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2-divisibility of central binomial coefficients

We all know that(
2n

n

)
≡ 0 (mod 2)

for n ≥ 1.

We all know that(
2n

n

)
≡ 0 (mod 4) for n ≥ 2.
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We all know that(
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We all know that(
2n
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2-divisibility of central binomial coefficients

We all know that(
2n

n

)
≡ 0 (mod 2) for n ≥ 1.

We all know that not always(
2n

n

)
≡ 0 (mod 4).

More precisely, the above holds if and only if n is not a power of 2.

In particular, this implies that

lim
N→∞

1

N
#

{
n < N :

(
2n

n

)
≡ 0 (mod 4)

}
= 1.
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2-divisibility of central binomial coefficients

How about

lim
N→∞

1

N
#

{
n < N :

(
2n

n

)
≡ 0 (mod 8)

}
=?
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2-divisibility of central binomial coefficients

How about

lim
N→∞

1

N
#

{
n < N :

(
2n

n

)
≡ 0 (mod 8)

}
=?

We have

1

10
#

{
n < 10 :

(
2n

n

)
≡ 0 (mod 8)

}
= 0.1

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



2-divisibility of central binomial coefficients

How about

lim
N→∞

1

N
#

{
n < N :

(
2n

n

)
≡ 0 (mod 8)

}
=?

We have

1

50
#

{
n < 50 :

(
2n

n

)
≡ 0 (mod 8)

}
= 0.56
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2-divisibility of central binomial coefficients

How about

lim
N→∞

1

N
#

{
n < N :

(
2n

n

)
≡ 0 (mod 8)

}
=?

We have

1

100
#

{
n < 100 :

(
2n

n

)
≡ 0 (mod 8)

}
= 0.71
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2-divisibility of central binomial coefficients

How about

lim
N→∞

1

N
#

{
n < N :

(
2n

n

)
≡ 0 (mod 8)

}
=?

We have

1

1000
#

{
n < 1000 :

(
2n

n

)
≡ 0 (mod 8)

}
= 0.944

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



2-divisibility of central binomial coefficients

How about

lim
N→∞

1

N
#

{
n < N :

(
2n

n

)
≡ 0 (mod 8)

}
=?

We have

1

10000
#

{
n < 10000 :

(
2n

n

)
≡ 0 (mod 8)

}
= 0.9896
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2-divisibility of central binomial coefficients

How about

lim
N→∞

1

N
#

{
n < N :

(
2n

n

)
≡ 0 (mod 8)

}
=?

We have

1

10000
#

{
n < 10000 :

(
2n

n

)
≡ 0 (mod 8)

}
= 0.9896

Apparently, again

lim
N→∞

1

N
#

{
n < N :

(
2n

n

)
≡ 0 (mod 8)

}
= 1.

The same observation works modulo 16, modulo 32, etc.
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2-divisibility of Catalan numbers

We all (?) know that

Cn =
1

n + 1

(
2n

n

)
≡ 0 (mod 2)

if and only if n 6= 2e − 1, e = 0, 1, 2, . . . .

In particular, this implies that

lim
N→∞

1

N
#

{
n < N :

1

n + 1

(
2n

n

)
≡ 0 (mod 2)

}
= 1.
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2-divisibility of Catalan numbers

How about
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N→∞

1

N
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2-divisibility of Catalan numbers

How about
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2-divisibility of Catalan numbers

How about

lim
N→∞

1

N
#

{
n < N :

1

n + 1

(
2n

n

)
≡ 0 (mod 4)

}
=?

We have

1

50
#

{
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1
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(
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n
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≡ 0 (mod 4)

}
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2-divisibility of Catalan numbers

How about

lim
N→∞

1

N
#

{
n < N :

1

n + 1

(
2n

n

)
≡ 0 (mod 4)

}
=?

We have

1

100
#

{
n < 100 :

1

n + 1

(
2n

n

)
≡ 0 (mod 4)

}
= 0.72
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2-divisibility of Catalan numbers

How about

lim
N→∞

1

N
#
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1

n + 1
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2n

n
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2-divisibility of Catalan numbers

How about

lim
N→∞

1

N
#
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1
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n

)
≡ 0 (mod 4)

}
=?

We have

1

10000
#

{
n < 10000 :

1

n + 1

(
2n

n

)
≡ 0 (mod 4)

}
= 0.9897

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



2-divisibility of Catalan numbers

How about

lim
N→∞

1

N
#

{
n < N :

1

n + 1

(
2n

n

)
≡ 0 (mod 4)

}
=?

We have

1

10000
#

{
n < 10000 :

1

n + 1

(
2n

n

)
≡ 0 (mod 4)

}
= 0.9897

Apparently, again

lim
N→∞

1

N
#

{
n < N :

1

n + 1

(
2n

n

)
≡ 0 (mod 4)

}
= 1,

and the same observation holds modulo 8, modulo 16, etc.
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5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2:

Here are the first few Catalan numbers:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900,

2674440, 9694845, 35357670, 129644790, 477638700, 1767263190,

6564120420, 24466267020, 91482563640, 343059613650, 1289904147324,

4861946401452, 18367353072152, 69533550916004, 263747951750360,

1002242216651368, 3814986502092304, 14544636039226909,

55534064877048198, 212336130412243110, 812944042149730764,

3116285494907301262, 11959798385860453492, 45950804324621742364,

176733862787006701400, 680425371729975800390, 2622127042276492108820,

10113918591637898134020, 39044429911904443959240,

150853479205085351660700, 583300119592996693088040,

2257117854077248073253720, 8740328711533173390046320,

33868773757191046886429490, 131327898242169365477991900, . . .
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However, there is nothing special about the modulus 2:
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176733862787006701400, 680425371729975800390, 2622127042276492108820,

10113918591637898134020, 39044429911904443959240,
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5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2:

We have

1

10000
#

{
n < 10000 :

(
2n

n

)
≡ 0 (mod 25)

}
= 0.702
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5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2:

We have

1

100000
#

{
n < 100000 :

(
2n

n

)
≡ 0 (mod 25)

}
= 0.82612

More calculations indicate that

lim
N→∞

1

N
#

{
n < N :

1

n + 1

(
2n

n

)
≡ 0 (mod 5α)

}
= 1,

for any α.
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p-divisibility of Catalan numbers

In a series of preprints on the arχiv, Rob Burns investigated
divisibility properties of combinatorial numbers. In particular, using
an automata method of Eric Rowland and Reem Yassawi, he
proved that

lim
N→∞

1

N
#

{
n < N :

1

n + 1

(
2n

n

)
≡ 0 (mod p)

}
= 1,

for any prime number p.

Together with Michael Drmota, I decided to “do this properly”.

– Prove the same result for any prime power.
– Prove this kind of result for a large(r) class of sequences.
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How to “do this properly”

Let vp(N) denote the p-adic valuation of the integer N, which by
definition is the maximal exponent α such that pα divides N.

Legendre’s formula for the p-adic valuation of factorials implies

vp(n!) =
1

p − 1

(
n − sp(n)

)
,

where sp(N) denotes the p-ary sum-of-digits function

sp(N) =
∑
j≥0

εj(N),

with εj(N) denoting the j-th digit in the p-adic representation
of N.

Hence, we have

vp

(
1

n + 1

(
2n

n

))
=

1

p − 1

(
2sp(n)− sp(2n)

)
− vp(n + 1).
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How to “do this properly”

Hence, we have

vp

(
1

n + 1

(
2n

n

))
=

1

p − 1

(
2sp(n)− sp(2n)

)
− vp(n + 1).

We see that, in order to prove that vp
(

1
n+1

(2n
n

))
“becomes large”

for most n (and the same for similar — “Catalan-like” —
sequences), we need sufficiently precise results on the distribution
of linear combinations of the form

c1sq(A1n) + c2sq(A2n) + · · ·+ cdsq(Adn), n < N,

with real numbers cj and integers Aj ≥ 1, 1 ≤ j ≤ d .

Equivalently, we need sufficiently precise results on the distribution
of the vector

(sq(A1n), sq(A2n), . . . , sq(Adn)), n < N.
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How to “do this properly”
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The general divisibility result

Theorem

Let p be a given prime number, α a positive integer, P(n) a
polynomial in n with integer coefficients, and (Ci )1≤i≤r , (Di )1≤i≤s ,
(Ei )1≤i≤t , (Fi )1≤i≤t given integer sequences with Ci ,Di > 0 and
p - gcd(Ei ,Fi ) for all i ,

∑r
i=1 Ci =

∑s
i=1Di , and

{Ci : 1 ≤ i ≤ r} 6= {Di : 1 ≤ i ≤ s}. If all elements of the
sequence

(
S(n)

)
n≥0, defined by

S(n) :=
P(n)∏t

i=1(Ein + Fi )

∏r
i=1(Cin)!∏s
i=1(Din)!

,

are integers, then

lim
N→∞

1

N
# {n < N : S(n) ≡ 0 (mod pα)} = 1.
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The general divisibility result

Corollary

Let m be a positive integer, P(n) a polynomial in n with integer
coefficients, and (Ci )1≤i≤r , (Di )1≤i≤s , (Ei )1≤i≤t , (Fi )1≤i≤t given
integer sequences with Ci ,Di > 0 and p - gcd(Ei ,Fi ) for all i and
primes p dividing m,

∑r
i=1 Ci =

∑s
i=1Di , and

{Ci : 1 ≤ i ≤ r} 6= {Di : 1 ≤ i ≤ s}. If all elements of the
sequence

(
S(n)

)
n≥0, defined by

S(n) :=
P(n)∏t

i=1(Ein + Fi )

∏r
i=1(Cin)!∏s
i=1(Din)!

,

are integers, then

lim
N→∞

1

N
# {n < N : S(n) ≡ 0 (mod m)} = 1.
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The general divisibility result

This theorem covers:

(1) Binomial coefficients such as the central binomial coefficients(2n
n

)
, or more generally

((a+b)n
an

)
for positive integers a and b,

including variations such as
( 2n
n−1
)
, etc.

(2) Multinomial coefficients such as ((a1+a2+···+as)n)!
(a1n)! (a2n)!···(asn)! , etc.

(3) Fuß–Catalan numbers. These are defined by 1
n

((m+1)n
n−1

)
, where

m is a given positive integer.

(4) Gessel’s super ballot numbers (often also called super-Catalan

numbers) (2n)! (2m)!
n!m! (m+n)! for non-negative integers m, or for m = an

with a a positive integer.

(5) Many counting sequences in tree and map enumeration such as
m+1

n((m−1)n+2)

( mn
n−1
)
, 2·3n
(n+2)(n+1)

(2n
n

)
, 2
(3n−1)(3n−2)

(3n−1
n

)
,

2
(3n+1)(n+1)

(4n+1
n

)
, 1
2(n+2)(n+1)

(2n
n

)(2n+2
n+1

)
.
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The actual main result

Theorem (Central limit theorem)

Let q ≥ 2 be an integer, and let A1,A2, . . . ,Ad be positive
integers. Then the vector

(sq(A1n), sq(A2n), . . . , sq(Adn)), 0 ≤ n < N,

satisfies a d-dimensional central limit theorem with asymptotic
mean vector ((q − 1)/2, . . . , (q − 1)/2) · logq N and asymptotic
covariance matrix Σ · logq N, where Σ is positive semi-definite.
If we further assume that q is prime and that the integers
A1,A2, . . . ,Ad are not divisible by q, then Σ is explicitly given by

Σ =

(
(q2 − 1)

12

gcd(Ai ,Aj)
2

AiAj

)
1≤i ,j≤d

.

For q = 2, this had been proved earlier by (Johannes) Schmid and
(Wolfgang) Schmidt, independently.
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The actual main result

What goes into the proof?

– One shows that f (n) = sq(An), with A a positive integer, is a
q-quasi-additive function, meaning that there exists r ≥ 0 such
that

f (qk+ra + b) = f (a) + f (b) for all b < qk .

– Kropf and Wagner had shown that a q-quasi-additive function
f (n) of at most logarithmic growth satisfies a central limit theorem
of the form

1

N
#
{
n < N : f (n) ≤ µ logq N + t

√
σ2 logq N

}
= Φ(t) + o(1),

where Φ(t) denotes the distribution function of the standard
Gaußian distribution, for appropriate constants µ and σ2. This
implies the claim about the limit law and its expectation.

– For the variance, one has to do a nasty calculation involving
exponential sums.
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Main ingredients of the proof of the divisibility result

Theorem

Let p be a given prime number, α a positive integer, P(n) a
polynomial in n with integer coefficients, and (Ci )1≤i≤r , (Di )1≤i≤s ,
(Ei )1≤i≤t , (Fi )1≤i≤t given integer sequences with Ci ,Di > 0 and
p - gcd(Ei ,Fi ) for all i ,

∑r
i=1 Ci =

∑s
i=1Di , and

{Ci : 1 ≤ i ≤ r} 6= {Di : 1 ≤ i ≤ s}. If all elements of the
sequence

(
S(n)

)
n≥0, defined by

S(n) :=
P(n)∏t

i=1(Ein + Fi )

∏r
i=1(Cin)!∏s
i=1(Din)!

,

are integers, then

lim
N→∞

1

N
# {n < N : S(n) ≡ 0 (mod pα)} = 1.
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Main ingredients of the proof of the divisibility result

Here is our sequence:

S(n) :=
P(n)∏t

i=1(Ein + Fi )

∏r
i=1(Cin)!∏s
i=1(Din)!

.

We have to consider

vp
(
S(n)

)
= vp

(
P(n)

)
−

t∑
i=1

vp(Ein + Fi ) +
r∑

i=1

vp
(
(Cin)!

)
−

s∑
i=1

vp
(
(Din)!

)
≥ −

t∑
i=1

vp(Ein + Fi )−
1

p − 1

r∑
i=1

sp(Cin) +
1

p − 1

s∑
i=1

sp(Din).
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Main ingredients of the proof of the divisibility result

vp
(
S(n)

)
≥ −

t∑
i=1

vp(Ein + Fi )

− 1

p − 1

r∑
i=1

sp(Cin) +
1

p − 1

s∑
i=1

sp(Din).

– It follows from an analysis of Bober (using Landau’s criterion)
that, if S(n) is integral for all n, then r < s.

– One shows furthermore that, if vp(En + B) is considered as a
random variable for n in the integer interval [0,N − 1], then

EN

(
vp(En + F )

)
=

{
0, if p | E ,
1

p−1 + o(1), if p - E ,
as N →∞,

and

VarN
(
vp(En + F )

)
=

{
0, if p | E ,

p
(p−1)2 + o(1), if p - E ,

as N →∞.

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



Main ingredients of the proof of the divisibility result

vp
(
S(n)

)
≥ −

t∑
i=1

vp(Ein + Fi )

− 1

p − 1

r∑
i=1

sp(Cin) +
1

p − 1

s∑
i=1

sp(Din).

– It follows from an analysis of Bober (using Landau’s criterion)
that, if S(n) is integral for all n, then r < s.

– One shows furthermore that, if vp(En + B) is considered as a
random variable for n in the integer interval [0,N − 1], then

EN

(
vp(En + F )

)
=

{
0, if p | E ,
1

p−1 + o(1), if p - E ,
as N →∞,

and

VarN
(
vp(En + F )

)
=

{
0, if p | E ,

p
(p−1)2 + o(1), if p - E ,

as N →∞.

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences



Main ingredients of the proof of the divisibility result

vp
(
S(n)

)
≥ −

t∑
i=1

vp(Ein + Fi )

− 1

p − 1

r∑
i=1

sp(Cin) +
1

p − 1

s∑
i=1

sp(Din).

– It follows from an analysis of Bober (using Landau’s criterion)
that, if S(n) is integral for all n, then r < s.

– One shows furthermore that, if vp(En + B) is considered as a
random variable for n in the integer interval [0,N − 1], then

EN

(
vp(En + F )

)
=

{
0, if p | E ,
1

p−1 + o(1), if p - E ,
as N →∞,

and

VarN
(
vp(En + F )

)
=

{
0, if p | E ,

p
(p−1)2 + o(1), if p - E ,

as N →∞.

Michael Drmota and Christian Krattenthaler Divisibility of Catalan-like sequences
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vp
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t∑
i=1

vp(Ein + Fi )

− 1

p − 1

r∑
i=1

sp(Cin) +
1

p − 1

s∑
i=1

sp(Din).

Let T (n) denote the right-hand side of the inequality. From the
previous considerations it follows that

EN

(
T (n)

)
= Ω

(
logp(N)

)
, as N →∞

and
VarN

(
T (n)

)
= O

(
logp(N)

)
, as N →∞

Chebyshev’s inequality

P
(
|X − E(X )| < ε

)
> 1− 1

ε2
Var(X ).

with ε =
(

logp(n)
)3/4

and X = T (n) then finishes the argument.
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