The poset of bipartitions

Gábor Hetyei1 Christian Krattenthaler2

1Department of Mathematics and Statistics
University of North Carolina at Charlotte
http://www.math.uncc.edu/~ghetyei/

2Fakultät für Mathematik
Universität Wien
http://www.mat.univie.ac.at/~kratt.
Let X be a totally ordered alphabet, w a word of length n with letters from X. The *major index* of w is

$$\text{maj}(w) = \sum_{i=1}^{n-1} i \chi(w_i > w_{i+1}).$$
Let X be a totally ordered alphabet, w a word of length n with letters from X. The *major index* of w is

$$\text{maj}(w) = \sum_{i=1}^{n-1} i \chi(w_i > w_{i+1}).$$

The *inversion number* of w is

$$\text{inv}(w) = \sum_{1 \leq i < j \leq n} \chi(w_i > w_j).$$
Let X be a totally ordered alphabet, w a word of length n with letters from X. The *major index* of w is

$$\text{maj}(w) = \sum_{i=1}^{n-1} i \chi(w_i > w_{i+1}).$$

The *inversion number* of w is

$$\text{inv}(w) = \sum_{1 \leq i < j \leq n} \chi(w_i > w_j).$$

Theorem (MacMahon)

*The inversion number and major index statistics are equidistributed over each rearrangement class $R(a_1, a_2, \ldots, a_k)$.

$R(a_1, a_2, \ldots, a_k)$ is the set of all words consisting of a_i letters i, $1 \leq i \leq k$.

Gábor Hetyei and Christian Krattenthaler*
Generalization to relations

Let $U \subseteq X \times X$ be a relation, w a word of length n with letters from X. We define

$$\text{maj}_U(w) = n - 1 \sum_{i=1}^n \chi((w_i, w_{i+1}) \in U)$$

and

$$\text{inv}_U(w) = \sum_{1 \leq i < j \leq n} \chi((w_i, w_j) \in U).$$

Theorem (Foata–Zeilberger)

The statistics $\text{maj}_U(w)$ and $\text{inv}_U(w)$ are equidistributed over each rearrangement class $R(a_1, a_2, \ldots, a_k)$ if and only if U is a bipartitional relation.
Generalization to relations

Let $U \subseteq X \times X$ be a relation, w a word of length n with letters from X. We define

$$\text{maj}_U(w) = \sum_{i=1}^{n-1} i \chi((w_i, w_{i+1}) \in U)$$

and

$$\text{inv}_U(w) = \sum_{1 \leq i < j \leq n} \chi((w_i, w_j) \in U).$$
Generalization to relations

Let $U \subseteq X \times X$ be a relation, w a word of length n with letters from X. We define

$$\text{maj}_U(w) = \sum_{i=1}^{n-1} i \chi((w_i, w_{i+1}) \in U)$$

and

$$\text{inv}_U(w) = \sum_{1 \leq i < j \leq n} \chi((w_i, w_j) \in U).$$
Generalization to relations

Let $U \subseteq X \times X$ be a relation, w a word of length n with letters from X. We define

$$\text{maj}_U(w) = \sum_{i=1}^{n-1} i \chi((w_i, w_{i+1}) \in U)$$

and

$$\text{inv}_U(w) = \sum_{1 \leq i < j \leq n} \chi((w_i, w_j) \in U).$$

Theorem (Foata–Zeilberger)

The statistics $\text{maj}_U(w)$ and $\text{inv}_U(w)$ are equidistributed over each rearrangement class $R(a_1, a_2, \ldots, a_k)$ if and only if U is a bipartitional relation.
The definition of a bipartitional relation
The definition of a bipartitional relation

Definition (G.-N. Han, rephrased)
A relation $U \subseteq X \times X$ on a finite set X is a *bipartitional relation*, if both U and $(X \times X) \setminus U$ are transitive.
The definition of a bipartitional relation

Definition (G.-N. Han, rephrased)

A relation $U \subseteq X \times X$ on a finite set X is a *bipartitional relation*, if both U and $(X \times X) \setminus U$ are transitive.

Definition (Foata-Zeilberger)

Let (B_1, B_2, \ldots, B_k) be an ordered partition of X, and $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in \{0, 1\}^k$. The bipartitional relation U represented as $U(B_{\varepsilon_1}^1, B_{\varepsilon_2}^2, \ldots, B_{\varepsilon_k}^k)$ is

$$(x, y) \in U \iff \begin{cases} x \in B_i \text{ and } y \in B_j \text{ for some } i < j, \\ \text{or} \\ x, y \in B_i \text{ for some } i \text{ satisfying } \varepsilon_i = 1. \end{cases}$$
The definition of a bipartitional relation

Definition (Foata-Zeilberger)

Let \((B_1, B_2, \ldots, B_k)\) be an ordered partition of \(X\), and \((\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in \{0, 1\}^k\). The bipartitional relation \(U\) represented as \(U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \ldots, B_k^{\varepsilon_k})\) is

\[
(x, y) \in U \iff \begin{cases}
 x \in B_i \text{ and } y \in B_j \text{ for some } i < j, \\
 \text{or} \\
 x, y \in B_i \text{ for some } i \text{ satisfying } \varepsilon_i = 1.
\end{cases}
\]
The definition of a bipartitional relation

Definition (Foata-Zeilberger)

Let \((B_1, B_2, \ldots, B_k)\) be an ordered partition of \(X\), and \((\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in \{0, 1\}^k\). The bipartitional relation \(U\) represented as \(U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \ldots, B_k^{\varepsilon_k})\) is

\[
(x, y) \in U \iff \begin{cases}
 x \in B_i \text{ and } y \in B_j \text{ for some } i < j, \\
 \text{or} \\
 x, y \in B_i \text{ for some } i \text{ satisfying } \varepsilon_i = 1.
\end{cases}
\]

Example

\[U = \{(3, 1), (3, 2), (1, 1), (1, 2), (2, 1), (2, 2)\}\]

is represented as

\[U(\{3\}^0, \{1, 2\}^1), \quad \text{or as} \quad U(\{3\}, \{1, 2\}).\]
We denote the set of bipartitional relations on X by $\text{Bip}(X)$.
Generalizing MacMahon's equidistribution result

The poset of bipartitions

Order complex of a poset and Möbius function

Discrete Morse theory and the Babson–Hersh result

Putting it all together

\[\text{Bip}({1, 2}) \]
Generalizing MacMahon’s equidistribution result
The poset of bipartitions
Order complex of a poset and Möbius function
Discrete Morse theory and the Babson–Hersh result
Putting it all together

Bip(\{1, 2\})

U(\{1, 2\})

U(\{1\}, \{2\})

U(\{1\}, \{2\})

U(\{2\}, \{1\})

U(\{2\}, \{1\})

U(\{1\}, \{2\})

U(\{1\}, \{2\})

U(\{2\}, \{1\})

U(\{2\}, \{1\})

U(\{1, 2\})

U(\{1, 2\})
Quick facts about Bip(X)
Quick facts about Bip\((X) \)

- It is a graded poset with unique minimum element
 \(U(\{1, 2, \ldots, n\}) = \emptyset \) and unique maximum element
 \(U(\{1, 2, \ldots, n\}) = X \times X. \)
Quick facts about $\text{Bip}(X)$

- It is a graded poset with unique minimum element $U(\{1, 2, \ldots, n\}) = \emptyset$ and unique maximum element $U(\{1, 2, \ldots, n\}) = X \times X$.

- It is self-dual under complementation:
 $$X \times X \setminus U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \ldots, B_k^{\varepsilon_k}) = U(B_k^{1-\varepsilon_{k-1}}, B_{k-1}^{1-\varepsilon_{k-1}}, \ldots, B_1^{1-\varepsilon_1}).$$
Quick facts about $\text{Bip}(X)$

- It is a graded poset with unique minimum element $U(\{1, 2, \ldots, n\}) = \emptyset$ and unique maximum element $U(\{1, 2, \ldots, n\}) = X \times X$.

- It is self-dual under complementation:

 $X \times X \setminus U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \ldots, B_k^{\varepsilon_k}) = U(B_k^{1-\varepsilon_k-1}, B_{k-1}^{1-\varepsilon_k-1}, \ldots, B_1^{1-\varepsilon_1})$.

- It is a lattice. (Join $U \lor V$ is transitive closure of $U \cup V \cup U \circ V$)
Quick facts about \(\text{Bip}(X) \)

- It is a graded poset with unique minimum element \(U(\{1, 2, \ldots, n\}) = \emptyset \) and unique maximum element \(U(\{1, 2, \ldots, n\}) = X \times X \).

- It is self-dual under complementation:
 \[
 X \times X \setminus U(B_1^{\varepsilon_1}, B_2^{\varepsilon_2}, \ldots, B_k^{\varepsilon_k}) = U(B_k^{1-\varepsilon_{k-1}}, B_{k-1}^{1-\varepsilon_{k-1}}, \ldots, B_1^{1-\varepsilon_1}).
 \]

- It is a lattice. (Join \(U \lor V \) is transitive closure of \(U \cup V \cup U \circ V \))

- It is not even modular.
The Möbius function is an important invariant of a poset. It is a function μ which assigns to each interval in a poset an integer. By definition, it is the inverse with respect to convolution of the so-called zeta function. In simple terms, this is

$$\mu([x, x]) = 1 \quad \text{for all } x,$$

$$\sum_{z: x \leq z \leq y} \mu([x, z]) = 0 \quad \text{for all } x < y.$$
An annoyingly simple conjecture

The Möbius function is an important invariant of a poset. It is a function μ which assigns to each interval in a poset an integer. By definition, it is the inverse with respect to convolution of the so-called zeta function. In simple terms, this is

\[
\mu([x, x]) = 1 \quad \text{for all } x,
\]
\[
\sum_{z : x \leq z \leq y} \mu([x, z]) = 0 \quad \text{for all } x < y.
\]

Conjecture (1996)

The Möbius function of any interval in Bip(X) is 0, 1 or -1.

No idea how to prove it for over a decade.

Corollary (2009)

The above conjecture is true.

The precise theorems will be stated at the end of this talk.

Gábor Hetyei and Christian Krattenthaler

The poset of bipartitions
An annoyingly simple conjecture

Conjecture (1996)

The Möbius function of any interval in Bip(X) is 0, 1 or -1.

No idea how to prove it for over a decade.
An annoyingly simple conjecture

Conjecture (1996)

The Möbius function of any interval in Bip(X) is 0, 1 or −1.

No idea how to prove it for over a decade.

Corollary (2009)

The above conjecture is true.
An annoyingly simple conjecture

Conjecture (1996)

The Möbius function of any interval in Bip(X) is 0, 1 or −1.

No idea how to prove it for over a decade.

Corollary (2009)

The above conjecture is true.

The precise theorems will be stated at the end of this talk.
Order complex of a poset

Definition

Let P be a partially ordered set (poset). The order complex $\Delta(P)$ of P is the simplicial complex $\Delta(P) = \{\{x_1, \ldots, x_k\} : x_1 < \cdots < x_k \text{ in } P\}$.

Theorem (P. Hall)
Let P be a partially ordered set (poset) with minimum $\hat{0}$ and maximum $\hat{1}$. We have $\mu([\hat{0}, \hat{1}]) = \tilde{\chi}(\Delta(P) \setminus \{\hat{0}, \hat{1}\})$, where $\tilde{\chi}$ denotes the reduced Euler characteristic.
Order complex of a poset

Definition

Let P be a partially ordered set (poset). The order complex $\Delta(P)$ of P is the simplicial complex

$$\Delta(P) = \left\{ \{x_1, \ldots, x_k\} : x_1 < \cdots < x_k \text{ in } P \right\}.$$
Order complex of a poset

Definition

Let P be a partially ordered set (poset). The order complex $\Delta(P)$ of P is the simplicial complex

$$\Delta(P) = \{\{x_1, \ldots, x_k\} : x_1 < \cdots < x_k \text{ in } P\}.$$

Theorem (P. Hall)

Let P be a partially ordered set (poset) with minimum $\hat{0}$ and maximum $\hat{1}$. We have

$$\mu([\hat{0}, \hat{1}]) = \tilde{\chi}(\Delta(P \setminus \{\hat{0}, \hat{1}\})),$$

where $\tilde{\chi}(\cdot)$ denotes the reduced Euler characteristics.
Theorem (P. Hall)

Let P be a partially ordered set (poset) with minimum $\hat{0}$ and maximum $\hat{1}$. Then we have

$$
\mu ([\hat{0}, \hat{1}]) = \tilde{\chi}(\Delta(P \setminus \{\hat{0}, \hat{1}\}))
$$

where $\tilde{\chi}(\ . \)$ denotes the reduced Euler characteristics.

The reduced Euler characteristics $\tilde{\chi}(\Delta)$ of a simplicial complex Δ is

$$
-1 + f_0 - f_1 + f_2 - + \cdots,
$$

where f_i denotes the number of faces (cells) of Δ of dimension i (i.e., containing $i + 1$ elements).
Forman’s discrete Morse theory for engineers
Forman’s discrete Morse theory for engineers

- Involves constructing an acyclic matching on the Hasse diagram of the face poset of a simplicial complex
Forman’s discrete Morse theory for engineers

- Involves constructing an acyclic matching on the Hasse diagram of the face poset of a simplicial complex
- Unmatched cells are called *critical*.
Forman’s discrete Morse theory for engineers

- Involves constructing an acyclic matching on the Hasse diagram of the face poset of a simplicial complex
- Unmatched cells are called *critical*.
- If there is no critical cell then the complex is contractible.
Forman’s discrete Morse theory for engineers

- Involves constructing an acyclic matching on the Hasse diagram of the face poset of a simplicial complex
- Unmatched cells are called *critical*.
- If there is no critical cell then the complex is contractible.
- If there is exactly one critical cell, then the complex is homotopy equivalent to a sphere of the dimension of that critical cell.

\[\text{In particular: If } \{\hat{0}, \hat{1}\} \text{ is contractible, then } \mu([\hat{0}, \hat{1}]) = 0. \]
\[\text{If } \{\hat{0}, \hat{1}\} \text{ is homotopy equivalent to a sphere of dimension } m, \text{ then } \mu([\hat{0}, \hat{1}]) = (-1)^m. \]
Forman’s discrete Morse theory for engineers

- Involves constructing an acyclic matching on the Hasse diagram of the face poset of a simplicial complex.
- Unmatched cells are called critical.
- If there is no critical cell then the complex is contractible.
- If there is exactly one critical cell, then the complex is homotopy equivalent to a sphere of the dimension of that critical cell.

In particular: If P is a poset with minimum $\hat{0}$ and maximum $\hat{1}$, then:
- if $\Delta(P \setminus \{\hat{0}, \hat{1}\})$ is contractible, then $\mu([\hat{0}, \hat{1}]) = 0$.
- if $\Delta(P \setminus \{\hat{0}, \hat{1}\})$ is homotopy equivalent to a sphere of dimension m, then $\mu([\hat{0}, \hat{1}]) = (-1)^m$.
The Babson–Hersh implementation for order complexes
The Babson–Hersh implementation for order complexes

Given a graded poset P of rank $n+1$, we need:
The Babson–Hersh implementation for order complexes

Given a graded poset P of rank $n + 1$, we need:

- an appropriate enumeration C_1, C_2, \ldots of the maximal chains of $\Delta(P \setminus \{\hat{0}, \hat{1}\})$;
The Babson–Hersh implementation for order complexes

Given a graded poset \(P \) of rank \(n + 1 \), we need:

- an appropriate enumeration \(C_1, C_2, \ldots \) of the maximal chains of \(\Delta(P \setminus \{\hat{0}, \hat{1}\}) \);
- for each chain \(C_i \), one reads off a system \(I(C_i) \) of intervals contained in \(\{1, 2, \ldots, n\} \);
The Babson–Hersh implementation for order complexes

Given a graded poset \(P \) of rank \(n + 1 \), we need:

- an appropriate enumeration \(C_1, C_2, \ldots \) of the maximal chains of \(\Delta(P \setminus \{\hat{0}, \hat{1}\}) \);
- for each chain \(C_i \), one reads off a system \(I(C_i) \) of intervals contained in \(\{1, 2, \ldots , n\} \);
- from the interval systems, one can construct an acyclic matching on the face poset of the order complex;
The Babson–Hersh implementation for order complexes

Given a graded poset P of rank $n + 1$, we need:

- an appropriate enumeration C_1, C_2, \ldots of the maximal chains of $\Delta(P \setminus \{\hat{0}, \hat{1}\})$;
- for each chain C_i, one reads off a system $I(C_i)$ of intervals contained in $\{1, 2, \ldots, n\}$;
- from the interval systems, one can construct an acyclic matching on the face poset of the order complex;
- properties of the interval system of a maximal chain C_i tell one which cells are the critical cells under this matching.
The main result for Bip(X)
The main result for $\text{Bip}(X)$

Theorem

$\Delta(\text{Bip}(X) \setminus \{\emptyset, X \times X\})$ is homotopy equivalent to a sphere of dimension $|X| - 2$.
The main result for $\text{Bip}(X)$

Theorem

$\Delta(\text{Bip}(X) \setminus \{\emptyset, X \times X\})$ is homotopy equivalent to a sphere of dimension $|X| - 2$.

Corollary

We have $\mu([\emptyset, X \times X]) = (-1)^{|X|}$.
Generalization to regular intervals

Definition
We say that an interval \([U, V]\) is regular if for every \(x\) belonging to a nonunderlined block in \(U\) and to an underlined block in \(V\), the block containing \(x\) in \(U\) is equal to the block containing \(x\) in \(V\). Otherwise we call \([U, V]\) irregular.
Generalization to regular intervals

Definition

We say that an interval \([U, V] \subseteq \text{Bip}(X)\) is *regular* if for every \(x\) belonging to a nonunderlined block in \(U\) and to an underlined block in \(V\), the block containing \(x\) in \(U\) is equal to the block containing \(x\) in \(V\). Otherwise we call \([U, V]\) *irregular.*
The case $|X| = 2$
Generalization to regular intervals

Definition

We say that an interval \([U, V] \subseteq \text{Bip}(X)\) is *regular* if for every \(x\) belonging to a nonunderlined block in \(U\) and to an underlined block in \(V\), the block containing \(x\) in \(U\) is equal to the block containing \(x\) in \(V\). Otherwise we call \([U, V]\) *irregular*.

Proposition

Every regular interval \([U, V] \subseteq \text{Bip}(X)\) is isomorphic to a direct product of Boolean lattices and lattices of the form \(\text{Bip}(B)\), where each \(B\) is a block in the ordered bipartition representation of \(U\) and of \(V\) such that \(B\) is nonunderlined in \(U\) and underlined in \(B\).

Corollary

If \([U, V] \subseteq \text{Bip}\{1, 2, \ldots, n\}\) is regular, then \(\mu([U, V]) = (-1)^{\text{rk}(U) - \text{rk}(V)}\).
Generalization to regular intervals

Definition
We say that an interval $[U, V] \subseteq \text{Bip}(X)$ is regular if for every x belonging to a nonunderlined block in U and to an underlined block in V, the block containing x in U is equal to the block containing x in V. Otherwise we call $[U, V]$ irregular.

Proposition
Every regular interval $[U, V] \subseteq \text{Bip}(X)$ is isomorphic to a direct product of Boolean lattices and lattices of the form $\text{Bip}(B)$, where each B is a block in the ordered bipartition representation of U and of V such that B is nonunderlined in U and underlined in B.
Generalization to regular intervals

Definition

We say that an interval \([U, V] \subseteq \text{Bip}(X)\) is regular if for every \(x\) belonging to a nonunderlined block in \(U\) and to an underlined block in \(V\), the block containing \(x\) in \(U\) is equal to the block containing \(x\) in \(V\). Otherwise we call \([U, V]\) irregular.

Proposition

Every regular interval \([U, V] \subseteq \text{Bip}(X)\) is isomorphic to a direct product of Boolean lattices and lattices of the form \(\text{Bip}(B)\), where each \(B\) is a block in the ordered bipartition representation of \(U\) and of \(V\) such that \(B\) is nonunderlined in \(U\) and underlined in \(B\).

Corollary

If \([U, V] \subseteq \text{Bip}\{1, 2, \ldots, n\}\) is regular, then
\[
\mu([U, V]) = (-1)^{rk(U) - rk(V)}.
\]
Generalization to irregular intervals

Theorem
If $[U, V] \subseteq \text{Bip} (\{1, 2, \ldots, n\})$ is not regular, then the order complex $\Delta ([U, V] \setminus \{U, V\})$ is contractible.

Corollary
If $[U, V] \subseteq \text{Bip} (\{1, 2, \ldots, n\})$ is not regular, then $\mu ([U, V]) = 0$.

Gábor Hetyei and Christian Krattenthaler
Generalization to irregular intervals

Theorem

If \([U, V] \subseteq \text{Bip}\{1, 2, \ldots, n\}\) is not regular, then the order complex \(\Delta([U, V] \setminus \{U, V\})\) is contractible.
Generalization to irregular intervals

Theorem

If \([U, V] \subseteq \text{Bip}\{1, 2, \ldots, n\}\) is not regular, then the order complex \(\Delta([U, V] \setminus \{U, V\})\) is contractible.

Corollary

If \([U, V] \subseteq \text{Bip}\{1, 2, \ldots, n\}\) is not regular, then \(\mu([U, V]) = 0\).