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Science Fiction (Mihai Ciucu)

Let R be that region. Then

M(R)
?
= Mhs(R) ·Mvs(R),

where M(R) denotes the number of rhombus tilings of R .
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A small problem

For this region R , we have M(R) = 6× 6 = 36, Mhs(R) = 6, and
Mvs(R) = 4× 4 = 16. But,

36 6= 6× 16.
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It is true for the case without holes!
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Evidence?

It is true for the case without holes!

Actually, this is “trivial” and “well-known”.
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Evidence?













2m







n n

Once and for all, let us fix Hn,2m to be the hexagon with side
lengths n, n, 2m, n, n, 2m.
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Evidence?

MacMahon showed that (“plane partitions” in a given box)

M(Hn,2m) =
n∏

i=1

n∏

j=1

2m∏

k=1

i + j + k − 1

i + j + k − 2
.
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Evidence?

MacMahon showed that (“plane partitions” in a given box)

M(Hn,2m) =
n∏

i=1

n∏

j=1

2m∏

k=1

i + j + k − 1

i + j + k − 2
.

Proctor showed that (“transpose-complementary plane partitions”
in a given box)

Mhs(Hn,2m) =
∏

1≤i<j≤n

2m + 2n + 1− i − j

2n + 1− i − j
.
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Evidence?

MacMahon showed that (“plane partitions” in a given box)

M(Hn,2m) =
n∏

i=1

n∏

j=1

2m∏

k=1

i + j + k − 1

i + j + k − 2
.

Proctor showed that (“transpose-complementary plane partitions”
in a given box)

Mhs(Hn,2m) =
∏

1≤i<j≤n

2m + 2n + 1− i − j

2n + 1− i − j
.

Andrews showed that (“symmetric plane partitions” in a given box)

Mvs(Hn,2m) =

n∏

i=1

2m + 2i − 1

2i − 1

∏

1≤i<j≤n

2m + i + j − 1

i + j − 1
.
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By “factoring” Kasteleyn matrices ?
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How to prove such a thing?

By a bijection ?

By “factoring” Kasteleyn matrices ?

Maybe introducing weights helps in seeing what one can do ?
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Interlude: without holes

It is well-known that the number of rhombus tilings of the hexagon
Hn,2m is the same as the number of semistandard tableaux of
rectangular shape ((2m)n) with entries between 1 and 2n.
This observation connects M(Hn,2m) with Schur functions. Given a
partition λ = (λ1, . . . , λn), the Schur function sλ is given by

sλ(x1, . . . , xN) =
det1≤i ,j≤N

(

x
λj+N−j

i

)

det1≤i ,j≤N

(

xN−j
i

)

=
∑

T

N∏

i=1

x
#(occurrences of i in T )
i ,

where the sum is over all semistandard tableaux of shape λ with
entries between 1 and N.
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Interlude: without holes

Hence:
sλ(1, . . . , 1
︸ ︷︷ ︸

2n

) = M(Hn,2m).
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Interlude: without holes

Hence:
sλ(1, . . . , 1
︸ ︷︷ ︸

2n

) = M(Hn,2m).

So, let us consider the Schur function, when not all variables are
specialised to 1.

Mihai Ciucu and Christian Krattenthaler A factorisation theorem



Interlude: without holes

In[1]:= S[la List] := Module[{L = Length[la]},
Expand[Cancel[Det[Table[x[i]∧(la[[j]] + L - j),

{i, 1, L}, {j, 1, L}]]/ Det[Table[x[i]∧(L - j),

{i, 1, L}, {j, 1, L}]]]]]
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In[1]:= S[la List] := Module[{L = Length[la]},
Expand[Cancel[Det[Table[x[i]∧(la[[j]] + L - j),

{i, 1, L}, {j, 1, L}]]/ Det[Table[x[i]∧(L - j),

{i, 1, L}, {j, 1, L}]]]]]

In[2]:= Factor[S[{2,2,0,0}]]
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Interlude: without holes

In[1]:= S[la List] := Module[{L = Length[la]},
Expand[Cancel[Det[Table[x[i]∧(la[[j]] + L - j),

{i, 1, L}, {j, 1, L}]]/ Det[Table[x[i]∧(L - j),

{i, 1, L}, {j, 1, L}]]]]]

In[2]:= Factor[S[{2,2,0,0}]]
2 2 2 2

Out[2]= x[1] x[2] + x[1] x[2] x[3] + x[1] x[2] x[3] +

2 2 2 2 2
> x[1] x[3] + x[1] x[2] x[3] + x[2] x[3] +

2 2
> x[1] x[2] x[4] + x[1] x[2] x[4] +

2
> x[1] x[3] x[4] + 2 x[1] x[2] x[3] x[4] +

2 2 2
> x[2] x[3] x[4] + x[1] x[3] x[4] + x[2] x[3] x[4] +

2 2 2 2
> x[1] x[4] + x[1] x[2] x[4] + x[2] x[4] +

2 2 2 2
> x[1] x[3] x[4] + x[2] x[3] x[4] + x[3] x[4]
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Interlude: without holes

In[3]:= Factor[S[{2, 2, 0, 0}] /. x[3] -> 1/x[1] /.

x[4] -> 1/x[2]]
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Interlude: without holes

In[3]:= Factor[S[{2, 2, 0, 0}] /. x[3] -> 1/x[1] /.

x[4] -> 1/x[2]]

2
Out[3]= ((1 - x[1] + x[1] - x[2] + 2 x[1] x[2] -

2 2 2 2 2
> x[1] x[2] + x[2] - x[1] x[2] + x[1] x[2] )

2 2
> (1 + x[1] + x[1] + x[2] + 2 x[1] x[2] + x[1] x[2] +

2 2 2 2 2 2
> x[2] + x[1] x[2] + x[1] x[2] )) / (x[1] x[2] )
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Interlude: without holes

Computer experiments lead one to:

Theorem

For any non-negative integers m and n, we have

s((2m)n)(x1, x
−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n )

= (−1)mn so(mn)(x1, x2, . . . , xn) so(mn)(−x1,−x2, . . . ,−xn).

Here,

soλ(x1, x2, . . . , xN) =

det
1≤i ,j≤N

(x
λj+N−j+ 1

2
i − x

−(λj+N−j+ 1
2
)

i )

det
1≤i ,j≤N

(x
N−j+ 1

2
i − x

−(N−j+ 1
2
)

i )

is an irreducible character of SO2N+1(C).
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Interlude: without holes

The odd orthogonal character is “expected”, since all existing
proofs for the enumeration of symmetric plane partitions use — in
one form or another, directly or indirectly — the summation

so(mn)(x1, x2, . . . , xn) = (x1x2 · · · xn)
−m ·

∑

ν:ν1≤2m

sν(x1, . . . , xn),

and, in particular, one obtains

Mvs(Hn,2m) = so(mn)(1, . . . , 1
︸ ︷︷ ︸

n

).

Mihai Ciucu and Christian Krattenthaler A factorisation theorem



Interlude: without holes

However, the appearance of so(mn)(−x1,−x2, . . . ,−xn) is
“unwanted”. What one would actually like to see in place of this is
a symplectic character of rectangular shape, because this is what
goes into all proofs of the enumeration of
transpose-complementary plane partitions (in one form or another).

Nevertheless, by substituting xi = −qi−1 in the Weyl character
formula, both determinants can be evaluated in closed form, and
subsequently the limit q → 1 can be performed. The result is that,
indeed,

(−1)mn so(mn)(−1, . . . ,−1
︸ ︷︷ ︸

n

) = Mhs(Hn,2m).
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Interlude: without holes

Proof of the theorem. By the definition of the Schur function,
we have

s((2m)n)(x1, x
−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n )

=

det
1≤i ,j≤2n

(

x
2mχ(j≤n)+2n−j

i 1 ≤ i ≤ n

x
−(2mχ(j≤n)+2n−t)
i−n n + 1 ≤ i ≤ 2n

)

denominator
.

Now do a Laplace expansion with respect to the first n columns.
This leads to a huge sum.
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Interlude: without holes

For the odd orthogonal character(s), one also starts with the Weyl
character formula

soλ(x1, x2, . . . , xN) =

det
1≤i ,j≤N

(x
λj+N−j+ 1

2
i − x

−(λj+N−j+ 1
2
)

i )

denominator
.

Here, each entry in the determinant is a sum of two monomials.
We use linearity of the determinant in the rows to expand the
determinant. Also here, this leads to a huge sum.
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Interlude: without holes

In the end, one has to prove identities such as

∑

A⊆[2N]

|A|=N

V (A)V
(
A−1

)
V (Ac)V

(
(Ac)−1

)
R
(
A,A−1

)
R
(
Ac , (Ac )−1

)

=
∑

A⊆[2N]

V (A)V
(
A−1

)
V (Ac)V

(
(Ac)−1

)
R
(
A, (Ac)−1

)
R
(
Ac ,A−1

)
,

where Ac denotes the complement of A in [2N]. Here,

R
(
A,B−1

)
:=
∏

a∈A

∏

b∈B

(xa − x−1
b ), V (A) :=

∏

a,b∈A
a<b

(xa − xb),

and V
(
A−1

)
:=

∏

a,b∈A
a<b

(x−1
a − x−1

b
). Induction on N works to

provide a proof of the above identity.
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Half of Science Fiction is Reality

Ciucu’s Matchings Factorisation Theorem
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Half of Science Fiction is Reality

Ciucu’s Matchings Factorisation Theorem

Consider a symmetric bipartite graph G .

a b a b a b
1/2 1/2

G+

G−
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Half of Science Fiction is Reality

Ciucu’s Matchings Factorisation Theorem

Consider a symmetric bipartite graph G .

a b a b a b
1/2 1/2

G+

G−

Then

M(G ) = 2#(edges on symm. axis) ·M(G+) ·Mweighted(G
−).
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Half of Science Fiction is Reality

If we translate this to our situation:

R+

R−

we obtain

M(R) = 2#(rhombi on symm. axis) ·M(R+) ·Mweighted(R
−).
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Half of Science Fiction is Reality

If we translate this to our situation:

R+

R−

we obtain

M(R) = 2#(rhombi on symm. axis) ·M(R+) ·Mweighted(R
−).

We “want”
M(R)

?
= Mhs(R) ·Mvs(R).
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The “actual” problem

So, it “only” remains to prove

Mvs(R) = 2#(rhombi on symm. axis) ·Mweighted(R
−).
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The theorem

The hexagon with holes H15,10(2, 5, 7)
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The theorem

Theorem

For all positive integers n,m, l and non-negative integers
k1, k2, . . . kl with 0 < k1 < k2 < · · · < kl ≤ n/2, we have

M(Hn,2m(k1, k2, . . . , kl ))

= Mhs (Hn,2m(k1, k2, . . . , kl ))M
vs (Hn,2m(k1, k2, . . . , kl )) .
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Sketch of proof
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Sketch of proof

First step. Use non-intersecting lattice paths to get a determinant

for Mweighted

(

H−
n,2m(k1, k2, . . . , kl )

)

and a Pfaffian for

Mvs (Hn,2m(k1, k2, . . . , kl )).
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Sketch of proof

A tiling of H−
n,2m(k1, k2, . . . , kl )
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Sketch of proof

Theorem (Karlin–McGregor, Lindström, Gessel–Viennot, Fisher,
John–Sachs, Gronau–Just–Schade–Scheffler–Wojciechowski)

Let G be an acyclic, directed graph, and let A1,A2, . . . ,An and
E1,E2, . . . ,En be vertices in the graph with the property that, for
i < j and k < l , any (directed) path from Ai to El intersects with
any path from Aj to Ek . Then the number of families
(P1,P2, . . . ,Pn) of non-intersecting (directed) paths, where the
i -th path Pi runs from Ai to Ei , i = 1, 2, . . . , n, is given by

det
1≤i ,j≤n

(|P(Aj → Ei )|),

where P(A → E ) denotes the set of paths from A to E.
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Sketch of proof

By the Karlin–McGregor, Lindström, Gessel–Viennot, Fisher,
John–Sachs, Gronau–Just–Schade–Scheffler–Wojciechowski
Theorem on non-intersecting lattice paths, we obtain a
determinant.

Proposition

Mweighted

(

H−
n,2m(k1, k2, . . . , kl )

)

is given by det(N), where N is

the matrix with rows and columns indexed by
{1, 2, . . . ,m, 1+, 2+, . . . , l+}, and entries given by

Ni ,j =







( 2n
n+j−i

)
+
( 2n
n−i−j+1

)
, if 1 ≤ i , j ≤ m,

( 2n−2kt
n−kt−i+1

)
+
(2n−2kt
n−kt−i

)
, if 1 ≤ i ≤ m and j = t+,

( 2n−2kt
n−kt−j+1

)
+
(2n−2kt
n−kt−j

)
, if i = t+ and 1 ≤ j ≤ m ,

(2n−2kt−2kt̂
n−kt−kt̂

)
+
(2n−2kt−2kt̂
n−kt−kt̂−1

)
, if i = t+, j = t̂+,

and 1 ≤ t, t̂ ≤ l .
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Sketch of proof

The left half of a vertically symmetric tiling
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Sketch of proof

Theorem (Okada, Stembridge)

Let {u1, u2, . . . , up} and I = {I1, I2, . . . } be finite sets of lattice
points in the integer lattice Z

2, with p even. Let Sp be the
symmetric group on {1, 2, . . . , p}, set
uπ = (uπ(1), uπ(2), . . . , uπ(p)), and denote by Pnonint(uπ → I ) the
number of families (P1,P2, . . . ,Pp) of non-intersecting lattice
paths, with Pk running from uπ(k) to Ijk , k = 1, 2, . . . , p, for some
indices j1, j2, . . . , jp satisfying j1 < j2 < · · · < jp .
Then we have

∑

π∈Sp

(sgn π) · Pnonint(uπ → I ) = Pf(Q),

Mihai Ciucu and Christian Krattenthaler A factorisation theorem



Sketch of proof

with the matrix Q = (Qi ,j)1≤i ,j≤p given by

Qi ,j =
∑

1≤u<v

(
P(ui → Iu) · P(uj → Iv )−P(uj → Iu) · P(ui → Iv )

)
,

where P(A → E ) denotes the number of lattice paths from A to E.
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Sketch of proof

Proposition

Mvs (Hn,2m(k1, k2, . . . , kl )) is given by

(−1)(
l

2) Pf(M),

where M is the skew-symmetric matrix with rows and
columns indexed by

{−m + 1,−m + 2, . . . ,m, 1−, 2−, . . . , l−, 1+, 2+, . . . , l+},

and entries given by
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Sketch of proof

Mi ,j =







∑j−i
r=i−j+1

( 2n
n+r

)
, if −m + 1 ≤ i < j ≤ m,

∑−i
r=i+1

(2n−2kt
n−kt+r

)
, if −m + 1 ≤ i ≤ m and j = t−,

∑−i+1
r=i

(2n−2kt
n−kt+r

)
, if −m + 1 ≤ i ≤ m and j = t+,

0, if i = t−, j = t̂−, and 1 ≤ t < t̂ ≤ l ,
(2n−2kt−2kt̂

n−kt−kt̂

)

+
(2n−2kt−2kt̂
n−kt−kt̂+1

)
, if i = t−, j = t̂+, and 1 ≤ t, t̂ ≤ l ,

0, if i = t+, j = t̂+, and 1 ≤ t < t̂ ≤ l ,

where sums have to be interpreted according to

N−1∑

r=M

Expr(k) =







∑N−1
r=M Expr(k) N > M

0 N = M

−
∑M−1

k=N Expr(k) N < M.
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Sketch of proof

Second step.
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Sketch of proof

Second step.

Lemma

For a positive integer m and a non-negative integer l , let A be a
matrix of the form

A =

(
X Y

−Y t Z

)

,

where X = (xj−i )−m+1≤i ,j≤m and Z = (zi ,j)i ,j∈{1−,...,l−,1+,...,l+} are
skew-symmetric, and Y = (yi ,j)−m+1≤i≤m, j∈{1−,...,l−,1+,...,l+} is a
2m × 2l matrix. Suppose in addition that yi ,t− = −y−i ,t− and
yi ,t+ = −y−i+2,t+, for all i with −m + 1 ≤ i ≤ m for which both
sides of an equality are defined, and 1 ≤ t ≤ l , and that zi ,j = 0
for all i , j ∈ {1−, . . . , l−}. Then

Pf(A) = (−1)(
l

2) det(B),

Mihai Ciucu and Christian Krattenthaler A factorisation theorem



Sketch of proof

where

B =

(
X̄ Ȳ1

Ȳ2 Z̄

)

,

with

X̄ = (x̄i ,j)1≤i ,j≤m,

Ȳ1 = (y−i+1,j)1≤i≤m, j∈{1+,...,l+},

Ȳ2 = (−yi ,j)i∈{1−,...,l−}, 1≤j≤m,

Z̄ = (zi ,j)i∈{1−,...,l−}, j∈{1+,...,l+},

and the entries of X̄ are defined by

x̄i ,j = x|j−i |+1 + x|j−i |+3 + · · ·+ xi+j−1.
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Sketch of proof

By the lemma, the Pfaffian for Mvs (Hn,2m(k1, k2, . . . , kl )) can be
converted into a determinant, of the same size as the determinant

we obtained for Mweighted

(

H−
n,2m(k1, k2, . . . , kl )

)

.
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Sketch of proof

By the lemma, the Pfaffian for Mvs (Hn,2m(k1, k2, . . . , kl )) can be
converted into a determinant, of the same size as the determinant

we obtained for Mweighted

(

H−
n,2m(k1, k2, . . . , kl )

)

.

Third step. Alas, it is not the same determinant.
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Sketch of proof

By the lemma, the Pfaffian for Mvs (Hn,2m(k1, k2, . . . , kl )) can be
converted into a determinant, of the same size as the determinant

we obtained for Mweighted

(

H−
n,2m(k1, k2, . . . , kl )

)

.

Third step. Alas, it is not the same determinant. However,
further row and column operations do indeed convert one
determinant into the other.
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Postlude
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Postlude

A theorem has been proved.
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Can this be the utmost/correct generality for this factorisation
phenomenon? I do not know.

Is this a theorem without applications?
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Is the proof illuminating? No.

Do we understand this factorisation? No.

Can this be the utmost/correct generality for this factorisation
phenomenon? I do not know.

Is this a theorem without applications? No.

Is this the end?
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A theorem has been proved.

Is the proof illuminating? No.

Do we understand this factorisation? No.

Can this be the utmost/correct generality for this factorisation
phenomenon? I do not know.

Is this a theorem without applications? No.

Is this the end? Yes.
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