Non-intersecting Lattice Paths, Classical Group Characters, and Multivariate Hypergeometric Series

Richard Brent, Christian Krattenthaler and Ole Warnaar

Australian National University, Canberra; Universität Wien; University of Queensland, Brisbane

<ロ> <同> <同> < 同> < 同>

æ

Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths

< ∃ >

• Message of Ole Warnaar: "discrete Mehta-type integrals"

- Message of Ole Warnaar: "discrete Mehta-type integrals"
- Non-intersecting lattice paths

- Message of Ole Warnaar: "discrete Mehta-type integrals"
- Non-intersecting lattice paths
- Classical group characters

- Message of Ole Warnaar: "discrete Mehta-type integrals"
- Non-intersecting lattice paths
- Classical group characters
- Basic hypergeometric series

Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths

Together with Richard Brent, I have recently been looking at sums of the form

$$\sum_{k_1,\ldots,k_r\in\mathbb{Z}}\left|\prod_{1\leq i< j\leq r}(k_i^{\alpha}-k_j^{\alpha})\right|^{\gamma}\prod_{i=1}^r|k_i|^{\delta}\binom{2n}{n+k_i},$$

which we call "discrete Mehta-type integrals".

Together with Richard Brent, I have recently been looking at sums of the form

$$\sum_{k_1,\ldots,k_r\in\mathbb{Z}}\left|\prod_{1\leq i< j\leq r}(k_i^{\alpha}-k_j^{\alpha})\right|^{\gamma}\prod_{i=1}^r|k_i|^{\delta}\binom{2n}{n+k_i},$$

which we call "discrete Mehta-type integrals".

At least, for $\alpha, \gamma \in \{1, 2\}$ and small δ , we believe that these sums can be evaluated in closed form.

The Mehta integral

The Mehta integral

$$(2\pi)^{-r/2} \int_{\mathbb{R}^r} \left| \prod_{1 \le i < j \le r} (t_i - t_j) \right|^{\gamma} \prod_{i=1}^r e^{-t_i^2/2} dt_1 \cdots dt_r$$
$$= \prod_{i=1}^r \frac{\Gamma(1 + i\gamma/2)}{\Gamma(1 + \gamma/2)}.$$

Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths

.....

The Mehta integral

$$(2\pi)^{-r/2} \int_{\mathbb{R}^r} \left| \prod_{1 \le i < j \le r} (t_i - t_j) \right|^{\gamma} \prod_{i=1}^r e^{-t_i^2/2} dt_1 \cdots dt_r$$
$$= \prod_{i=1}^r \frac{\Gamma(1 + i\gamma/2)}{\Gamma(1 + \gamma/2)}.$$

$$\sum_{k_1,\dots,k_r \in \mathbb{Z}} \left| \prod_{1 \le i < j \le r} (k_i - k_j) \right|^{\gamma} \prod_{i=1}^r \binom{2n}{n+k_i} = ??$$

. ..

The Mehta integral

$$(2\pi)^{-r/2} \int_{\mathbb{R}^r} \left| \prod_{1 \le i < j \le r} (t_i - t_j) \right|^{\gamma} \prod_{i=1}^r e^{-t_i^2/2} dt_1 \cdots dt_r$$
$$= \prod_{i=1}^r \frac{\Gamma(1 + i\gamma/2)}{\Gamma(1 + \gamma/2)}.$$

"Discrete Mehta-type integrals"

$$\sum_{k_1,\ldots,k_r\in\mathbb{Z}}\left|\prod_{1\leq i< j\leq r} (k_i^{\alpha}-k_j^{\alpha})\right|^{\gamma} \prod_{i=1}^r |k_i|^{\delta} \binom{2n}{n+k_i} = ??$$

< ∃ >

Needless to tell you that the case $\alpha = 1$, $\gamma = 2$, $\delta = 0$ follows from specialising a rectangular Schur functions in two sets of variables.

Needless to tell you that the case $\alpha = 1$, $\gamma = 2$, $\delta = 0$ follows from specialising a rectangular Schur functions in two sets of variables.

Indeed,

$$\sum_{k_1,\dots,k_r \in \mathbb{Z}} \prod_{1 \le i < j \le r} (k_i - k_j)^2 \prod_{i=1}^r \binom{2n}{n+k_i} \binom{2m}{m+k_i} = \prod_{i=1}^r \binom{m+n}{i-1}^2 \binom{2n}{i-1} \binom{2m}{i-1} (2m+2n-i-r+2)! (i-1)!^5$$

can be proved in various ways, one of which is by the use of Schur functions, as I pointed out in a paper 15 years ago.

Needless to tell you that the case $\alpha = 1$, $\gamma = 2$, $\delta = 0$ follows from specialising a rectangular Schur functions in two sets of variables.

Indeed,

$$\sum_{k_1,\dots,k_r \in \mathbb{Z}} \prod_{1 \le i < j \le r} (k_i - k_j)^2 \prod_{i=1}^r \binom{2n}{n+k_i} \binom{2m}{m+k_i} = \prod_{i=1}^r \binom{m+n}{i-1}^2 \binom{2n}{i-1} \binom{2m}{i-1} (2m+2n-i-r+2)! (i-1)!^5$$

can be proved in various ways, one of which is by the use of Schur functions, as I pointed out in a paper 15 years ago.

Indeed,

$$\sum_{k_1,...,k_r \in \mathbb{Z}} \prod_{1 \le i < j \le r} (k_i - k_j)^2 \prod_{i=1}^r \binom{2n}{n+k_i} \binom{2m}{m+k_i} = \prod_{i=1}^r \binom{m+n}{i-1}^2 \binom{2n}{i-1} \binom{2m}{i-1} (2m+2n-i-r+2)! (i-1)!^5.$$

Indeed,

$$\sum_{k_1,\dots,k_r\in\mathbb{Z}}\prod_{1\leq i< j\leq r} (k_i-k_j)^2 \prod_{i=1}^r \binom{2n}{n+k_i} \binom{2m}{m+k_i} = \prod_{i=1}^r \binom{m+n}{i-1}^2 \binom{2n}{i-1} \binom{2m}{i-1} (2m+2n-i-r+2)! (i-1)!^5.$$

But, say,

$$\sum_{k_1,...,k_r \in \mathbb{Z}} \prod_{1 \le i < j \le r} (k_i^2 - k_j^2)^2 \prod_{i=1}^r |k_i| \binom{2n}{n+k_i} \binom{2m}{m+k_i} = ??$$

We shall be concerned with paths in the integer lattice consisting of up-steps (1, 1) and down-steps (1, -1).

We shall be concerned with paths in the integer lattice consisting of up-steps (1, 1) and down-steps (1, -1).

A family of lattice paths is called *non-intersecting* if no two paths in the family meet in a lattice point.

Theorem (Karlin–McGregor, Lindström, Gessel–Viennot, Fisher, John–Sachs, Gronau–Just–Schade–Scheffler–Wojciechowski)

Let G be an acyclic, directed graph, and let $A_1, A_2, ..., A_r$ and $E_1, E_2, ..., E_r$ be vertices in the graph with the property that, for i < j and k < l, any (directed) path from A_i to E_l intersects with any path from A_j to E_k . Then the number of families $(P_1, P_2, ..., P_r)$ of non-intersecting (directed) paths, where the *i*-th path P_i runs from A_i to E_i , i = 1, 2, ..., r, is given by

$$\det_{1\leq i,j\leq r}(|\mathcal{P}(A_j\to E_i)|),$$

where $\mathcal{P}(A \rightarrow E)$ denotes the set of paths from A to E.

Let $A_i = (0, 2(i - 1))$ and $E_i = (n, k_i)$, i = 1, 2, ..., r, with $k_i \equiv n \pmod{2}$. Then the number of families $(P_1, P_2, ..., P_r)$ of non-intersecting lattice paths, where P_i connects A_i with E_i , i = 1, 2, ..., r, is given by

$$\det_{1\leq i,j\leq r}\left(\binom{n}{j-1+\frac{1}{2}(n-k_i)}\right)$$

Let $A_i = (0, 2(i - 1))$ and $E_i = (n, k_i)$, i = 1, 2, ..., r, with $k_i \equiv n \pmod{2}$. Then the number of families $(P_1, P_2, ..., P_r)$ of non-intersecting lattice paths, where P_i connects A_i with E_i , i = 1, 2, ..., r, is given by

$$\begin{split} \det_{1 \le i,j \le r} \left(\binom{n}{j-1+\frac{1}{2}(n-k_i)} \right) \\ &= \frac{\prod_{1 \le i,j \le r} (\frac{1}{2}(k_j-k_i))}{\prod_{i=1}^r (\frac{1}{2}(m-k_i)+r-1)!} \frac{\prod_{i=1}^r (m+i-1)!}{\prod_{i=1}^r (\frac{1}{2}(m+k_i))!}. \end{split}$$

(ADC1, Theorem 26; hook-content formula in disguise)

We are ready to prove

$$\sum_{k_1,\dots,k_r\in\mathbb{Z}}\prod_{1\leq i< j\leq r} (k_i-k_j)^2 \prod_{i=1}^r \binom{2n}{n+k_i} \binom{2m}{m+k_i} = \prod_{i=1}^r \binom{m+n}{i-1}^2 \binom{2n}{i-1} \binom{2m}{i-1} (2m+2n-i-r+2)! (i-1)!^5,$$

and the proof consists in one picture!

-

If everything is worked out, then the previous picture does indeed prove

$$\sum_{k_1,...,k_r \in \mathbb{Z}} \prod_{1 \le i < j \le r} (k_i - k_j)^2 \prod_{i=1}^r \binom{2n}{n+k_i} \binom{2m}{m+k_i} = \prod_{i=1}^r \binom{m+n}{i-1}^2 \binom{2n}{i-1} \binom{2m}{i-1} (2m+2n-i-r+2)! (i-1)!^5.$$

If everything is worked out, then the previous picture does indeed prove

$$\sum_{k_1,\dots,k_r\in\mathbb{Z}}\prod_{1\leq i< j\leq r} (k_i-k_j)^2 \prod_{i=1}^r \binom{2n}{n+k_i} \binom{2m}{m+k_i} = \prod_{i=1}^r \binom{m+n}{i-1}^2 \binom{2n}{i-1} \binom{2m}{i-1} (2m+2n-i-r+2)! (i-1)!^5.$$

What about

$$\sum_{k_1,...,k_r \in \mathbb{Z}} \prod_{1 \le i < j \le r} (k_i^2 - k_j^2)^2 \prod_{i=1}^r |k_i|^2 \binom{2n}{n+k_i} \binom{2m}{m+k_i} = ??$$

What about

$$\sum_{k_1,\dots,k_r\in\mathbb{Z}}\prod_{1\leq i< j\leq r} (k_i^2-k_j^2)^2 \prod_{i=1}^r |k_i|^2 \binom{2n}{n+k_i} \binom{2m}{m+k_i} =??$$

Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths

What about

$$\sum_{k_1,...,k_r \in \mathbb{Z}} \prod_{1 \le i < j \le r} (k_i^2 - k_j^2)^2 \prod_{i=1}^r |k_i|^2 \binom{2n}{n+k_i} \binom{2m}{m+k_i} = ??$$

The above sum is equivalent to

$$2^{r} r! \sum_{0 \le k_{1} < \dots < k_{r}} \prod_{1 \le i < j \le r} (k_{i}^{2} - k_{j}^{2})^{2} \prod_{i=1}^{r} k_{i}^{2} {2n \choose n+k_{i}} {2m \choose m+k_{i}} = ??$$

What about

$$\sum_{k_1,...,k_r\in\mathbb{Z}}\prod_{1\leq i< j\leq r} (k_i^2 - k_j^2)^2 \prod_{i=1}^r |k_i|^2 \binom{2n}{n+k_i} \binom{2m}{m+k_i} = ??$$

The above sum is equivalent to

$$2^{r} r! \sum_{0 \le k_{1} < \dots < k_{r}} \prod_{1 \le i < j \le r} (k_{i}^{2} - k_{j}^{2})^{2} \prod_{i=1}^{r} k_{i}^{2} {2n \choose n+k_{i}} {2m \choose m+k_{i}} = ??$$

How can one generate

$$\prod_{1 \le i < j \le r} (k_i^2 - k_j^2)^2 \prod_{i=1}^r k_i^2 ?$$

What about

$$\sum_{k_1,...,k_r\in\mathbb{Z}}\prod_{1\leq i< j\leq r} (k_i^2 - k_j^2)^2 \prod_{i=1}^r |k_i|^2 \binom{2n}{n+k_i} \binom{2m}{m+k_i} = ??$$

The above sum is equivalent to

$$2^{r} r! \sum_{0 \le k_{1} < \dots < k_{r}} \prod_{1 \le i < j \le r} (k_{i}^{2} - k_{j}^{2})^{2} \prod_{i=1}^{r} k_{i}^{2} {2n \choose n+k_{i}} {2m \choose m+k_{i}} = ??$$

How can one generate

$$\prod_{1 \le i < j \le r} (k_i^2 - k_j^2) \prod_{i=1}^r k_i ?$$

How can one generate

$$\prod_{1 \le i < j \le r} (k_i^2 - k_j^2) \prod_{i=1}^r k_i = \prod_{1 \le i < j \le r} (k_i - k_j) (k_i + k_j) \prod_{i=1}^r k_i ?$$

How can one generate

$$\prod_{1 \le i < j \le r} (k_i^2 - k_j^2) \prod_{i=1}^r k_i = \prod_{1 \le i < j \le r} (k_i - k_j) (k_i + k_j) \prod_{i=1}^r k_i ?$$

By non-intersecting lattice paths again!
Let $A_i = (0, 2i - 1)$ and $E_i = (n, k_i - 1)$, i = 1, 2, ..., r, with $k_i \equiv n \pmod{2}$. Here, the non-intersecting lattice paths that we consider have the the additional property that paths never run below the x-axis.

Let $A_i = (0, 2i - 1)$ and $E_i = (n, k_i - 1)$, i = 1, 2, ..., r, with $k_i \equiv n \pmod{2}$. Here, the non-intersecting lattice paths that we consider have the the additional property that paths never run below the x-axis.

Let $A_i = (0, 2i - 1)$ and $E_i = (n, k_i - 1)$, i = 1, 2, ..., r, with $k_i \equiv n \pmod{2}$. Here, the non-intersecting lattice paths that we consider have the the additional property that paths never run below the x-axis.

By the main theorem on non-intersecting lattice paths, the number of families of these non-intersecting lattice paths is again given by a determinant. The individual entries are obtained by the reflection principle:

$$\det_{1\leq i,j\leq r}\left(\binom{n}{j+\frac{1}{2}(n-k_i)}-\binom{n}{-j+1+\frac{1}{2}(n-k_i)}\right).$$

And, once again, this determinant

$$\det_{1\leq i,j\leq r}\left(\binom{n}{j+\frac{1}{2}(n-k_i)}-\binom{n}{-j+1+\frac{1}{2}(n-k_i)}\right)$$

And, once again, this determinant can be evaluated:

$$\det_{1 \le i,j \le r} \left(\binom{n}{j + \frac{1}{2}(n - k_i)} - \binom{n}{-j + 1 + \frac{1}{2}(n - k_i)} \right)$$

$$= \prod_{1 \le i < j \le r} \left(\frac{1}{2}(k_j - k_i) \right) \left(\frac{1}{2}(k_j + k_i - 2) \right)$$

$$\times \prod_{i=1}^r \frac{(k_i - 1)(n + 2i - 2)!}{(\frac{1}{2}(n - k_i) + r)! (\frac{1}{2}(n + k_i) + r - 1)!}.$$

(ADC1, Theorem 30; dimension formula for irreducible representations of $Sp_{2n}(\mathbb{C})$ in disguise)

And, once again, this determinant can be evaluated:

$$\det_{1 \le i,j \le r} \left(\binom{n}{j + \frac{1}{2}(n - k_i)} - \binom{n}{-j + 1 + \frac{1}{2}(n - k_i)} \right)$$
$$= \prod_{1 \le i < j \le r} \left(\frac{1}{2}(k_j - k_i) \right) \left(\frac{1}{2}(k_j + k_i - 2) \right)$$
$$\times \prod_{i=1}^{r} \frac{(k_i - 1)(n + 2i - 2)!}{(\frac{1}{2}(n - k_i) + r)! (\frac{1}{2}(n + k_i) + r - 1)!}.$$

(ADC1, Theorem 30; dimension formula for irreducible representations of $Sp_{2n}(\mathbb{C})$ in disguise)

One can "smell" the type *B* Vandermonde product: one only needs to replace k_i by $2k_i + 1$ (which you need to take if *n* is odd).

Here is the one-picture proof of

$$\sum_{0 \le k_1 < \dots < k_r} \prod_{1 \le i < j \le r} (k_i^2 - k_j^2)^2 \prod_{i=1}^r k_i^2 \binom{2n}{n+k_i} \binom{2m}{m+k_i}$$
$$= 2^{(m+n)r-3\binom{r+1}{2}} \prod_{i=1}^r \frac{(2n)!}{(2n-2i+1)!} \frac{(2m)!}{(2m-2i+1)!} \cdot \frac{(2i-1)! (2m+2n-2i-2r+1)!!}{(m+n-i+1)!}.$$

э

э

There is a third scenario, where this idea works:

Let $A_i = (0, 2(i - 1))$ and $E_i = (n, k_i)$, i = 1, 2, ..., r, with $k_i \equiv n \pmod{2}$. Here, we consider families of non-intersecting lattice paths with the property that the family remains non-intersecting if any of the paths are reflected in the x-axis.

Let $A_i = (0, 2(i - 1))$ and $E_i = (n, k_i)$, i = 1, 2, ..., r, with $k_i \equiv n \pmod{2}$. Here, we consider families of non-intersecting lattice paths with the property that the family remains non-intersecting if any of the paths are reflected in the x-axis.

Let $A_i = (0, 2(i - 1))$ and $E_i = (n, k_i)$, i = 1, 2, ..., r, with $k_i \equiv n \pmod{2}$. Here, we consider families of non-intersecting lattice paths with the property that the family remains non-intersecting if any of the paths are reflected in the x-axis.

By a combination of the Lindström–Gessel–Viennot involution and path reflections, it can be shown that the number of the above families is given by the determinant

$$\frac{1}{2} \det_{1 \leq i,j \leq r} \left(\binom{m}{j-1+\frac{1}{2}(m-k_i)} + \binom{m}{-j+1+\frac{1}{2}(m-k_i)} \right),$$

which equals the closed form product

$$\prod_{1 \le i < j \le r} (\frac{1}{2}(k_j - k_i))(\frac{1}{2}(k_j + k_i)) \prod_{i=1}^r \frac{(m+2i-2)!}{(\frac{1}{2}(m-k_i) + r - 1)!(\frac{1}{2}(m+k_i) + r - 1)!}$$

(ADC1, Theorem 31; dimension formula for irreducible representations of $O_{2n}(\mathbb{C})$ in disguise)

Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths

Consequently, there is a one-picture proof of another identity, namely

$$\sum_{k_1,\dots,k_r\in\mathbb{Z}}\prod_{1\leq i< j\leq r} (k_i^2-k_j^2)^2 \prod_{i=1}^r \binom{2n}{n+k_i} \binom{2m}{m+k_i}$$
$$= r! 2^{(m+n+2)r-\binom{r}{2}} \prod_{i=1}^r \frac{(2n)!}{(2n-2i+2)!} \frac{(2m)!}{(2m-2i+2)!} \cdot \frac{(2i-2)! (2m+2n-2i-2r+3)!!}{(m+n-i+1)!}.$$

э

э

Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths

The classical group characters of interest here are:

- Schur functions $s_N(\lambda; \mathbf{x})$;
- symplectic characters sp_{2n}(λ; x^{±1});
- orthogonal characters $o_N(\lambda; \mathbf{x}^{\pm 1})$.

They are indexed by partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$, i.e., integer sequences with $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0$.

The sets of variables used here are

$$\mathbf{x} = (x_1, \dots, x_N)$$
$$\mathbf{x}^{\pm 1} = \begin{cases} (x_1, x_1^{-1}, \dots, x_n, x_n^{-1}), & \text{if } N = 2n, \\ (x_1, x_1^{-1}, \dots, x_n, x_n^{-1}, 1), & \text{if } N = 2n + 1. \end{cases}$$

Let $e_k(x_1, \ldots, x_N)$ denote the k-th elementary symmetric functions

$$e_k(x_1,\ldots,x_N) = \sum_{1\leq i_1<\cdots< i_k\leq N} x_{i_1}\cdots x_{i_k}.$$

Furthermore, let λ' denote the partition conjugate to λ .

Let $e_k(x_1,...,x_N)$ denote the k-th elementary symmetric functions

$$e_k(x_1,\ldots,x_N) = \sum_{1\leq i_1<\cdots< i_k\leq N} x_{i_1}\cdots x_{i_k}.$$

Furthermore, let λ' denote the partition conjugate to λ .

• Schur functions

$$s_{\mathcal{N}}(\lambda; \mathbf{x}) = \det_{1 \leq i,j \leq \lambda_1}(e_{\lambda'_i - i+j}(\mathbf{x})).$$

• symplectic characters

$$sp_{2n}(\lambda; \mathbf{x}) = \det_{1 \leq i,j \leq \lambda_1}(e_{\lambda'_i - i + j}(\mathbf{x}^{\pm 1}) - e_{\lambda'_i - i - j}(\mathbf{x}^{\pm 1})).$$

• orthogonal characters

$$o_{\mathsf{N}}(\lambda;\mathbf{x}) = \frac{1}{2} \det_{1 \leq i,j \leq \lambda_1} (e_{\lambda'_i - i+j}(\mathbf{x}^{\pm 1}) + e_{\lambda'_i - i-j+2}(\mathbf{x}^{\pm 1})).$$

Let $A_i = (0, 2(i - 1))$ and $E_i = (N, k_i)$, i = 1, 2, ..., r. The Schur function corresponding to these data is

$$s_N(\lambda; \mathbf{x}) = \sum_F w(F),$$

where *F* ranges over families of non-intersecting lattice paths which connect A_i to E_i , i = 1, 2, ..., r.

(*semistandard tableaux* in disguise)

Let $A_i = (0, 2(i - 1))$ and $E_i = (N, k_i)$, i = 1, 2, ..., r. The Schur function corresponding to these data is

$$s_N(\lambda; \mathbf{x}) = \sum_F w(F),$$

where *F* ranges over families of non-intersecting lattice paths which connect A_i to E_i , i = 1, 2, ..., r.

(*semistandard tableaux* in disguise)

Let $A_i = (0, 2(i - 1))$ and $E_i = (N, k_i)$, i = 1, 2, ..., r. The Schur function corresponding to these data is

$$s_N(\lambda; \mathbf{x}) = \sum_F w(F),$$

where *F* ranges over families of non-intersecting lattice paths which connect A_i to E_i , i = 1, 2, ..., r.

(*semistandard tableaux* in disguise)

Combinatorial interpretation of Schur functions

Combinatorial interpretation of Schur functions

$$\lambda' = (5, 4, 4, 2)$$

$$\lambda = (4, 4, 3, 3, 1)$$

$$\lambda_{i} = \#(\text{down-steps between } A_{i} \text{ and } E_{i})$$

$$w(F) = \prod_{i} x_{i}^{\#(\text{down-steps in "column } i^{"})}$$

$$w(F) = \prod_{i} x_{i}^{\#(\text{down-steps in "column } i^{"})}$$

Combinatorial interpretation of symplectic characters

Let $A_i = (0, 2i - 1)$ and $E_i = (2n, k_i - 1)$, i = 1, 2, ..., r. Here, the non-intersecting lattice paths that we consider have the the additional property that paths never run below the x-axis.

The symplectic character corresponding to these data is

$$sp_{2n}(\lambda;\mathbf{x}) = \sum_{F} w'(F),$$

where *F* ranges over the above families of non-intersecting lattice paths which connect A_i to E_i , i = 1, 2, ..., r.

(*King and El-Sharkaway's symplectic tableaux* in disguise)

Combinatorial interpretation of symplectic characters

Combinatorial interpretation of orthogonal characters

Let $A_i = (0, 2(i - 1))$ and $E_i = (N, k_i)$, i = 1, 2, ..., r. Here, we consider families of non-intersecting lattice paths with a technical additional property.

Richard Brent, Christian Krattenthaler and Ole Warnaar

Combinatorial interpretation of orthogonal characters

The orthogonal character corresponding to these data is

$$o_N(\lambda; \mathbf{x}) = \sum_F w'(F),$$

where F ranges over families of non-intersecting lattice paths which connect A_i to E_i , i = 1, 2, ..., r, and the weight w'(F) is the same as for symplectic characters.

(*Proctor's orthogonal tableaux* of the first kind in disguise)

Why do these combinatorial interpretations work?

For example, in the symplectic case,

Combinatorial interpretation of symplectic characters

Why do these combinatorial interpretations work?

For example, in the symplectic case, the (weighted) Lindström–Gessel–Viennot theorem implies that

$$\sum_{F} w'(F) = \det \left(\sum_{P:A_j \to E_i, \text{ pos.}} w'(P) \right).$$

So, we need to compute

$$\sum_{P:A\to E, \text{ pos.}} w'(P)$$

for given lattice points A and E.

Why do these combinatorial interpretations work?

So, we need to compute

$$\sum_{P:A\to E, \text{ pos.}} w'(P)$$

A modified reflection principle

So, we need to compute

$$\sum_{P:A\to E, \text{ pos.}} w'(P) = \mathsf{GF}(\text{all paths}) - \mathsf{GF}(\text{bad paths})$$

A modified reflection principle

So, we need to compute

 $\sum_{P:A\to E, \text{ pos.}} w'(P) = \mathsf{GF}(\text{all paths}) - \mathsf{GF}(\text{bad paths})$

A modified reflection principle

So, we need to compute

$$\sum_{P:A \to E, \text{ pos.}} w'(P) = e_{(n+a-e)/2}(\mathbf{x}^{\pm 1}) - \mathsf{GF}(\mathsf{bad paths})$$

So, we need to compute

$$\sum_{P:A \to E, \text{ pos.}} w'(P) = e_{(n+a-e)/2}(\mathbf{x}^{\pm 1}) - \mathsf{GF}(\mathsf{bad paths})$$

So, we need to compute

$$\sum_{P:A \to E, \text{ pos.}} w'(P) = e_{(n+a-e)/2}(\mathbf{x}^{\pm 1}) - \mathsf{GF}(\mathsf{bad paths})$$

So, we need to compute

$$\sum_{P:A \to E, \text{ pos.}} w'(P) = e_{(n+a-e)/2}(\mathbf{x}^{\pm 1}) - \mathsf{GF}(\mathsf{bad paths})$$

So, we need to compute

$$\sum_{P:A \to E, \text{ pos.}} w'(P) = e_{(n+a-e)/2}(\mathbf{x}^{\pm 1}) - e_{(n-a-e-2)/2}(\mathbf{x}^{\pm 1})$$

If the previous finding is substituted back in

$$\sum_{F} w'(F) = \det \left(\sum_{P:A_j \to E_i, \text{ pos.}} w'(P) \right),$$

we obtain

$$\sum_{F} w'(F) = \det_{1 \leq i,j \leq \lambda_1} (e_{\lambda'_i - i + j}(\mathbf{x}^{\pm 1}) - e_{\lambda'_i - i - j}(\mathbf{x}^{\pm 1})) = sp_{2n}(\lambda; \mathbf{x}).$$

Classical group characters

< ∃ →

Theorem

For all non-negative integers m and n with $m \leq n$, we have

$$\sum_{\lambda:\lambda_1\leq r} s_m(\lambda;\mathbf{x}) s_n((r^{n-m},\lambda);\mathbf{y}) = s_{m+n}((r^{m+n});\mathbf{x},\mathbf{y})$$

Theorem

For all non-negative integers m and n with $m \leq n$, we have

$$\sum_{\lambda:\lambda_1\leq r} \operatorname{sp}_{2m}\left(\lambda;\mathbf{x}^{\pm 1}\right) \operatorname{sp}_{2n}\left(\left(r^{n-m},\lambda\right);\mathbf{y}^{\pm 1}\right) = \operatorname{sp}_{2(m+n)}\left(\left(r^{m+n}\right);\mathbf{x}^{\pm 1},\mathbf{y}^{\pm 1}\right).$$

and

$$\sum_{\lambda:\lambda_1 \le r} sp_{2m+1} \left(\lambda; \mathbf{x}^{\pm 1}; z\right) sp_{2n+1} \left((r^{n-m}, \lambda); \mathbf{y}^{\pm 1}; z \right)$$
$$= z^r sp_{2(m+n+1)} \left((r^{m+n}); \mathbf{x}^{\pm 1}, \mathbf{y}^{\pm 1}, z^{\pm 1} \right).$$

The symplectic characters on the left-hand side are the "odd symplectic characters" of Proctor.

Theorem

For all non-negative integers m and n with $m \leq n$, we have

$$\sum_{\lambda:\lambda_1\leq r} o_{2m}\left(\lambda;\mathbf{x}^{\pm 1}\right) o_{2n}\left((r^{n-m},\lambda);\mathbf{y}^{\pm 1}\right) = o_{2(m+n)}\left((r^{m+n});\mathbf{x}^{\pm 1},\mathbf{y}^{\pm 1}\right).$$

and

$$\sum_{\lambda:\lambda_1 \le r} o_{2m+1} \left(\lambda; \mathbf{x}^{\pm 1}, 1\right) o_{2n+1} \left((r^{n-m}, \lambda); \mathbf{y}^{\pm 1}, 1 \right)$$
$$= o_{2(m+n+1)} \left((r^{m+n}); \mathbf{x}^{\pm 1}, \mathbf{y}^{\pm 1}, 1^{\pm 1} \right).$$

- ₹ 🖬 🕨

As a matter of fact, these identities had been found earlier by Soichi Okada, except for one, the identity

$$\sum_{\lambda:\lambda_{1}\leq r} sp_{2m+1} \left(\lambda; \mathbf{x}^{\pm 1}; z\right) sp_{2n+1} \left((r^{n-m}, \lambda); \mathbf{y}^{\pm 1}; z \right)$$
$$= z^{r} sp_{2(m+n+1)} \left((r^{m+n}); \mathbf{x}^{\pm 1}, \mathbf{y}^{\pm 1}, z^{\pm 1} \right)$$

for odd symplectic characters. He used heavy determinant calculations for proving his formulae.

q-analogues?

Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths

æ

Э

q-analogues?

Yes, for example,

$$\sum_{k_1,\dots,k_r\in\mathbb{Z}}\prod_{1\leq i< j\leq r} [k_j-k_i]_q^2 [k_i+k_j]_q^2 \prod_{i=1}^r q^{k_i^2-(2i-1)k_i} |[k_i]_{q^2}| {2n \choose n+k_i}_q {2m \choose m+k_i}$$
$$= r! \left(\frac{2}{1+q}\right)^r q^{-2\binom{r+1}{3}} \prod_{i=1}^r \frac{[2n]_q!}{[n-i+1]_q! [n-i]_q!} \frac{[2m]_q!}{[m-i+1]_q! [m-i]_q!} \frac{[2m]_q!}{[m-i+1]_q! [m-i]_q!} \cdot \frac{[i-1]_q!^2 [m+n-i-r+1]_q!}{[m+n-i+1]_q!},$$

where

$$[\alpha]_{q} = \frac{1 - q^{\alpha}}{1 - q},$$

$$[n]_{q}! = [n]_{q} [n - 1]_{q} \cdots [1]_{q},$$

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \frac{[n]_{q}!}{[k]_{q}! [n - k]_{q}!}.$$

Richard Brent, Christian Krattenthaler and Ole Warnaar

æ

Yes, also for those where the Vandermonde-type product is not squared, for example

$$\sum_{k_1,\dots,k_r\in\mathbb{Z}}\prod_{1\leq i< j\leq r} [k_j-k_i]_q [k_i+k_j]_q \prod_{i=1}^r q^{\binom{k_i-r+i}{2}} |[k_i]_q| \begin{bmatrix} 2n\\n+k_i \end{bmatrix}_q$$
$$= 2^r r! \prod_{i=1}^r (-q;\sqrt{q})_{2n-2i} \frac{(q^{3/2};q)_\infty (q^{2n-i+2};q)_\infty (q^{n-i+1};q)_\infty}{(q^i;q)_\infty (q^{2n+1};q)_\infty (q^{n-i+\frac{3}{2}};q)_\infty},$$

but . . .

æ