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2-divisibility of central binomial coefficients

We all know that

<2”) =0 (mod 2)
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We all know that

<2n> =0 (mod4) forn>2.
n
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2-divisibility of central binomial coefficients

We all know that

0 (mod?2) forn>1.

)

S 3

N———
Il

We all know that

<2nn> =0 (mod4) forn>3.
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2-divisibility of central binomial coefficients

We all know that

<2n) =0 (mod?2) forn>1.
n

We all know that not always

<2n> =0 (mod 4).

n

More precisely, the above holds if and only if n is not a power of 2.
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2-divisibility of central binomial coefficients

We all know that

<2n) =0 (mod?2) forn>1.
n

We all know that not always
2
<nn> =0 (mod 4).

More precisely, the above holds if and only if n is not a power of 2.
In particular, this implies that

N“L'lo%# {n <N: <2n”) =0 (mod 4)} = 1.
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2-divisibility of central binomial coefficients

How about

Jim %# {n <N: <2n”) =0 (mod 8)} =7
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2-divisibility of central binomial coefficients

How about

Jim %# {n <N: <2n”) =0 (mod 8)} =7

Tlo# {n <10: <2n”> =0 (mod 8)} =01

We have
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2-divisibility of central binomial coefficients

How about

1 2n
/\/Il—r;];oN#{n<N'<n)_O(mOd8)} !
We have

1 2
ki {n <50 : (:) =0 (mod 8)} —0.56
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2-divisibility of central binomial coefficients

How about

1 2n
/\/Il—r;];oN#{n<N'<n)_O(mOd8)} !
We have

1 2
TLd {n <100 : (n”> =0 (mod 8)} =071
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2-divisibility of central binomial coefficients

How about
im L dnen: (?") =0 (mod 8) } =7
m — : = =1
NI—>oo N n
We have

1 2n
— 1 : = d =0.944
1000#{n< 000 <n> 0 (mo 8)} 0
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2-divisibility of central binomial coefficients

How about

1 2n
/\/Il—r;];oN#{n<N'<n)_O(mOd8)} !
We have

2n
—_— 1 : = = 0.9896
10000# {n < 10000 < p > 0 (mod 8)} 0.989
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2-divisibility of central binomial coefficients

How about
im L dnen: (?") =0 (mod 8) } =7
m — : = =1
NI—>oo N n
We have

1 2n
—_— 1 : = = 0.9896
10000# {n < 10000 < n> 0 (mod 8)} 0.98

Apparently, again

lim 1#{,7 <N: <2n”) =0 (mod 8)} =1

N—oo N
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2-divisibility of central binomial coefficients

How about

1 2n
Nll_r)r;ON#{n<N.<n)_O(mod8)} !
We have

1 2n
—_— 1 : = = 0.9896
10000# {n < 10000 < n> 0 (mod 8)} 0.98

Apparently, again

Nllnoo%# {n <N: <2nn) =0 (mod 8)} =1

The same observation works modulo 16, modulo 32, etc.
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2-divisibility of Catalan numbers

We all (?) know that
1 2n
n = = d2
¢ n+1<n> 0 (mod2)
ifandonly if n £2¢ -1, e=0,1,2,....
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2-divisibility of Catalan numbers

We all (?) know that
1 /2n
n = = 2
C n+1<n> 0 (mod 2)

ifandonly if n £2¢ -1, e=0,1,2,....
In particular, this implies that

lim Ib#{n</v: ! <2n)=O(mod2)}:1.

N—oo
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2-divisibility of Catalan numbers

How about
1 1 2n
Nll_r:loN#{n<N. n+1<n> _O(mod4)} ‘
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2-divisibility of Catalan numbers

How about
1 1 2n
im — P— = d4)sy =7
N'l‘loN#{KN n+1<n> 0 (mo )}
We have

1 1 2n
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2-divisibility of Catalan numbers

How about
1 1 2n
im — P— = 4) 5 =7
Nll—r:qooN#{n<N n+1<n> 0 (mod )}
We have
1 1 2n
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2-divisibility of Catalan numbers

How about
1 1 2n
im — P— = d4)sy =7
N'l‘loN#{KN n+1<n> 0 (mo )}
We have
1 1 2n
— L = 4)» =0.72
100#{n<100 n—|—1<n> 0 (mod )} 0.7
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2-divisibility of Catalan numbers

How about
1 1 2n
im — P— = d4)sy =7
N'l‘loN#{KN n+1<n> 0 (mo )}
We have
1 1 2n
—_— S = 4) > =0.94
1000#{”<1OOO n+1<n> 0 (mod )} 0.945
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2-divisibility of Catalan numbers

How about
1 1 2n
im — : = d4)sy =7
N'l‘loN#{KN n+1<n> 0 (mo )}
We have

1 2n
—_— P — = mod 4) > = 0.
10000# {n < 10000 P} ( n> 0 (mod )} 0.9897
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2-divisibility of Catalan numbers

How about
1 1 2n
im — : = d4)sy =7
N'l‘loN#{KN n+1<n> 0 (mo )}
We have
1 1 2n
—_— 1 L = 4)» =0.
10000#{n< 0000 n+1<n> 0 (mod )} 0.9897

Apparently, again
1 1 2n
im — N : = dal =1
/\/ll—rgoN#{n< n—|—1<n> 0 (mo )} ’

and the same observation holds modulo 8, modulo 16, etc.
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5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2:
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5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2:

Here are the first few Catalan numbers:

1,1,2,5,14,42,132,429, 1430, 4862, 16796, 58786, 208012, 742900,
2674440,9694845, 35357670, 129644790, 477638700, 1767263190,
6564120420, 24466267020, 91482563640, 343059613650, 1289904147324,
4861946401452, 18367353072152,69533550916004, 263747951750360,

1002242216651368, 3814986502092304, 14544636039226909,
55534064877048198, 212336130412243110, 812944042149730764,
3116285494907301262, 11959798385860453492, 45950804324621742364,

176733862787006701400, 680425371729975800390, 2622127042276492108820,
10113918591637898134020, 39044429911904443959240,
150853479205085351660700, 583300119592996693088040,
2257117854077248073253720, 8740328711533173390046320,
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5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2:
We have

1 2n
— 1 : = d?2 = 0.702
10000#{n< 0000 <n> 0 (mo 5)} 0

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2:
We have

2n
1 : = d 25) p = 0.82612
100000#{n< 00000 <n> 0 (mo )}

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2:
We have

2n
1 : = d 25) p = 0.82612
100000#{n< 00000 <n> 0 (mo )}

More calculations indicate that

lim Ib#{n<N: 1 <2n>50(mod50‘)}:1,

N—s00 n+1\ n

for any a.
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p-divisibility of Catalan numbers

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



p-divisibility of Catalan numbers

In a series of preprints on the aryiv, Rob Burns investigated
divisibility properties of combinatorial numbers. In particular, using
an automata method of Eric Rowland and Reem Yassawi, he
proved that

lim 1#{n<N: ni1<2nn) =0 (mod p)}zl,

for any prime number p.

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



p-divisibility of Catalan numbers

In a series of preprints on the aryiv, Rob Burns investigated
divisibility properties of combinatorial numbers. In particular, using
an automata method of Eric Rowland and Reem Yassawi, he
proved that

lim 1#{n<N: 1 <2n)50(modp)}:1,

N—oo N n+1\n

for any prime number p.

Together with Michael Drmota, | decided to “do this properly”.
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p-divisibility of Catalan numbers

In a series of preprints on the aryiv, Rob Burns investigated
divisibility properties of combinatorial numbers. In particular, using
an automata method of Eric Rowland and Reem Yassawi, he
proved that

lim 1#{n<N: 1 <2n)50(modp)}:1,

N—oo N n+1\n

for any prime number p.

Together with Michael Drmota, | decided to “do this properly”.

— Prove the same result for any prime power.
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p-divisibility of Catalan numbers

In a series of preprints on the aryiv, Rob Burns investigated
divisibility properties of combinatorial numbers. In particular, using
an automata method of Eric Rowland and Reem Yassawi, he
proved that

lim 1#{n<N: 1 <2n)50(modp)}:1,

N—oo N n+1\n

for any prime number p.

Together with Michael Drmota, | decided to “do this properly”.

— Prove the same result for any prime power.
— Prove this kind of result for a large(r) class of sequences.
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How to “do this properly”
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How to “do this properly”

Let v, (V) denote the p-adic valuation of the integer N, which by
definition is the maximal exponent « such that p® divides N.

Legendre's formula for the p-adic valuation of factorials implies

b1 (n— sp(n)),
where s,(NV) denotes the p-ary sum-of-digits function

SP(N) = Z&TJ(N),

j>0

vp(n!) =

with €;(/N) denoting the j-th digit in the p-adic representation
of N.
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How to “do this properly”

Let v, (V) denote the p-adic valuation of the integer N, which by
definition is the maximal exponent « such that p® divides N.

Legendre's formula for the p-adic valuation of factorials implies

(n - sp(n)),

vp(n!) = p—1

where s,(NV) denotes the p-ary sum-of-digits function
SP(N) = Z&TJ(N),
Jj=0

with €;(/N) denoting the j-th digit in the p-adic representation
of N.

Hence, we have

o (1 (7)) = 5 2 Csolo) = so2m) = (o4 )
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How to “do this properly”

Hence, we have

Vi ( ! (2")) = %1(2sp(n) — 55(2n)) = vp(n +1).

n+1\n
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How to “do this properly”

Hence, we have

Vi ( ! (2")) = L (2s,(n) — 5,(2n)) — vp(n + 1),

n+1\n

We see that, in order to prove that v, (nJlrl (2nn)) “becomes large”
for most n (and the same for similar — “Catalan-like” —

sequences), we need sufficiently precise results on the distribution
of linear combinations of the form

c15q(A1n) + c2sq(A2n) + - - - + cg45q(Agn), n<N,
with real numbers ¢; and integers A; > 1,1 < j <d.
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How to “do this properly”

Hence, we have

Vi ( ! (2")) = L (2s,(n) — 5,(2n)) — vp(n + 1),

n+1\n

We see that, in order to prove that v, (nJlrl (2nn)) “becomes large”
for most n (and the same for similar — “Catalan-like” —

sequences), we need sufficiently precise results on the distribution
of linear combinations of the form

c15q(A1n) + c2sq(A2n) + - - - + cg45q(Agn), n<N,
with real numbers ¢; and integers A; > 1,1 < j <d.

Equivalently, we need sufficiently precise results on the distribution
of the vector

(sq(A1n), sq(A2n), ..., sq(Adgn)), n<N.
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The general divisibility result

Theorem

Let p be a given prime number, « a positive integer, P(n) a
polynomial in n with integer coefficients, and (Cj)i<i<r, (Dj)i<i<s,
(E,')lg,'gt, (F,')lg,'gt given integer sequences with C;, D; > 0 and
ptgcd(E;, ) foralli, > i_; Ci=>7_; Dj, and
{Ci:1<i<r}#{D;:1<i<s}. Ifall elements of the

sequence (S(n)) n>o defined by
P IT(Gn)!
S It ) )

are integers, then

Nllmoo —# {n < N:S5(n)=0 (mod p*)} = 1.
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The general divisibility result

Corollary

Let m be a positive integer, P(n) a polynomial in n with integer
coefficients, and (Ci)lgigr: (Di)1§i§5r (E,')lg,'gt, (F,')lg,'gt given
integer sequences with C;, D; > 0 and p t gcd(E;, F;) for all i and
primes p dividing m, Y i_; C; =Y :_; Dj, and
{Gi:1<i<r}#{D;j:1<i<s}. Ifall elements of the
sequence (S(n)) ., defined by

S(n) = P(n)  IIi_i(Gin)!
[T_ (Ein+ F) TT7=(Din)

are integers, then

Nlinoo %#{n < N:5(n)=0(mod m)} =1.

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



The general divisibility result

This theorem covers:
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The general divisibility result

This theorem covers:

(1) Binomial coefficients such as the central binomial coefficients
(2n"), or more generally ((SJ;I:)';) for positive integers a and b,
n

including variations such as (")), etc.
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The general divisibility result

This theorem covers:

(1) Binomial coefficients such as the central binomial coefficients

(2n”), or more generally ((SJ;’)”) for positive integers a and b,
2n

including variations such as (")), etc.

((artaz+---+as)n)!

(2) Multinomial coefficients such as (3rm (52m)(21)

T etc.
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The general divisibility result

This theorem covers:

(1) Binomial coefficients such as the central binomial coefficients
(2") or more generally ((3+:)”) for positive integers a and b,
including variations such as (nzl’l), etc.

aitaz+---+as)n |
((3(1I17)| (zzn) (a) I‘l))l ’ etc.

(3) FuB—Catalan numbers. These are defined by = ((’"H)”), where
m is a given positive integer.

(2) Multinomial coefficients such as
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The general divisibility result

This theorem covers:

(1) Binomial coefficients such as the central binomial coefficients
(2") or more generally ((3+:)”) for positive integers a and b,
including variations such as (nzl’l), etc.

aitaz+---+as)n |
((3(1I17)| (zzn) (a) I‘l))l ’ etc.

(3) FuB—Catalan numbers. These are defined by = ((’"H)”), where
m is a given positive integer.

(2) Multinomial coefficients such as

(4) Gessel's super ballot numbers (often also called super-Catalan
numbers) (2mE@m)L g5 hon-negative integers m, or for m = an
u nl'm! (m+n)! g g ! -

with a a positive integer.
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The general divisibility result

This theorem covers:

(1) Binomial coefficients such as the central binomial coefficients
(2") or more generally ((3+:)”) for positive integers a and b,
including variations such as (nzl’l), etc.

((ar+az+---+as)n)!
(a1n)! (az2n)!---(asn)!’

(3) FuB—Catalan numbers. These are defined by = ((’"H)”), where
m is a given positive integer.

(2) Multinomial coefficients such as etc.

(4) Gessel's super ballot numbers (often also called super-Catalan
numbers) (2mE@m)L g5 hon-negative integers m, or for m = an
u nl'm! (m+n)! g g ! -

with a a positive integer.

(5) Many counting sequences in tree and map enumeration such as

m+1 mn 2.37 2n 2 3n—1

n((m—1)n+2) (nfl)’ (n+2)(n+1) ( n )’ (3n—1)(3n—2) ( n )'
2 4n+1 1 2n\ (2n+2

(3n+1)(n+1) ( n )' 2(n+2)(n+1) ( n ) ( n+1 )
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The actual main result

Theorem (CENTRAL LIMIT THEOREM )

Let g > 2 be an integer, and let A1, Ao, ..., Ag be positive
integers. Then the vector

(sq(A1n), sq(A2n), ..., sq(Adgn)), 0<n<N,

satisfies a d-dimensional central limit theorem with asymptotic
mean vector ((q —1)/2,...,(q —1)/2) -log, N and asymptotic
covariance matrix ¥ - Iogq N, where ¥ is positive semi-definite.

If we further assume that q is prime and that the integers

A1, Ao, ..., Ay are not divisible by q, then ¥ is explicitly given by

- <(q2 - 1) gcd(AuAj)2> .
1<ij<d

12 AA;
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The actual main result

Theorem (CENTRAL LIMIT THEOREM )

Let g > 2 be an integer, and let A1, Ao, ..., Ag be positive
integers. Then the vector

(sq(A1n), sq(A2n), ..., sq(Adgn)), 0<n<N,

satisfies a d-dimensional central limit theorem with asymptotic
mean vector ((q —1)/2,...,(q —1)/2) -log, N and asymptotic
covariance matrix ¥ - Iogq N, where ¥ is positive semi-definite.

If we further assume that q is prime and that the integers

A1, Ao, ..., Ay are not divisible by q, then ¥ is explicitly given by

- <(q2 - 1) gcd(AuAj)2> .
1<ij<d

12 AA;
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The actual main result

Theorem (CENTRAL LIMIT THEOREM )

Let g > 2 be an integer, and let A1, Ao, ..., Ag be positive
integers. Then the vector

(sq(A1n), sq(A2n), ..., sq(Adgn)), 0<n<N,

satisfies a d-dimensional central limit theorem with asymptotic
mean vector ((q —1)/2,...,(q —1)/2) -log, N and asymptotic
covariance matrix ¥ - Iogq N, where ¥ is positive semi-definite.

If we further assume that q is prime and that the integers

A1, Ao, ..., Ay are not divisible by q, then ¥ is explicitly given by

- <(q2 - 1) gcd(AuAj)2> .
1<ij<d

12 AA;

For g = 2, this had been proved earlier by (Johannes) Schmid and
(Wolfgang) Schmidt, independently.
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The actual main result

What goes into the proof?
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The actual main result

What goes into the proof?

— One shows that f(n) = sq(An), with A a positive integer, is a
g-quasi-additive function, meaning that there exists r > 0 such
that

f(g"Ta+ b) = f(a) + f(b)  forall b < gk
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The actual main result

What goes into the proof?

— One shows that f(n) = sq(An), with A a positive integer, is a
g-quasi-additive function, meaning that there exists r > 0 such
that

f(g"Ta+ b) = f(a) + f(b)  forall b < gk

— Kropf and Wagner had shown that a g-quasi-additive function
f(n) of at most logarithmic growth satisfies a central limit theorem
of the form

%# {n < N:f(n) < plogy N+ ty/0? log, N} = o(t) + o(1),

where ®(t) denotes the distribution function of the standard
GauBian distribution, for appropriate constants . and 0. This
implies the claim about the limit law and its expectation.
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The actual main result

What goes into the proof?

— One shows that f(n) = sq(An), with A a positive integer, is a
g-quasi-additive function, meaning that there exists r > 0 such
that

f(g"Ta+ b) = f(a) + f(b)  forall b < gk

— Kropf and Wagner had shown that a g-quasi-additive function
f(n) of at most logarithmic growth satisfies a central limit theorem
of the form

%# {n < N:f(n) < plogy N+ ty/0? log, N} = o(t) + o(1),

where ®(t) denotes the distribution function of the standard
GauBian distribution, for appropriate constants . and 0. This
implies the claim about the limit law and its expectation.

— For the variance, one has to do a nasty calculation involving
exponential sums.
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Main ingredients of the proof of the divisibility result
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Main ingredients of the proof of the divisibility result

Theorem

Let p be a given prime number, « a positive integer, P(n) a
polynomial in n with integer coefficients, and (Cj)i<i<r, (Dj)i<i<s,
(E,')lg,'gt, (F,')lg,'gt given integer sequences with C;, D; > 0 and
ptgcd(E;, ) foralli, > i_; Ci=>7_; Dj, and
{Ci:1<i<r}#{D;:1<i<s}. Ifall elements of the

sequence (S(n)) n>o defined by
P IT(Gn)!
S It ) )

are integers, then

Nllmoo —# {n< N:5(n)=0 (mod p*)} =1.
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Main ingredients of the proof of the divisibility result

Here is our sequence:

P TG
Sn) := [Ti—1(Ein+ Fi) IT;=1(Din)t

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



Main ingredients of the proof of the divisibility result

Here is our sequence:

P TG
Sn) := [Ti—1(Ein+ F) ITi=(Din)t

We have to consider

vp(S(n)) = v (P(n)) = > vp(Ein+ Fi) + > vp((Gin)Y)
i=1 i=1
— > v ((Din)Y)
i=1
> = vp(Ein+ F) - — > " sp(Gin) + — > " sp(Din)
i=1 =1 i=1
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Main ingredients of the proof of the divisibility result

vo(S(n)) = = vp(Ein + Fi)

i=1

1 < 1 <
———) s, (Gn)+ ——= > sp(Din).
p—1 i=1 p—1 i=1
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Main ingredients of the proof of the divisibility result

t
vo(S(n)) = = vp(Ein + Fi)
i=1
—Lzr: (G )+Lis(o-n)
pflizlsp " pili:lp o

— It follows from an analysis of Bober (using Landau's criterion)
that, if S(n) is integral for all n, then r < s.

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



Main ingredients of the proof of the divisibility result

t

vo(S(n)) = = vp(Ein + Fi)

i=1
1 < 1 <
_ ﬁ Z sp(C,-n) + E ZSP(D,'I'I).
i=1 i=1

— It follows from an analysis of Bober (using Landau's criterion)
that, if S(n) is integral for all n, then r < s.

— One shows furthermore that, if v,(En+ B) is considered as a
random variable for n in the integer interval [0, N — 1], then

0, if p|E,
En(vp(En+ F)) = ) as N — oo,
(v ) {,,El+o(1), if ptE,
and
0, if E,
VarN(vp(En+F)):{ , ! P‘ as N — oo.

Pt o(1), ifptE
(P—1)2 ) p )
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Main ingredients of the proof of the divisibility result

VP(S(n)) > — Z vp(E,-n + F)

i=1

1 ¢ 1 g
e Zsp(Cin) + o1 Zsp(D;n).
i=1 i=1
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Main ingredients of the proof of the divisibility result

t

Vp(S(n)) > — Z vp(E,-n + F)

i=1
1 < 1 o
_ o1 Zsp(Cin) + o1 Zsp(D;n).
i=1 i=1

Let T(n) denote the right-hand side of the inequality. From the
previous considerations it follows that

En(T(n)) = Q(log,(N)), as N — oo

and
Vary(T(n)) = O(log,(N)), as N — oo
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Main ingredients of the proof of the divisibility result

t

Vp(S(n)) > — Z vp(E,-n + F)

i=1
1 < 1 o
_ o1 Zsp(Cin) + o1 Zsp(D;n).
i=1 i=1

Let T(n) denote the right-hand side of the inequality. From the
previous considerations it follows that

En(T(n)) = Q(log,(N)), as N — oo

and
Vary(T(n)) = O(log,(N)), as N — oo

Chebyshev's inequality
1
P(IX —E(X)|<e)>1- ?Var(X).

with ¢ = (Iogp(n))3/4 and X = T(n) then finishes the argument.
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The general divisibility result

Theorem

Let p be a given prime number, « a positive integer, P(n) a
polynomial in n with integer coefficients, and (Cj)i<i<r, (Dj)i<i<s,
(E,')lg,'gt, (F,')lg,'gt given integer sequences with C;, D; > 0 and
ptgcd(E;, ) foralli, > i_; Ci=>7_; Dj, and
{Ci:1<i<r}#{D;:1<i<s}. Ifall elements of the

sequence (S(n)) n>o defined by
P IT(Gn)!
S It ) )

are integers, then

Nllmoo —# {n < N:S5(n)=0 (mod p*)} = 1.
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