval $[U, V] \subseteq Bip(X)$ is regular if for every x belonging to a nonunderlined block in U and to an underlined block in V, the block containing x in U is equal to the block containing x in V. Otherwise we call [U, V] irregular.

Gábor Hetyei and Christian Krattenthaler The poset of bipartitions

Generalization to regular intervals

Definition

We say that an interval $[U, V] \subseteq Bip(X)$ is regular if for every x belonging to a nonunderlined block in U and to an underlined block in V, the block containing x in U is equal to the block containing x in V. Otherwise we call [U, V] irregular.

Generalization to regular intervals

Definition

We say that an interval $[U, V] \subseteq Bip(X)$ is *regular* if for every x belonging to a nonunderlined block in U and to an underlined block in V, the block containing x in U is equal to the block containing x in V. Otherwise we call [U, V] *irregular*.

Proposition

Every regular interval $[U, V] \subseteq Bip(X)$ is isomorphic to a direct product of Boolean lattices and lattices of the form Bip(B), where each B is a block in the ordered bipartition representation of U and of V such that B is nonunderlined in U and underlined in B.

Image: A image: A

Generalization to regular intervals

Definition

We say that an interval $[U, V] \subseteq Bip(X)$ is regular if for every x belonging to a nonunderlined block in U and to an underlined block in V, the block containing x in U is equal to the block containing x in V. Otherwise we call [U, V] irregular.

Proposition

Every regular interval $[U, V] \subseteq Bip(X)$ is isomorphic to a direct product of Boolean lattices and lattices of the form Bip(B), where each B is a block in the ordered bipartition representation of U and of V such that B is nonunderlined in U and underlined in B.

Corollary

If $[U, V] \subseteq Bip(\{1, 2, ..., n\})$ is regular, then $\mu([U, V]) = (-1)^{rk(U)-rk(V)}$.

Generalization to irregular intervals

(日) (同) (三) (三)

э

Generalization to irregular intervals

Theorem

If $[U, V] \subseteq Bip(\{1, 2, ..., n\})$ is not regular, then the order complex $\triangle([U, V] \setminus \{U, V\})$ is contractible.

A D

Generalization to irregular intervals

Theorem

If $[U, V] \subseteq Bip(\{1, 2, ..., n\})$ is not regular, then the order complex $\triangle([U, V] \setminus \{U, V\})$ is contractible.

Corollary

If $[U, V] \subseteq Bip(\{1, 2, ..., n\})$ is not regular, then $\mu([U, V]) = 0$.

- 4 同 6 4 日 6 4 日 6