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Prologue

The “birth” of the Borwein Conjecture

September 1993: Workshop on “Symbolic Computation in
Combinatorics”, Cornell University, USA (organised by Peter Paule
and Volker Strehl)

George Andrews gave a two-part lecture on “AXIOM and the
Borwein Conjecture”.
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Prologue

The “birth” of the Borwein Conjecture

What is the “Borwein Conjecture”?

Consider the product

(1− q)(1− q2)(1− q4)(1− q5) · · · (1− q3n−2)(1− q3n−1).

Then the sign pattern of the coefficients in the expansion of this
polynomial is +−−+−−+−− · · · .
Example. n = 3:

(1− q)(1− q2)(1− q4)(1− q5)(1− q7)(1− q8)

= 1− q − q2 + q3 − q4 + 2q6 − q7 − q8

+ 3q9 − q10 − q11 + 2q12 − 2q13 − 2q14 + 2q15 − q16 − q17

+ 3q18 − q19 − q20 + 2q21 − q23 + q24 − q25 − q26

+ q27
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Prologue

The “birth” of the Borwein Conjecture

More formally:

Let

(a; q)m :=
m−1∏
i=0

(1− aqi ).

Conjecture (Peter Borwein)

Let the polynomials An(q), Bn(q) and Cn(q) be defined by the
relationship

(q; q)3n

(q3; q3)n
= An(q3)− qBn(q3)− q2Cn(q3).

Then these polynomials have non-negative coefficients.
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Prologue

What did we know?

There is a nice trick which allows one to use the q-binomial
theorem in order to find elegant formulae for An(q), Bn(q), Cn(q):

(1− q)(1− q2)(1− q4)(1− q5) · · · (1− q3n−2)(1− q3n−1)

= (1− q)(1− q4) · · · (1− q3n−2) · (1− q2)(1− q5) · · · (1− q3n−1)

= (−1)nq(3n+1)n/2(1− q−3n+1) · · · (1− q−5)(1− q−2)

· (1− q)(1− q4) · · · (1− q3n−2)

= (−1)nq(3n+1)n/2 (q−3n+1; q3)2n.
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Prologue

What did we know?
We found

(1− q)(1− q2)(1− q4)(1− q5) · · · (1− q3n−2)(1− q3n−1)

= (−1)nq(3n+1)n/2 (q−3n+1; q3)2n.

Here we need the q-binomial theorem:

(z ; q)N = (1− z)(1− qz) · · · (1− qN−1z)

=
∑
k=0

(−1)kq(k2)
[
N
k

]
q

zk

Thus, we obtain

(1− q)(1− q2)(1− q4)(1− q5) · · · (1− q3n−2)(1− q3n−1)

=
n∑

j=−n
(−1)jq(3j+1)j/2

[
2n

n + j

]
q3

.
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Prologue

What did we know?

(1− q)(1− q2)(1− q4)(1− q5) · · · (1− q3n−2)(1− q3n−1)

=
n∑

j=−n
(−1)jq(3j+1)j/2

[
2n

n + j

]
q3

.

Since the q-binomial coefficient is on base q3, it is easy to separate
the terms with exponent ≡ s modulo 3, s = 0, 1, 2:

An(q) =
∞∑

j=−∞
(−1)jqj(9j+1)/2

[
2n

n + 3j

]
q

,

Bn(q) =
∞∑

j=−∞
(−1)jqj(9j−5)/2

[
2n

n + 3j − 1

]
q

,

Cn(q) =
∞∑

j=−∞
(−1)jqj(9j+7)/2

[
2n

n + 3j + 1

]
q

.
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Prologue

What did we know?

Compare with:

Theorem (Andrews, Baxter, Bressoud, Burge,
Forrester, Viennot)

Let K be a positive integer, and m, n, α, β be non-negative
integers, satisfying α + β < 2K and β − K ≤ n −m ≤ K − α.
Then the polynomial∑

j∈Z
(−1)jqjK

j(α+β)+α−β
2

[
m + n

n − Kj

]
q

is the generating function for partitions inside an m × n rectangle
that satisfy some so-called ”hook difference conditions” specified
by α, β and K .
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Prologue

What did we know?

In order to apply this theorem to the Borwein Conjecture, we have
to choose m = n, α = 5/3, β = 4/3 and K = 3.
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Prologue

What did we know?

In order to apply this theorem to the Borwein Conjecture, we have
to choose m = n, α = 5/3, β = 4/3 and K = 3.

Alas, α and β are not integers!

Many people have tried to adapt the (combinatorial) arguments of
Andrews et al. in order to cope with this situation, to no avail.
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Prologue

What did we know?

David Bressoud extended the mystery by making the following
much more general conjecture.

Conjecture (David Bressoud)

Let m and n be positive integers, α and β be positive rational
numbers, and K be a positive integer such that αK and βK are
integers. If 1 ≤ α + β ≤ 2K + 1 (with strict inequalities if K = 2)
and β − K ≤ n −m ≤ K − α, then the polynomial

∞∑
j=−∞

(−1)jqj(K(α+β)j+K(α−β))/2

[
m + n
m − Kj

]
has non-negative coefficients.
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Prologue

What did we know?

Moderate progress on this generalised conjecture has been made.
Alexander Berkovich and Ole Warnaar proved Bressoud’s
conjecture for several infinite families around 2005.
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Prologue

What did we know?

A partial result is:

Proposition (Andrews)

The power series A∞(q), B∞(q), C∞(q) have non-negative
coefficients. More precisely, we have

A∞(q) =
(q4, q5, q9; q9)∞

(q; q)∞
,

B∞(q) =
(q2, q7, q9; q9)∞

(q; q)∞
,

C∞(q) =
(q1, q8, q9; q9)∞

(q; q)∞
,

where we use the short notation

(a1, a2, . . . , ak ; q)∞ = (a1; q)∞(a2; q)∞ · · · (ak ; q)∞.
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Prologue

What did we know?

The proof uses Jacobi’s triple product identity
∞∑

k=−∞
(−1)kq(k2)zk = (q; q)∞ (z ; q)∞ (q/z ; q)∞,

a special case of which is Euler’s pentagonal number theorem

(q; q)∞ =
∞∑

k=−∞
(−1)kqk(3k−1)/2.

Namely, we have

(q; q)∞
(q3; q3)∞

=

∑∞
k=−∞(−1)kqk(3k−1)/2

(q3; q3)∞
.
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Prologue

What did we know?

Even more generally:

Theorem (Andrews, P. Borwein and Garvan)

For any prime number p, if

(q; q)∞
(qp; qp)∞

=
∞∑
j=0

cp(j)qj ,

then cp(j) and cp(j + p) have the same sign for all j .
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Preliminaries

November 2017: Chen Wang tells me that he wants to prove the
Borwein Conjecture.
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Preliminaries

His starting point is another set of formulae of Andrews:

Theorem (Andrews)

Let, as before,

(q; q)3n

(q3; q3)n
= An(q3)− qBn(q3)− q2Cn(q3).

Then

An(q) =

n/3∑
j=0

q3j2
(1− q2n)(q3; q3)n−j−1(q; q)3j

(q; q)n−3j(q3; q3)2j(q3; q3)j
,

Bn(q) =

(n−1)/3∑
j=0

q3j2+3j(1− q3j+2 + qn+1 − qn+3j+2)(q3; q3)n−j−1(q; q)3j

(q; q)n−3j−1(q3; q3)2j+1(q3; q3)j
,

Cn(q) =

(n−1)/3∑
j=0

q3j2+3j(1− q3j+1 + qn − qn+3j+2)(q3; q3)n−j−1(q; q)3j

(q; q)n−3j−1(q3; q3)2j+1(q3; q3)j
.
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Preliminaries

An(q) =

n/3∑
j=0

q3j2
(1− q2n)(q3; q3)n−j−1(q; q)3j

(q; q)n−3j(q3; q3)2j(q3; q3)j
.

Wang had experimentally observed that, in this sum, the term for
j = 0 gives the main contribution to the coefficients in the
polynomial, while the other terms contribute much less.

His idea hence was to estimate the contributions of the terms and
show — at least for large n — that indeed the first term
dominated the other terms.
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Preliminaries

An(q) =

n/3∑
j=0

q3j2
(1− q2n)(q3; q3)n−j−1(q; q)3j

(q; q)n−3j(q3; q3)2j(q3; q3)j
.

For comparison:

An(q) =
∞∑

j=−∞
(−1)jqj(9j+1)/2

[
2n

n + 3j

]
q

.

In this formula, the terms for which j is in a large range around 0
all contribute roughly the same. In other words, a large amount of
cancellation happens which makes estimations difficult.
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Preliminaries

Fact: It “suffices” to prove non-negativity of the coefficients of

Bn(q) =

(n−1)/3∑
j=0

q3j2+3j(1− q3j+2 + qn+1 − qn+3j+2)(q3; q3)n−j−1(q; q)3j

(q; q)n−3j−1(q3; q3)2j+1(q3; q3)j
.

Why?

Because of the symmetry of Borwein’s polynomial, we have

Cn(q) = qdeg BnBn(1/q).

We have

An(q) = (1 + q2n−1)An−1(q) + qn(Bn−1(q) + Cn−1(q)).
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Preliminaries

Further fact: The first n coefficients “are okay” (i.e., have the
predicted sign pattern)!

Why?

Recall that it is a theorem that the infinite product

(q; q)∞
(q3; q3)∞

has the sign pattern +−−+−− · · · .
What is the difference between this and Borwein’s polynomial?

(q; q)3n

(q3; q3)n
=

(q; q)∞
(q3; q3)∞

·(q
3n+3; q3)∞

(q3n+1; q)∞
=

(q; q)∞
(q3; q3)∞

·
(
1+O(q3n+1)

)
.

Consequently, the first 3n coefficients (and hence also the 3n
last coefficients) of the two polynomials agree!
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Preliminaries

Summary: It “suffices” to prove that

〈qm〉Bn(q)

is non-negative for n ≤ m ≤ n2 − 1− n.
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Start of the proof

The expression to be analysed:

Bn(q) =

(n−1)/3∑
j=0

q3j2+3j(1− q3j+2 + qn+1 − qn+3j+2)(q3; q3)n−j−1(q; q)3j

(q; q)n−3j−1(q3; q3)2j+1(q3; q3)j
.

Write

Bn(q) =

(n−1)/3∑
j=0

Bn,j(q).

The term
1− q3j+2 + qn+1 − qn+3j+2

in the above sum is somewhat troublesome. Therefore, we split the
summand Bn,j(q) into smaller pieces.
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En(q) :=

(n−1)/3∑
j=0

En,j(q).

Then we get

Bn(q) = q(1 + qn)Dn(q) + En(q).

Thus, we must show non-negativity of the coefficients of Dn(q)
and En(q).
For these two series, the same observation holds: the terms Dn,0(q)
and En,0(q) (seem to) give the respective main contributions, while
the terms Dn,j(q) and En,j(q) with j ≥ 1 contribute much less.
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Outline of the proof

How to do the estimations?
Cauchy’s formula:

〈qm〉Pn(q) =
1

2πi

∫
Γ
Pn(q)

dq

qm+1

=

(n−1)/3∑
j=0

1

2πi

∫
Γ
Pn,j(q)

dq

qm+1
,

where Pn(q) is either Dn(q) or En(q), and Pn,j(q) is either Dn,j(q)
or En,j(q).

We choose as contour Γ a circle of radius r , where r has to be
chosen so that it runs through the saddle point of Pn,j(q). After
substitution q = re iθ, we obtain

〈qm〉Pn(q) =

(n−1)/3∑
j=0

r−m

2π

∫ π

−π
Pn,j(re

iθ)e−miθ dθ.
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Modulus of D36,0(0.95e iθ) (blue), of D36,2(0.95e iθ) (purple, dashed), and of

D36,8(0.95e iθ) (red, dot-dashed). The vertical axis has a logarithmic scale.
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Outline of the proof

〈qm〉Pn(q) =

(n−1)/3∑
j=0

r−m

2π

∫ π

−π
Pn,j(re

iθ)e−miθ dθ.

We need to cut the summation range (j) and the integration
domain (θ) into pieces: to this end, we choose (appriate) cut-offs j0
and θ0. The following vocabulary “resonates” the strategy behind:

The term primary peak refers to the part where j = 0 and
|θ| ≤ θ0.
The term secondary peaks refers to the parts where 1 ≤ j ≤ j0
and |θ| ≤ θ0.
The term tails refers to the parts where 0 ≤ j ≤ j0 and
θ0 < |θ| ≤ π.
Finally, the term remainders refers to the parts where j > j0.
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Outline of the proof

〈qm〉Pn(q) =

(n−1)/3∑
j=0

r−m

2π

∫ π

−π
Pn,j(re

iθ)e−miθ dθ.

The cut-offs are chosen as follows:

θ0 =
1

3

1− r

1− rn
,

j0 = blog2 nc,
where r is the value of the saddle point given by the unique
solution to the saddle point equation

rP ′n,0(r)

Pn,0(r)
= m.
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Outline of the proof

〈qm〉Pn(q) =

(n−1)/3∑
j=0

r−m

2π

∫ π

−π
Pn,j(re

iθ)e−miθ dθ.

Lemma

For all P ∈ {D,E}, all integers n ≥ 1, and m ∈ (0, degPn), the
saddle point equation

d

dr

(
r−mPn,0(r)

)
= 0

has a unique solution r ∈ R+. Moreover, if n ≤ m ≤ (degPn)/2,
then we have r0 < r ≤ 1 where

r0 = e−
√
α/n,

and α = 2/
√

3 is the maximum value of the function x 7→ 1+2x
1+x+x2

on [0, 1].
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The primary peak is estimated by a Gaußian integral. A
relative error of ε0,P(n, r) occurs.
The secondary peaks, remainders, and tails are bounded
above by fractions of this Gaußian integral. The respective
fractions (relative errors) are ε1,P(n, r), ε2,P(n, r), and
ε3,P(n, r), respectively.

Wang “tweaks” his estimations so that, for n > 7000 and
n ≤ m ≤ n2/2, these relative errors can be bounded above by:

P ε0,P ≤ ε1,P ≤ ε2,P ≤ ε3,P ≤ Sum

D
0.544

0.197 0.237 0.004 0.982
E 0.046 0.266 0.008 0.864
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Outline of the proof

With the help of Manuel Kauers, the Borwein Conjecture has been
checked on a (larger) computer for n ≤ 7000. Thus:

Theorem (Chen Wang)

Let the polynomials An(q), Bn(q) and Cn(q) be defined by the
relationship

(q; q)3n

(q3; q3)n
= An(q3)− qBn(q3)− q2Cn(q3).

Then these polynomials have non-negative coefficients.
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Some of the nasty details

Lemma

Suppose that u, v ∈ R+. Then∫ 3
4
u
v

0
e−ux

2
(
evx

3 − 1
)
dx < 1.1× v

u2
.

Lemma

Suppose that u, v ∈ R+. Then∫ 3
4
√

2

√
u
v

0
e−ux

2
(
evx

4 − 1
)
dx <

1

3
√

3

v1/2

u3/2
.
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Some of the nasty details

Lemma

For all x ∈ [−1, 1] and all n ∈ Z+, we have

Tn(x) ≥ −n
2(1− x)(2x + 3) + 3(1 + x)

n2(1− x) + 3(1 + x)
,

where Tn(x) is the n-th Chebyshev polynomial of the first kind.

Lemma

Let a, b ∈ Z+ such that b ≥ 2, and r ∈ [0, 1]. Then we have

a+b−1∑
m=a

rm−a sin(mθ/2)2 ≥ 1

2

1− rb

1− r

1−

√√√√√1 + κ (1+rb)2

(1−rb)2 tan2 θ
2

1 + κ (1+r)2

(1−r)2 tan2 θ
2

 ,

where κ = (1−rb)(1−rb/3)

(1+rb)(1+rb/3)
.
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Epilogue

What else?

Actually, what is known as The Borwein Conjecture is just the first
of three conjectures.

Conjecture (First Borwein Conjecture)

Let the polynomials An(q), Bn(q) and Cn(q) be defined by the
relationship

(q; q)3n

(q3; q3)n
= An(q3)− qBn(q3)− q2Cn(q3).

Then these polynomials have non-negative coefficients.
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Conjecture (Second Borwein Conjecture)

Let the polynomials αn(q), βn(q) and γn(q) be defined by the
relationship

(q; q)2
3n

(q3; q3)2
n

= αn(q3)− qβn(q3)− q2γn(q3).
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Conjecture (Third Borwein Conjecture)

Let the polynomials νn(q), φn(q), χn(q), ψn(q) and ωn(q) be
defined by the relationship

(q; q)5n

(q5; q5)n
= νn(q5)− qφn(q5)− q2χn(q5)− q3ψn(q5)− q4ωn(q5),

Then these polynomials have non-negative coefficients.
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Then these polynomials have non-negative coefficients.
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Epilogue

This is not all!

Conjecture (Second Borwein Conjecture)

Let the polynomials αn(q), βn(q) and γn(q) be defined by the
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Epilogue

Can Wang’s ideas be used to prove also these conjectures?

Problem: There are no reasonable explicit formulae for the
coefficients αn(q), βn(q), etc. in these conjectures. In particular,
there is no analogue of Andrews’

Bn(q) =

(n−1)/3∑
j=0

q3j2+3j(1− q3j+2 + qn+1 − qn+3j+2)(q3; q3)n−j−1(q; q)3j

(q; q)n−3j−1(q3; q3)2j+1(q3; q3)j
.

Thus, there does not seem to be a starting point.
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Epilogue

Can Wang’s ideas be used to prove also these conjectures?

However: Why not apply Wang’s ideas directly to Borwein’s
polynomials?
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Modulus of (q; q)30/(q3; q3)10 at q = .95e iθ at logarithmic scale
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Epilogue

When Doron Zeilberger saw Chen Wang presenting his proof, his
reaction was:

“Great! However, I want a combinatorial proof.”

Is the Borwein Conjecture (and its variations) about Combinatorics
or Asymptotics?
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Epilogue

Is the Borwein Conjecture (and its variations) about Combinatorics
or Asymptotics?

Not so clear . . .

For example, it seems that the “Borwein polynomial”

(q; q)pn
(qp; qp)n

has the sign pattern + − · · ·−︸ ︷︷ ︸
p−1 times

for coefficients of qm in the

“middle range” pn ≤ m ≤
(p

2

)
n2 − pn for n large enough.

Gaurav Bhatnagar and Michael Schlosser made several conjectures
of “Borwein type” which are also “asymptotic” conjectures.
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