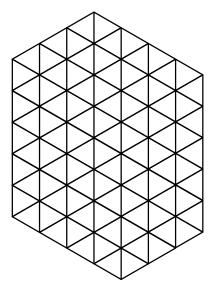
A factorisation theorem for the number of rhombus tilings of a hexagon with triangular holes

Mihai Ciucu and Christian Krattenthaler

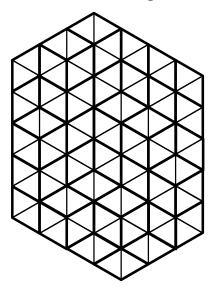
Indiana University; Universität Wien

Rhombus tilings



æ

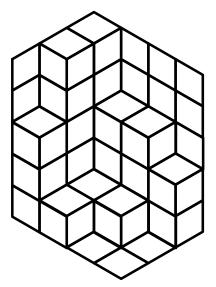
Rhombus tilings

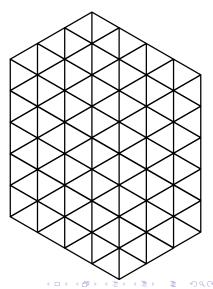


| ◆ @ ▶ | ◆ 理 ▶ | ◆ 理 ▶

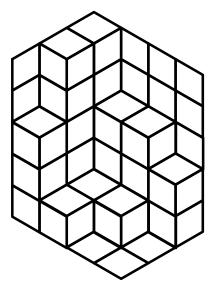
æ

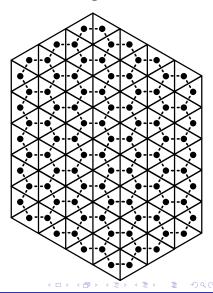
Rhombus tilings



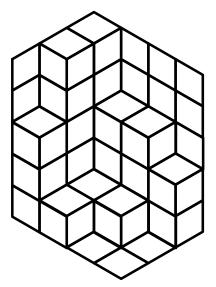


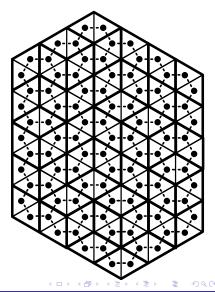
Rhombus tilings



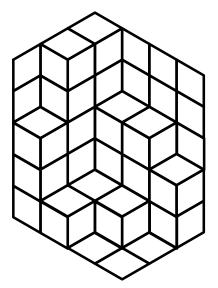


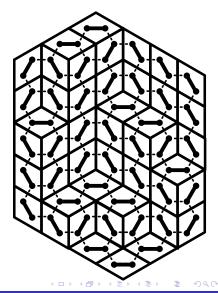
Rhombus tilings



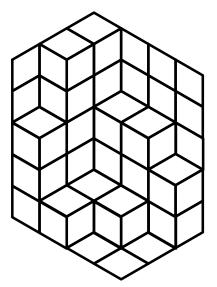


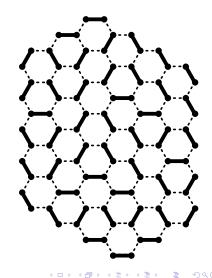
Rhombus tilings

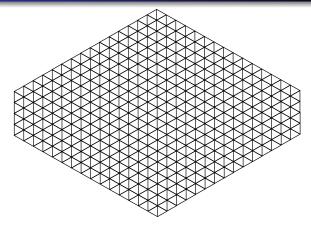




Rhombus tilings

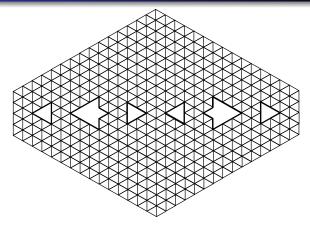




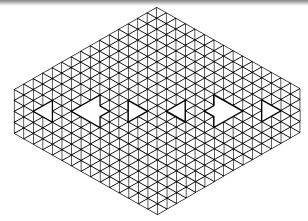


御 と く ヨ と く

-



白 ト ・ ヨ ト ・

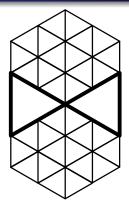


Let R be that region. Then

$$\mathsf{M}(R) \stackrel{?}{=} \mathsf{M}^{hs}(R) \cdot \mathsf{M}^{vs}(R),$$

where M(R) denotes the number of rhombus tilings of R.

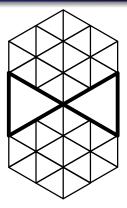
A small problem



æ

@ ▶ < ≣

A small problem



For this region R, we have $M(R) = 6 \times 6 = 36$, $M^{hs}(R) = 6$, and $M^{vs}(R) = 4 \times 4 = 16$. But,

 $36 \neq 6 \times 16.$

Evidence?

Mihai Ciucu and Christian Krattenthaler A factorisation theorem

æ

_ ∢ ≣

@ ▶ ∢ ≣

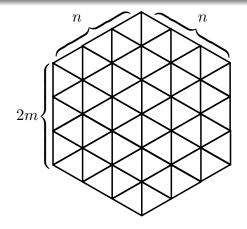
It is true for the case without holes!

э

It is true for the case without holes!

Actually, this is "trivial" and "well-known".

Evidence?



Once and for all, let us fix $H_{n,2m}$ to be the hexagon with side lengths n, n, 2m, n, n, 2m.

MacMahon showed that ("plane partitions" in a given box)

$$M(H_{n,2m}) = \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{k=1}^{2m} \frac{i+j+k-1}{i+j+k-2}.$$

э

⊡ ▶ ∢ ≣ ▶

MacMahon showed that ("plane partitions" in a given box)

$$\mathsf{M}(H_{n,2m}) = \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{k=1}^{2m} \frac{i+j+k-1}{i+j+k-2}.$$

Proctor showed that ("transpose-complementary plane partitions" in a given box)

$$\mathsf{M}^{hs}(H_{n,2m}) = \prod_{1 \le i < j \le n} \frac{2m + 2n + 1 - i - j}{2n + 1 - i - j}$$

MacMahon showed that ("plane partitions" in a given box)

$$\mathsf{M}(H_{n,2m}) = \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{k=1}^{2m} \frac{i+j+k-1}{i+j+k-2}.$$

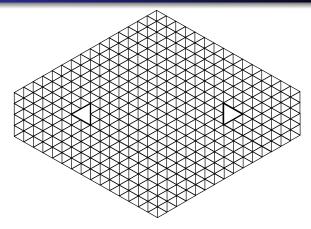
Proctor showed that ("transpose-complementary plane partitions" in a given box)

$$\mathsf{M}^{hs}(H_{n,2m}) = \prod_{1 \le i < j \le n} \frac{2m + 2n + 1 - i - j}{2n + 1 - i - j}$$

Andrews showed that ("symmetric plane partitions" in a given box)

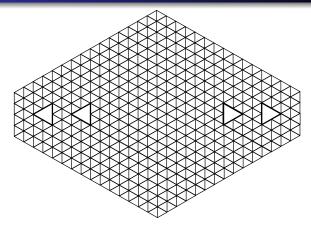
$$\mathsf{M}^{vs}(H_{n,2m}) = \prod_{i=1}^{n} \frac{2m+2i-1}{2i-1} \prod_{1 \le i < j \le n} \frac{2m+i+j-1}{i+j-1}.$$

Evidence?



æ

Evidence?



æ

Mihai Ciucu and Christian Krattenthaler A factorisation theorem

• By a bijection ?

- By a bijection ?
- By "factoring" Kasteleyn matrices ?

- By a bijection ?
- By "factoring" Kasteleyn matrices ?

Maybe introducing weights helps in seeing what one can do ?

It is well-known that the number of rhombus tilings of the hexagon $H_{n,2m}$ is the same as the number of semistandard tableaux of rectangular shape $((2m)^n)$ with entries between 1 and 2n. This observation connects $M(H_{n,2m})$ with Schur functions. Given a partition $\lambda = (\lambda_1, \ldots, \lambda_n)$, the Schur function s_{λ} is given by

$$egin{aligned} s_\lambda(x_1,\ldots,x_N) &= rac{\det_{1\leq i,j\leq N}\left(x_i^{\lambda_j+N-j}
ight)}{\det_{1\leq i,j\leq N}\left(x_i^{N-j}
ight)} \ &= \sum_T \prod_{i=1}^N x_i^{\#(ext{occurrences of }i ext{ in }T)}, \end{aligned}$$

where the sum is over all semistandard tableaux of shape λ with entries between 1 and N.

Hence:

$$s_{\lambda}(\underbrace{1,\ldots,1}_{2n}) = \mathsf{M}(H_{n,2m}).$$

æ

Hence:

$$s_{\lambda}(\underbrace{1,\ldots,1}_{2n}) = \mathsf{M}(H_{n,2m}).$$

So, let us consider the Schur function, when not all variables are specialised to $1\!\!.$

In[1]:= S[la_List] := Module[{L = Length[la]}, Expand[Cancel[Det[Table[x[i]^(la[[j]] + L - j), {i, 1, L}, {j, 1, L}]]/ Det[Table[x[i]^(L - j), {i, 1, L}, {j, 1, L}]]]]

In[1]:= S[la_List] := Module[{L = Length[la]},
 Expand[Cancel[Det[Table[x[i]^(la[[j]] + L - j),
 {i, 1, L}, {j, 1, L}]]/ Det[Table[x[i]^(L - j),
 {i, 1, L}, {j, 1, L}]]]]

In[2]:= Factor[S[{2,2,0,0}]]

In[1]:= S[la_List] := Module[{L = Length[la]}, Expand[Cancel[Det[Table[x[i]^(la[[j]] + L - j), {i, 1, L}, {j, 1, L}]]/ Det[Table[x[i]^(L - j), {i, 1, L}, {j, 1, L}]]]] In[2]:= Factor[S[{2,2,0,0}]] $\begin{array}{c} 2 & 2 & 2 \\ \text{Out}[2] = x[1] & x[2] & + x[1] & x[2] & x[3] & + x[1] & x[2] & x[3] & + \end{array}$ > $x[1]^{2}x[3]^{2} + x[1]x[2]x[3]^{2} + x[2]^{2}x[3]^{2} +$ > $x[1]^{2}x[2]x[4] + x[1]x[2]^{2}x[4] +$ > x[1] x[3] x[4] + 2 x[1] x[2] x[3] x[4] +> $x[2]^{2}x[3]x[4] + x[1]x[3]^{2}x[4] + x[2]x[3]^{2}x[4] +$ > x[1] x[4] + x[1] x[2] x[4] + x[2] x[4] +> x[1] x[3] x[4] + x[2] x[3] x[4] + x[3]

3

向 ト く ヨ ト く ヨ ト

$$\begin{aligned} & \text{Out}[3] = ((1 - x[1] + x[1]^2 - x[2] + 2 x[1] x[2] - \\ &> x[1]^2 x[2] + x[2]^2 - x[1] x[2]^2 + x[1]^2 x[2]^2) \\ &> (1 + x[1] + x[1]^2 + x[2] + 2 x[1] x[2] + x[1]^2 x[2] + \\ &> x[2]^2 + x[1] x[2]^2 + x[1]^2 x[2]^2)) / (x[1]^2 x[2]^2) \end{aligned}$$

3

向 ト く ヨ ト く ヨ ト

Computer experiments lead one to:

Theorem

For any non-negative integers m and n, we have

$$s_{((2m)^n)}(x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_n, x_n^{-1}) = (-1)^{mn} so_{(m^n)}(x_1, x_2, \dots, x_n) so_{(m^n)}(-x_1, -x_2, \dots, -x_n).$$

Here,

$$so_{\lambda}(x_{1}, x_{2}, \dots, x_{N}) = \frac{\det_{1 \le i, j \le N} (x_{i}^{\lambda_{j}+N-j+\frac{1}{2}} - x_{i}^{-(\lambda_{j}+N-j+\frac{1}{2})})}{\det_{1 \le i, j \le N} (x_{i}^{N-j+\frac{1}{2}} - x_{i}^{-(N-j+\frac{1}{2})})}$$

is an irreducible character of $SO_{2N+1}(\mathbb{C})$.

The odd orthogonal character is "expected", since all existing proofs for the enumeration of symmetric plane partitions use — in one form or another, directly or indirectly — the summation

$$so_{(m^n)}(x_1, x_2, \ldots, x_n) = (x_1 x_2 \cdots x_n)^{-m} \cdot \sum_{\nu: \nu_1 \leq 2m} s_{\nu}(x_1, \ldots, x_n),$$

and, in particular, one obtains

$$\mathsf{M}^{\mathsf{vs}}(H_{n,2m}) = \mathsf{so}_{(m^n)}(\underbrace{1,\ldots,1}_n).$$

However, the appearance of $so_{(m^n)}(-x_1, -x_2, \ldots, -x_n)$ is "unwanted". What one would actually like to see in place of this is a *symplectic character* of rectangular shape, because this is what goes into all proofs of the enumeration of transpose-complementary plane partitions (in one form or another).

Nevertheless, by substituting $x_i = -q^{i-1}$ in the Weyl character formula, both determinants can be evaluated in closed form, and subsequently the limit $q \rightarrow 1$ can be performed. The result is that, indeed,

$$(-1)^{mn} \operatorname{so}_{(m^n)}(\underbrace{-1,\ldots,-1}_{n}) = \mathsf{M}^{hs}(H_{n,2m}).$$

Proof of the theorem. By the definition of the Schur function, we have

$$s_{((2m)^{n})}(x_{1}, x_{1}^{-1}, x_{2}, x_{2}^{-1}, \dots, x_{n}, x_{n}^{-1}) = \frac{\det_{1 \le i, j \le 2n} \begin{pmatrix} x_{i}^{2m\chi(j \le n) + 2n - j} & 1 \le i \le n \\ x_{i-n}^{-(2m\chi(j \le n) + 2n - t)} & n + 1 \le i \le 2n \end{pmatrix}}{\det_{1 \le n}}.$$

Now do a Laplace expansion with respect to the first n columns. This leads to a huge sum. For the odd orthogonal character(s), one also starts with the Weyl character formula

$$so_{\lambda}(x_1, x_2, \dots, x_N) = \frac{\det_{1 \le i, j \le N} (x_i^{\lambda_j + N - j + \frac{1}{2}} - x_i^{-(\lambda_j + N - j + \frac{1}{2})})}{\operatorname{denominator}}$$

Here, each entry in the determinant is a sum of two monomials. We use linearity of the determinant in the rows to expand the determinant. Also here, this leads to a huge sum.

Interlude: without holes

In the end, one has to prove identities such as

$$\sum_{\substack{A \subseteq [2N] \\ |A|=N}} V(A)V(A^{-1}) V(A^c)V((A^c)^{-1}) R(A, A^{-1}) R(A^c, (A^c)^{-1})$$

$$= \sum_{A \subseteq [2N]} V(A) V(A^{-1}) V(A^{c}) V((A^{c})^{-1}) R(A, (A^{c})^{-1}) R(A^{c}, A^{-1}),$$

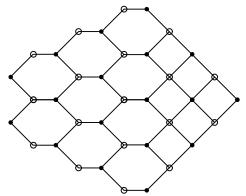
where A^c denotes the complement of A in [2N]. Here,

$$R(A, B^{-1}) := \prod_{a \in A} \prod_{b \in B} (x_a - x_b^{-1}), \ V(A) := \prod_{\substack{a, b \in A \\ a < b}} (x_a - x_b),$$

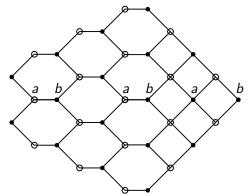
and $V(A^{-1}) := \prod_{\substack{a,b \in A \\ a < b}} (x_a^{-1} - x_b^{-1})$. Induction on N works to provide a proof of the above identity.

Ciucu's Matchings Factorisation Theorem

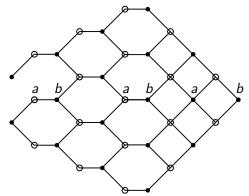
Ciucu's Matchings Factorisation Theorem



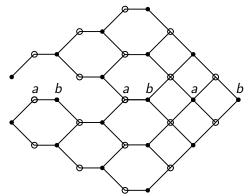
Ciucu's Matchings Factorisation Theorem



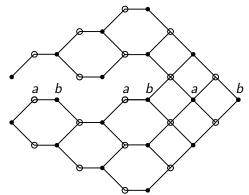
Ciucu's Matchings Factorisation Theorem



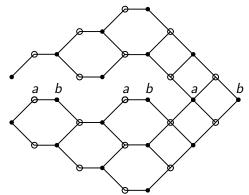
Ciucu's Matchings Factorisation Theorem



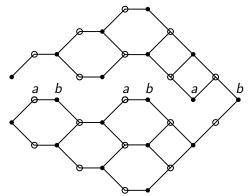
Ciucu's Matchings Factorisation Theorem



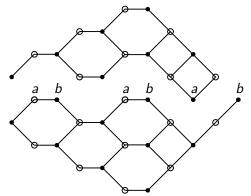
Ciucu's Matchings Factorisation Theorem



Ciucu's Matchings Factorisation Theorem



Ciucu's Matchings Factorisation Theorem

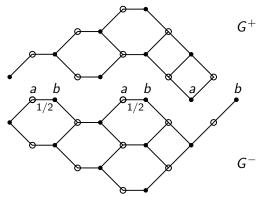


Ciucu's Matchings Factorisation Theorem



Ciucu's Matchings Factorisation Theorem

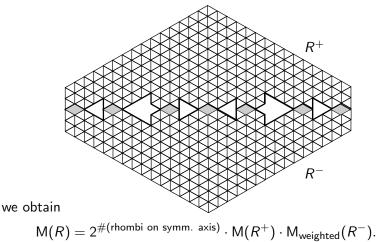
Consider a symmetric bipartite graph G.



Then

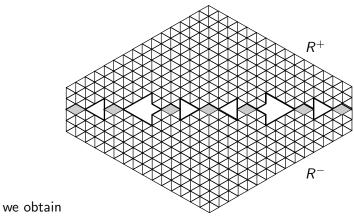
$$\mathsf{M}(G) = 2^{\#(\mathsf{edges on symm. axis})} \cdot \mathsf{M}(G^+) \cdot \mathsf{M}_{\mathsf{weighted}}(G^-).$$

If we translate this to our situation:



🗇 🕨 🖉 🕑 🖉 🗁

If we translate this to our situation:



$$\mathsf{M}(R) = 2^{\#(\mathsf{rhombi on symm. axis})} \cdot \mathsf{M}(R^+) \cdot \mathsf{M}_{\mathsf{weighted}}(R^-).$$

We "want"

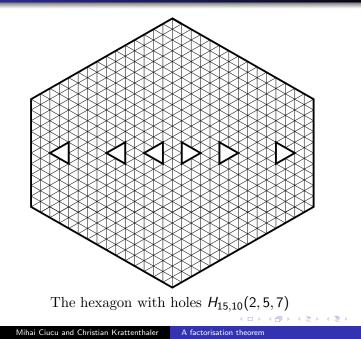
$$\mathsf{M}(R) \stackrel{?}{=} \mathsf{M}^{hs}(R) \cdot \mathsf{M}^{vs}(R).$$

→ < ∃ →</p>

So, it "only" remains to prove

$$M^{vs}(R) = 2^{\#(\text{rhombi on symm. axis})} \cdot M_{\text{weighted}}(R^{-}).$$

The theorem



2

Theorem

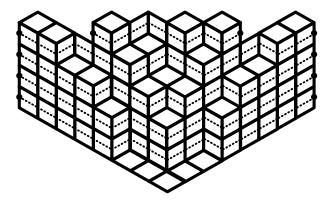
For all positive integers n, m, l and non-negative integers $k_1, k_2, \ldots k_l$ with $0 < k_1 < k_2 < \cdots < k_l \le n/2$, we have

Sketch of proof

æ

First step. Use non-intersecting lattice paths to get a determinant for $M_{\text{weighted}} \left(H_{n,2m}^{-}(k_1, k_2, \dots, k_l) \right)$ and a Pfaffian for $M^{vs} \left(H_{n,2m}(k_1, k_2, \dots, k_l) \right)$.

Sketch of proof



A tiling of $H^-_{n,2m}(k_1, k_2, \ldots, k_l)$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Theorem (Karlin–McGregor, Lindström, Gessel–Viennot, Fisher, John–Sachs, Gronau–Just–Schade–Scheffler–Wojciechowski)

Let G be an acyclic, directed graph, and let $A_1, A_2, ..., A_n$ and $E_1, E_2, ..., E_n$ be vertices in the graph with the property that, for i < j and k < l, any (directed) path from A_i to E_l intersects with any path from A_j to E_k . Then the number of families $(P_1, P_2, ..., P_n)$ of non-intersecting (directed) paths, where the *i*-th path P_i runs from A_i to E_i , i = 1, 2, ..., n, is given by

$$\det_{1\leq i,j\leq n}(|\mathcal{P}(A_j\to E_i)|),$$

where $\mathcal{P}(A \rightarrow E)$ denotes the set of paths from A to E.

Sketch of proof

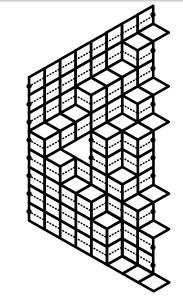
By the Karlin–McGregor, Lindström, Gessel–Viennot, Fisher, John–Sachs, Gronau–Just–Schade–Scheffler–Wojciechowski Theorem on non-intersecting lattice paths, we obtain a determinant.

Proposition

 $M_{weighted}\left(H_{n,2m}^{-}(k_1, k_2, \ldots, k_l)\right)$ is given by det(N), where N is the matrix with rows and columns indexed by $\{1, 2, \ldots, m, 1^+, 2^+, \ldots, l^+\}$, and entries given by

$$N_{i,j} = \begin{cases} \binom{2n}{n+j-i} + \binom{2n}{n-i-j+1}, & \text{if } 1 \leq i,j \leq m, \\ \binom{2n-2k_t}{n-k_t-i+1} + \binom{2n-2k_t}{n-k_t-i}, & \text{if } 1 \leq i \leq m \text{ and } j = t^+, \\ \binom{2n-2k_t}{n-k_t-j+1} + \binom{2n-2k_t}{n-k_t-j}, & \text{if } i = t^+ \text{ and } 1 \leq j \leq m, \\ \binom{2n-2k_t-2k_t}{n-k_t-k_t} + \binom{2n-2k_t-2k_t}{n-k_t-k_t-1}, & \text{if } i = t^+, j = \hat{t}^+, \\ & \text{and } 1 \leq t, \hat{t} \leq l. \end{cases}$$

Sketch of proof



The left half of a vertically symmetric tiling

Theorem (Okada, Stembridge)

Let $\{u_1, u_2, \ldots, u_p\}$ and $I = \{I_1, I_2, \ldots\}$ be finite sets of lattice points in the integer lattice \mathbb{Z}^2 , with p even. Let \mathfrak{S}_p be the symmetric group on $\{1, 2, \ldots, p\}$, set $\mathbf{u}_{\pi} = (u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(p)})$, and denote by $\mathcal{P}^{nonint}(\mathbf{u}_{\pi} \to I)$ the number of families (P_1, P_2, \ldots, P_p) of non-intersecting lattice paths, with P_k running from $u_{\pi(k)}$ to I_{j_k} , $k = 1, 2, \ldots, p$, for some indices j_1, j_2, \ldots, j_p satisfying $j_1 < j_2 < \cdots < j_p$. Then we have

$$\sum_{\pi \in \mathfrak{S}_p} (\operatorname{sgn} \pi) \cdot \mathcal{P}^{\operatorname{nonint}}(\mathbf{u}_{\pi} \to I) = \operatorname{Pf}(Q),$$

with the matrix
$$Q = (Q_{i,j})_{1 \le i,j \le p}$$
 given by

$$Q_{i,j} = \sum_{1 \le u < v} \left(\mathcal{P}(u_i \to I_u) \cdot \mathcal{P}(u_j \to I_v) - \mathcal{P}(u_j \to I_u) \cdot \mathcal{P}(u_i \to I_v) \right),$$

where $\mathcal{P}(A \rightarrow E)$ denotes the number of lattice paths from A to E.

э

Proposition

$$M^{vs}(H_{n,2m}(k_1,k_2,\ldots,k_l))$$
 is given by

 $(-1)^{\binom{l}{2}} \operatorname{Pf}(M),$

where M is the skew-symmetric matrix with rows and columns indexed by

$$\{-m+1, -m+2, \ldots, m, 1^-, 2^-, \ldots, l^-, 1^+, 2^+, \ldots, l^+\}$$

and entries given by

Sketch of proof

$$M_{i,j} = \begin{cases} \sum_{\substack{r=i-j+1 \ n+r}}^{j-i} {\binom{2n}{n+r}}, & \text{if } -m+1 \leq i < j \leq m, \\ \sum_{\substack{r=i-j+1 \ n-k_t+r}}^{-i} {\binom{2n-2k_t}{n-k_t+r}}, & \text{if } -m+1 \leq i \leq m \text{ and } j = t^-, \\ \sum_{\substack{r=i \ n-k_t+r}}^{-i+1} {\binom{2n-2k_t}{n-k_t+r}}, & \text{if } -m+1 \leq i \leq m \text{ and } j = t^+, \\ 0, & \text{if } i = t^-, j = \hat{t}^-, \text{ and } 1 \leq t < \hat{t} \leq I, \\ {\binom{2n-2k_t-2k_t}{n-k_t-k_t}}, & \text{if } i = t^-, j = \hat{t}^+, \text{ and } 1 \leq t, \hat{t} \leq I, \\ 0, & \text{if } i = t^+, j = \hat{t}^+, \text{ and } 1 \leq t < \hat{t} \leq I, \end{cases}$$

where sums have to be interpreted according to

$$\sum_{r=M}^{N-1} \operatorname{Expr}(k) = \begin{cases} \sum_{r=M}^{N-1} \operatorname{Expr}(k) & N > M \\ 0 & N = M \\ -\sum_{k=N}^{M-1} \operatorname{Expr}(k) & N < M. \end{cases}$$

Sketch of proof

Second step.

æ

Second step.

Lemma

For a positive integer m and a non-negative integer I, let A be a matrix of the form

$$A = \begin{pmatrix} X & Y \\ -Y^t & Z \end{pmatrix},$$

where $X = (x_{j-i})_{-m+1 \le i,j \le m}$ and $Z = (z_{i,j})_{i,j \in \{1^-,\dots,l^-,1^+,\dots,l^+\}}$ are skew-symmetric, and $Y = (y_{i,j})_{-m+1 \le i \le m, j \in \{1^-,\dots,l^-,1^+,\dots,l^+\}}$ is a $2m \times 2l$ matrix. Suppose in addition that $y_{i,t^-} = -y_{-i,t^-}$ and $y_{i,t^+} = -y_{-i+2,t^+}$, for all i with $-m + 1 \le i \le m$ for which both sides of an equality are defined, and $1 \le t \le l$, and that $z_{i,j} = 0$ for all $i, j \in \{1^-, \dots, l^-\}$. Then

$$\mathsf{Pf}(A) = (-1)^{\binom{1}{2}} \det(B),$$

where

$$B = \begin{pmatrix} \bar{X} & \bar{Y}_1 \\ \bar{Y}_2 & \bar{Z} \end{pmatrix},$$

with

$$\begin{split} \bar{X} &= (\bar{x}_{i,j})_{1 \leq i,j \leq m}, \\ \bar{Y}_1 &= (y_{-i+1,j})_{1 \leq i \leq m, j \in \{1^+, \dots, l^+\}}, \\ \bar{Y}_2 &= (-y_{i,j})_{i \in \{1^-, \dots, l^-\}, 1 \leq j \leq m}, \\ \bar{Z} &= (z_{i,j})_{i \in \{1^-, \dots, l^-\}, j \in \{1^+, \dots, l^+\}}, \end{split}$$

and the entries of \bar{X} are defined by

$$\bar{x}_{i,j} = x_{|j-i|+1} + x_{|j-i|+3} + \dots + x_{i+j-1}.$$

By the lemma, the Pfaffian for $M^{vs}(H_{n,2m}(k_1, k_2, ..., k_l))$ can be converted into a determinant, of the same size as the determinant we obtained for $M_{weighted}(H_{n,2m}^{-}(k_1, k_2, ..., k_l))$.

By the lemma, the Pfaffian for $M^{vs}(H_{n,2m}(k_1, k_2, ..., k_l))$ can be converted into a determinant, of the same size as the determinant we obtained for $M_{weighted}(H_{n,2m}^{-}(k_1, k_2, ..., k_l))$.

Third step. Alas, it is not the same determinant.

By the lemma, the Pfaffian for $M^{vs}(H_{n,2m}(k_1, k_2, ..., k_l))$ can be converted into a determinant, of the same size as the determinant we obtained for $M_{weighted}(H_{n,2m}^{-}(k_1, k_2, ..., k_l))$.

Third step. Alas, it is not the same determinant. However, further row and column operations do indeed convert one determinant into the other.

Postlude

æ

æ

@ ▶ ∢ ≣

• A theorem has been proved.

э

- A theorem has been proved.
- Is the proof illuminating?

- A theorem has been proved.
- Is the proof illuminating? No.

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation?

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon?

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon? I do not know.

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon? I do not know.
- Is this a theorem without applications?

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon? I do not know.
- Is this a theorem without applications? No.

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon? I do not know.
- Is this a theorem without applications? No.
- Is this the end?

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon? I do not know.
- Is this a theorem without applications? No.
- Is this the end? Yes.