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Combinatorial sequences modulo powers of 2

Let (an)n≥0 be a sequence of integers, where an is the number of
. . . of “size” n.

What can we say about modular properties of these numbers?

In this talk:

What can we say about the value of an modulo 2k?

Theorem (Stothers 1977)

The number sn of index-n-subgroups in the inhomogeneous
modular group PSL2(Z) is odd if, and only if, n is of the form
2k − 3 or 2k+1 − 6, for some positive integer k ≥ 2.

The first few numbers sn, n ≥ 1, are

1, 1, 4, 8, 5, 22, 42, 40, 120, 265, 286, 764, 1729, . . .

Stothers proved his result by clever counting of coset diagrams.
A different proof of this result was given by Godsil, Imrich, and
Razen.
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DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS FOR THE
MODULAR GROUP

Thomas W. Müller and Jan-Christoph Schlage-Puchta

Abstract. Let Γ = PSL2(Z) be the classical modular group. It has been shown by
Stothers (Proc. Royal Soc. Edinburgh 78A, 105–112) that sn, the number of index n
subgroups in Γ, is odd if and only if n+3 or n+6 is a 2-power. Moreover, Stothers loc.
cit. also showed that fλ, the number of free subgroups of index 6λ in Γ, is odd if and
only if λ+1 is a 2-power. Here, these divisibility results for fλ and sn are generalized
to congruences modulo higher powers of 2. We also determine the behaviour modulo 3
of fλ. Our results are naturally expressed in terms of the binary respectively ternary
expansion of the index.

1. Introduction and results

Let Γ = PSL2(Z) be the classical modular group. We denote by sn the number of index
n subgroups in Γ, and by fλ the number of free subgroups in Γ of index 6λ. These days,
quite a lot is known concerning the subgroup arithmetic of Γ. Newman [5, Theorem 4]
gave an asymptotic formula for sn; for a more general and more precise result see [3,
Theorem 1]. Based on numerical computations of Newman, Johnson conjectured that
sn is odd if and only if n = 2a − 3, a ≥ 2 or n = 2a − 6, a ≥ 3. This conjecture was first
proved by Stothers [6]. He first used coset diagrams to establish a relation between sn

and fλ for various λ in the range 1 ≤ λ ≤ n+4
6

, and then showed that fλ is odd if and
only if λ = 2a − 1, a ≥ 1. The parity pattern for fλ found by Stothers has been shown
to hold for a larger class of virtually free groups, including free products Γ = G1 ∗S G2

of two finite groups Gi with an amalgamated subgroup S of odd order, whose indices
(Gi : S) satisfy {(G1 : S), (G2 : S)} = {2, 3} or = {2, 4}; cf. [2, Prop. 6]. An alternative
proof of Johnson’s conjecture making use of a new recurrence relation for sn was given
by Godsil, Imrich, and Razen [1]. The principal purpose of the present paper is to
generalize the divisibility results for fλ and sn mentioned to congruences modulo higher
powers of 2. We also describe the behaviour of fλ modulo 3. For a prime p and a
positive integer n denote by sp(n) the sum of digits in the expansion of n to base p.
Our main results are as follows.

Theorem 1. Let λ ≥ 20 be an integer.

(i) If λ ≥ 6 is even, then we have 64|fλ,.
(ii) If λ is odd with s2(λ + 1) = 1, then fλ ≡ 13 (16).

1
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14 DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS

In this way we may simplify the last displayed expression as follows.

2#{n = 2a + 2b, a > b ≥ 2} + 2#{n = 2a + 2b − 3, a ≥ 3, b ≥ 2}
+ 2#{n = 2a + 2b − 6, a > b ≥ 3} − 2#{n = 2a + 2b + 3, a > b}

− 2#{n = 2a + 2b, a ≥ 3, b ≥ 2} − 2#{n = 2a + 2b − 3, a > b ≥ 3}
+ 4#{n = 2b + 2c + 4, b > c ≥ 2, b ≥ 4} + 4#{n = 2a + 9, a ≥ 3}

+ 4#{n = 2b + 2c + 1, b > c ≥ 2} + 4#{n = 2a + 2b + 2c − 6, b > c ≥ 2, a ≥ 3}
+ 4#{n = 2a + 2b + 2c + 3, b > c ≥ 2, a ≥ 2, b ≥ 4}

+ 4#{n = 2a + 2b + 2c, b > c ≥ 2, a ≥ 2} + 4#{n = 2a + 2b + 2c − 3, b > c ≥ 2, a ≥ 3}
+ 4#{n = 2a + 2b + 3, a ≥ 3, b ≥ 2} + 4#{n = 2a + 2b + 9, a, b ≥ 2}

Next consider for example the quantity 4#{n = 2a + 2b + 6, a ≥ 3, b ≥ 2}. If (a, b) is a
solution with a > b ≥ 3, then (b, a) is also a solution, that is, the number of solutions
is even, unless n is of the form n = 2a +10, a ≥ 3, or n is of the form 2a +6 with a ≥ 4.
The same argument may be applied to several other terms as well, which allows us to
simplify the expression further to obtain the following.

2#{n = 2a + 2b, a > b} + 4#{n = 2a + 1, a ≥ 3} + 2#{n = 2a − 3, a ≥ 4}}
+4#{n = 2a+2b−3, a > b ≥ 2}+2#{n = 2a+2b−6, a > b ≥ 3}−2#{n = 2a+2b+3, a > b}

− 2#{n = 2a + 4, a ≥ 3} − 2#{n = 2a, a ≥ 4} + 4#{n = 2a + 2b, a > b ≥ 2}
− 2#{n = 2a + 2b − 3, a > b ≥ 3} + 4#{n = 2b + 2c + 4, b > c ≥ 2, b ≥ 4}

+ 4#{n = 2b + 2c + 1, b > c ≥ 2} + 4#{n = 2a + 2b + 2c − 6, b > c ≥ 2, a ≥ 3}
+ 4#{n = 2a + 2b + 2c + 3, b > c ≥ 2, a ≥ 2, b ≥ 4}

+ 4#{n = 2a + 2b + 2c, b > c ≥ 2, a ≥ 2} + 4#{n = 2a + 2b + 2c − 3, b > c ≥ 2, a ≥ 3}
+ 4#{n = 2a + 7, a ≥ 3} + 4#{n = 2a + 3, a ≥ 4}

Finally, consider the quantity #{n = 2a + 2b + 2c, b > c ≥ 2, a ≥ 2}. Let (a, b, c) be a
solution counted. If all three components are distinct, there are no solutions with two
of the variables equal to each other, and there are 3 possible orderings of a, b and c. In
this case, the number of solutions is congruent to #{n = 2a + 2b + 2c, a > b > c ≥ 2}
modulo 2. If two variables are equal, then either n is of the form n = 2x + 2y with
x #= y, or n is a power of two. In the former case, we either have a = b = x−1, c = y, or
a = c = y − 1, b = x. The latter is possible only for y ≥ 3, while the former is possible
only for x ≥ y +2, hence, in this case the number of solutions is congruent modulo 2 to

#{n = 2a + 4, a ≥ 4} + #{n = 3 · 2a, a ≥ 4}.

If n = 2x is a power of two, we necessarily have a = c = 2x−2, b = 2x−1 and there is
precisely one solution. Thus, we deduce that #{n = 2a + 2b + 2c, b > c ≥ 2, a ≥ 2} is
congruent modulo 2 to

#{n = 2a + 2b + 2c, a > b > c ≥ 2} + #{n = 2a + 4, a ≥ 4}
+ #{n = 2a, a ≥ 4} + #{n = 3 · 2a, a ≥ 4}.
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DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS 17

To ease further computations, we consider sets with one, two, and three parameters
separately. Sets defined by one parameter contribute

{4|n = 2a, 2a − 3, a ≥ 3} + {2|n = 2a − 2, 2a + 1, a ≥ 3} + {1|n = 2a, a ≥ 3}
+ {4|n = 3 · 2a, a ≥ 3} + {4|n = 2a + 9, a ≥ 3} + {6|n = 2a + 1, 2a + 4, a ≥ 3}

+ {7|n = 2a + 3, a ≥ 3} + {4|n = 3 · 2a + 3, a ≥ 3} + {4|n = 2a + 12}
+ {1|n = 2a − 6, 2a} + {7|n = 2a − 3, 2a + 3} + {4|n = 2a + 12, 2a + 15, a > b ≥ 2}

+ {4|n = 2a + 1, a ≥ 3} + {2|n = 2a − 3, a ≥ 4}} − {2|n = 2a + 4, a ≥ 3}
− {2|n = 2a, a ≥ 4} + {4|n = 2a − 2, a ≥ 5} + {4|n = 2a − 6, a ≥ 5}

+ {4|n = 3 · 2a − 6, a ≥ 5} + {4|n = 2a + 15, a ≥ 2} + {4|n = 2a + 7, a ≥ 4}
+ {4|n = 2a + 3, a ≥ 4} + {4|n = 3 · 2a + 3, a ≥ 4} + {4|n = 2a + 4, a ≥ 4}

+ {4|n = 2a, a ≥ 4} + {4|n = 3 · 2a, a ≥ 4} + {4|n = 2a + 1, a ≥ 4}
+ {4|n = 2a − 3, a ≥ 4} + {4|n = 3 · 2a − 3, a ≥ 4} + {4|n = 2a + 7, a ≥ 3}

+ {4|n = 2a + 3, a ≥ 4},

which is congruent to

{5|n = 2a − 6, a ≥ 5} + {1|n = 2a − 3, a ≥ 3} + {6|n = 2a − 2, a ≥ 3}
+ {6|n = 2a + 3, a ≥ 3} + {4|n = 2a + 9, a ≥ 3}

+ {4|n = 3 · 2a − 6, a ≥ 3} + {4|n = 3 · 2a − 3, a ≥ 4}.

Next, we collect all 2-parameter sets. These contribute

{4|n = 2a + 2b + 1, 2a + 2b − 2, a > b ≥ 2} + {2|n = 2a + 2b, a > b ≥ 2}
+ {4|n = 2a + 2b + 4, 2a + 2b + 1, a > b ≥ 2} + {2|n = 2a + 2b + 3, a > b ≥ 2}

+ {4|n = 2a + 2b, 2a + 2b + 3, 2a + 2b − 6, 2a + 2b − 3, a > b ≥ 2}
+ {2|n = 2a + 2b, a > b} + {4|n = 2a + 2b − 3, a > b ≥ 2}

+ {2|n = 2a + 2b − 6, a > b ≥ 3} −{ 2|n = 2a + 2b + 3, a > b}
+ {4|n = 2a + 2b, a > b ≥ 2} −{ 2|n = 2a + 2b − 3, a > b ≥ 3}

+ {4|n = 2a + 2b + 1, a > b ≥ 2} + {4|n = 2a + 2b − 2, a > b ≥ 2}
+ {4|n = 2a + 2b + 1, a > b ≥ 2} + {4|n = 2a + 2b + 4, a > b ≥ 2, a ≥ 4},

which is congruent to

{6|n = 2a + 2b − 6, a > b ≥ 2} + {6|n = 2a + 2b − 3, a > b ≥ 3}
+ {2|n = 2a − 2, a ≥ 4} + {4|n = 2a + 2b + 3, a > b ≥ 2}.

Finally, the contribution coming from 3-parameter sets is

{4|n = 2a + 2b + 2c, a > b > c ≥ 2} + {4|n = 2a + 2b + 2c + 3, a > b > c ≥ 2}
+ {4|n = 2a + 2b + 2c − 6, a > b > c ≥ 2} + {4|n = 2a + 2b + 2c + 3, a > b > c ≥ 2}

+ {4|n = 2a + 2b + 2c − 3, a > b > c ≥ 2} + 4#{n = 2a + 2b + 2c, a > b > c ≥ 2},
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Generating Functions!!

Let us have another look at Stothers’ theorem:

Theorem (Stothers 1977)

The number sn of index-n-subgroups in the inhomogeneous
modular group PSL2(Z) is odd if, and only if, n is of the form
2k − 3 or 2k+1 − 6, for some positive integer k ≥ 2.

In other words: Let

Φ(z) =
∑

n≥0

z2n = z + z2 + z4 + z8 + z16 + · · · .

Then

∑

n≥0

sn+1zn = (z−7 + z−4)Φ(z) + z−6 + z−5 + z−2 modulo 2.
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Let

Φ(z) =
∑

n≥0

z2n = z + z2 + z4 + z8 + z16 + · · · .

Then the result of Müller and Schlage–Puchta can be compactly
expressed in the form

∑
n≥0

sn+1z
n = z57+4z20+4z17+4z14+4z12+4z11+4z10+4z9+2z8+4z5+2z4+4z3+2z2

+ 4z + 2 +
1

z2
+

7

z3
+

5

z4
+

5

z5
+

2

z6
+

(
6

z7
+

2

z6
+

2

z4
+ 4z3 +

2

z3
+ 4z2 +

4

z

)
Φ(z)

+

(
4z8 +

3

z7
+

2

z6
+

2

z5
+ 4z4 +

3

z4
+ 4z3 +

6

z3
+ 2z2 +

2

z2
+

4

z
+ 4

)
Φ2(z)

+

(
6

z7
+

4

z6
+

4

z5
+

6

z4
+

4

z3
+ 4z2 +

4

z2

)
Φ3(z) modulo 8.
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A proof “method” for congruences modulo 2

It is a simple observation that Φ(z) =
∑

n≥0 z2n satisfies

Φ2(z)− Φ(z)− z = 0 modulo 2.

Suppose that we want to determine the behaviour of the sequence
(fn)n≥0 modulo 2. We form the generating function
F (z) =

∑
n≥0 fnzn, and suppose that we know that it satisfies a

differential equation of the form

P(z ; F (z),F ′(z),F ′′(z), . . . ,F (s)(z)) = 0,

where P is a polynomial with integer coefficients, which has a
unique formal power series solution.
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A proof “method” for congruences modulo 2

We know
Φ2(z)− Φ(z)− z = 0 modulo 2. (1)

and
P(z ; F (z),F ′(z),F ′′(z), . . . ,F (s)(z)) = 0.

Then, to prove a guessed congruence of the form

F (z) = a0(z) + a1(z)Φ(z) modulo 2,

where a0(z), a1(z) are Laurent polynomials, is trivial:
one substitutes the guess into the differential equation, one reduces
higher powers of Φ(z) by means of (1), one reduces the result
modulo 2, using the trivial fact that

Φ′(z) = 1 modulo 2,

and one verifies that everything vanishes.
A computer can do this!
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Example: Catalan numbers

Everybody knows that the generating function
C (z) =

∑
n≥0 Catn zn for the Catalan numbers Catn = 1

n+1

(2n
n

)

satisfies the equation

zC 2(z)− C (z) + 1 = 0.

It is easy to guess that

C (z) = z−1Φ(z) modulo 2.

It is even easier to prove that: we substitute in the equation,

z(z−1Φ(z))2 − z−1Φ(z) + 1 = z−1Φ2(z)− z−1Φ(z) + 1

= z−1(Φ(z) + z)− z−1Φ(z) + 1 = 0 modulo 2,

and do the reduction!
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zC 2(z)− C (z) + 1 = 0.

It is easy to guess that

C (z) = z−1Φ(z) modulo 2.

It is even easier to prove that: we substitute in the equation,

z(z−1Φ(z))2 − z−1Φ(z) + 1 = z−1Φ2(z)− z−1Φ(z) + 1

= z−1(Φ(z) + z)− z−1Φ(z) + 1 = 0 modulo 2,

and do the reduction!
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What about congruences modulo higher powers of 2?

First we need a polynomial equation satisfied by Φ(z). Recalling
the congruence

Φ2(z)− Φ(z)− z = 0 modulo 2,

we might take

(Φ2(z)− Φ(z)− z)k = 0 modulo 2k .

As it turns out, this is not “optimal.” For example, we have
actually

Φ4(z) + 6Φ3(z) + (2z + 3)Φ2(z) + (2z + 6)Φ(z) + 2z + 5z2 = 0

modulo 8.
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What about congruences modulo higher powers of 2?

In general, we are not able to provide a formula for a monic
polynomial of minimal degree satisfied by Φ(z) modulo 2k .
We do have a precise conjecture for the minimal degree, though,
and a procedure for computing such a polynomial of minimal
degree for every specific k.
So, in lack of a precise formula, we base our considerations on the
congruence

(Φ4(z)+6Φ3(z)+(2z +3)Φ2(z)+(2z +6)Φ(z)+2z +5z2)2α = 0

modulo 82α = 23·2α .

This is a polynomial relation of degree 2α+2.
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The “method” for proving congruences modulo 2k

Idea:

Make the Ansatz

F (z) =
2α+2−1∑

i=0

ai (z)Φi (z) modulo 23·2α ,

where the ai (z)’s are (at this point) undetermined Laurent
polynomials in z .

Then, gradually determine approximations ai ,β(z) to ai (z) such
that our differential equation

P(z ; F (z),F ′(z),F ′′(z), . . . ,F (s)(z)) = 0

holds modulo 2β, for β = 1, 2, . . . , 3 · 2α.
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The “method” for proving congruences modulo 2k

The base step:

Substitute

F (z) =
2α+2−1∑

i=0

ai ,1(z)Φi (z) modulo 2

into the differential equation, considered modulo 2,

P(z ; F (z),F ′(z),F ′′(z), . . . ,F (s)(z)) = 0 modulo 2,

use Φ′(z) = 1 modulo 2, reduce high powers of Φ(z) modulo the
polynomial relation of degree 2α+2 satisfied by Φ(z), and compare
coefficients of powers Φk(z), k = 0, 1, . . . , 2α+2 − 1. This yields a
system of 2α+2 (algebraic differential) equations (modulo 2) for
the unknown Laurent polynomials ai ,1(z), i = 0, 1, . . . , 2α+2 − 1,
which may or may not have a solution.
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The “method” for proving congruences modulo 2k

The iteration:

Provided we have already found ai ,β(z), i = 0, 1, . . . , 2α+2 − 1,
such that

F (z) =
2α+2−1∑

i=0

ai ,β(z)Φi (z)

solves our differential equation modulo 2β, we put

ai ,β+1(z) := ai ,β(z) + 2βbi ,β+1(z), i = 0, 1, . . . , 2α+2 − 1,

where the bi ,β+1(z)’s are (at this point) undetermined Laurent
polynomials in z . Next we substitute

F (z) =
2α+2−1∑

i=0

ai ,β+1(z)Φi (z)

in the differential equation.
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The “method” for proving congruences modulo 2k

The iteration:

One uses
Φ′(z) =

β∑

n=0

2nz2n−1 modulo 2β+1,

one reduces high powers of Φ(z) using the polynomial relation
satisfied by Φ(z), and one compares coefficients of powers Φj(z),
j = 0, 1, . . . , 2α+2 − 1. After simplification, this yields a system of
2α+2 (linear differential) equations (modulo 2) for the unknown
Laurent polynomials bi ,β+1(z), i = 0, 1, . . . , 2α+2 − 1, which may
or may not have a solution.

(More precisely, in general this will be a system of linear equations
in the bi ,β+1(z)’s and b′i ,β+1(z)’s, i = 0, 1, . . . , 2α+2 − 1. By
separating each unknown polynomial b(z) into “even part” and
“odd part,” b(z) = b(e)(z) + b(o)(z), and by using the observation

b′(z) = z−1b(o)(z) modulo 2,

this system can be converted into a system of linear equations in
the even and odd parts of the bi ,β+1(z)’s.)
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Catalan numbers again

The Ansatz:

C (z) =
2α+2−1∑

i=0

ai (z)Φi (z) modulo 23·2α .

The base step:

We have

C (z) =
α∑

k=0

z2k−1 + z−1Φ2α+1
(z) modulo 2.

The iteration: works automatically without problems.
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Theorem

Let Φ(z) =
∑

n≥0 z2n , and let α be some positive integer. Then
the generating function C (z) for Catalan numbers, reduced
modulo 23·2α , can be expressed as a polynomial in Φ(z) of degree
at most 2α+2 − 1 with coefficients that are Laurent polynomials in
z. Moreover, for any given α, this polynomial can be found
automatically.
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Abstract

In this paper, we develop a systematic tool to calculate the congruences of some
combinatorial numbers involving n!. Using this tool, we re-prove Kummer’s and Lucas’
theorems in a unique concept, and classify the congruences of the Catalan numbers cn

(mod 64). To achieve the second goal, cn (mod 8) and cn (mod 16) are also classified.
Through the approach of these three congruence problems, we develop several general
properties. For instance, a general formula with powers of 2 and 5 can evaluate cn (mod
2k) for any k. An equivalence cn ≡2k cn̄ is derived, where n̄ is the number obtained
by partially truncating some runs of 1 and runs of 0 in the binary string [n]2. By this
equivalence relation, we show that not every number in [0, 2k − 1] turns out to be a
residue of cn (mod 2k) for k ≥ 2.

1 Introduction

Throughout this paper, p is a prime number and k is a positive integer. We are interested
in enumerating the congruences of various combinatorial numbers modulo a prime power

1Partially supported by NSC96-2115-M-134-003-MY2
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which is U after simplifying.

For those cn (mod 64) with ω2(cn) = 2, we can simply plug u16(cn) given in (47) into (32).
Here we also show a precise classification by tables.

Theorem 6.3. Let n ∈ N with d(α) = 2. Then we have

cn ≡64 (−1)zr(α)4 × 5u16(CF2(cn)),

where u16(CF2(cn)) is given in (47). Precisely, let [α]2 = 〈10a10b〉2, i.e., [n]2 = 〈10a10b+11β〉2,
and then we have cn (mod 64) shown in the following four tables.

a = 0 a = 1 a = 2 a ≥ 3
b = 0 4 28 44 12
b = 1 12 36 52 20
b = 2 60 20 36 4
b ≥ 3 28 52 4 36

when β = 0

a = 0 a = 1 a = 2 a ≥ 3
b = 0 52 12 28 60
b = 1 44 4 20 52
b = 2 60 20 36 4
b ≥ 3 28 52 4 36

when β = 1

a = 0 a = 1 a = 2 a ≥ 3
b = 0 36 28 44 12
b = 1 28 20 36 4
b = 2 44 36 52 20
b ≥ 3 12 4 20 52

when β = 2

a = 0 a = 1 a = 2 a ≥ 3
b = 0 4 60 12 44
b = 1 60 52 4 36
b = 2 12 4 20 52
b ≥ 3 44 36 52 20

when β ≥ 3

Proof. Notice that there are difference between a ≥ 3 and a = 3, and similarly for b
and β. We split (47) into two parts as follows:

A := χ(β ′ = 0)(2α̈1 − α̈0 − 1) − χ(β ′ = 1) + 2χ(β ′ = 2)α̈0 + 2χ(β ′ = 3)(1 − α̈0),

B := 2
[
c

2
(α̈) + α̈0(1 − α̈2) + #(S4(α̈), {〈0011〉2, 〈1x00〉2})

]
− r1(α̈) − zr1(α̈)

+α̈0α̈1 + 1.

Clearly, B is independent on β ′. We will only prove the first table of this theorem. The
other three tables can be checked in the same way. With simple calculation we obtain the
values of A as β = 0 and B as follows:

a = 0 a = 1 a = 2 a = 3
b = 0 0 2 2 2
b = 1 1 1 1 1
b = 2 3 3 3 3
b = 3 3 3 3 3

value of A when β = 0

a = 0 a = 1 a = 2 a = 3
b = 0 0 2 1 3
b = 1 0 1 2 0
b = 2 3 2 3 1
b = 3 1 0 1 3

value of B

21
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Theorem (Liu and Yeh, compactly)

Let Φ(z) =
∑

n≥0 z2n . Then, modulo 64, we have

∞∑
n=0

Catn z
n = 32z5 +16z4 +6z2 +13z +1+

(
32z4 + 32z3 + 20z2 + 44z + 40

)
Φ(z)

+

(
16z3 + 56z2 + 30z + 52 +

12

z

)
Φ2(z) +

(
32z3 + 60z + 60 +

28

z

)
Φ3(z)

+

(
32z3 + 16z2 + 48z + 18 +

35

z

)
Φ4(z) +

(
32z2 + 44

)
Φ5(z)

+

(
48z + 8 +

50

z

)
Φ6(z) +

(
32z + 32 +

4

z

)
Φ7(z) modulo 64.
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Theorem

Let Φ(z) =
∑

n≥0 z2n . Then, modulo 4096, we have

∞∑
n=0

Catn z
n = 2048z14 + 3072z13 + 2048z12 + 3584z11 + 640z10 + 2240z9 + 32z8

+ 832z7 + 2412z6 + 1042z5 + 2702z4 + 53z3 + 2z2 + z + 1

+
(
2048z12 + 3840z10 + 2112z8 + 2112z7 + 552z6

+3128z5 + 2512z4 + 4000z3 + 3904z2
)

Φ(z)

+
(
2048z13 + 3072z11 + 1536z10 + 1152z9 + 1024z8 + 4000z7 + 3440z6

+3788z5 + 3096z4 + 3416z3 + 2368z2 + 288z
)

Φ2(z)

+
(
2048z11 + 2048z10 + 2304z9 + 512z8 + 2752z7 + 3072z6 + 728z5

+3528z4 + 1032z3 + 3168z2 + 3456z + 3904
)

Φ3(z)

+
(
2048z12 + 3072z11 + 1024z10 + 2048z9 + 1152z8 + 1728z7 + 2272z6 + 2464z5

+3452z4 + 3154z3 + 2136z2 + 3896z + 1600 +
48

z

)
Φ4(z)

+
(
2048z10 + 2048z9 + 1792z8 + 1792z7 + 1088z6 + 1536z5

+1704z4 + 3648z3 + 3288z2 + 200z + 3728 +
2272

z

)
Φ5(z)
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+
(
2048z111024z9 + 1536z8 + 3200z7 + 2816z6 + 1312z5 + 3824z4

+140z3 + 592z2 + 3692z + 488 +
2760

z

)
Φ6(z)

+
(
2048z9 + 2304z7 + 2304z6 + 3520z5 + 960z4 + 2456z3

+2128z2 + 2936z + 1784 +
4024

z

)
Φ7(z)

+
(
2048z10 + 1024z9 + 2048z8 + 512z7 + 3968z6 + 1088z5 + 1888z4

+832z3 + 1444z2 + 2646z + 3258 +
339

z

)
Φ8(z)

+
(
2048z8 + 3328z6 + 1536z5 + 3008z4

+320z3 + 2168z2 + 1144z + 3992 +
3152

z

)
Φ9(z)

+
(
2048z9 + 3072z7 + 512z6 + 1408z5 + 2560z4

+3424z3 + 3408z2 + 1316z + 3608 +
2380

z

)
Φ10(z)

+
(
2048z7 + 2048z6 + 2816z5 + 3072z4 + 1856z3

+2688z2 + 1288z + 3880 +
3904

z

)
Φ11(z)
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+
(
2048z8 + 1024z7 + 3072z6 + 2048z5 + 1408z4

+2624z3 + 1440z2 + 224z + 948 +
358

z

)
Φ12(z)

+

(
2048z6 + 2048z5 + 3328z4 + 2816z3 + 1984z2 + 384z + 2488 +

2384

z

)
Φ13(z)

+

(
2048z7 + 1024z5 + 512z4 + 2432z3 + 1792z2 + 3040z + 336 +

260

z

)
Φ14(z)

+

(
2048z5 + 768z3 + 256z2 + 64z + 2752 +

2696

z

)
Φ15(z)

modulo 4096.

We have also a procedure for extracting coefficients of powers of
Φ(z).
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Subgroup numbers and homomorphism numbers

Given a group G , let sn(G ) denote the number of subgroups of
index n in G .

How to get a differential equation for
∑

n≥0 sn+1(G )zn?

Theorem (Dey 1965)

We have

∞∑

n=0

|Hom(G ,Sn)|z
n

n!
= exp

( ∞∑

n=1

sn(G )
zn

n

)
.
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∞∑

n=0

|Hom(G ,Sn)|z
n

n!
= exp

( ∞∑

n=1

sn(G )
zn

n

)
.

Let

H(z) :=
∞∑

n=0

|Hom(G ,Sn)|z
n

n!
and S(z) :=

∞∑

n=1

sn+1(G )zn.

Then

H(k)(z)

H(z)
= Pk(S(z), S ′(z), . . . ), k = 1, 2, . . . ,

where Pk(S(z),S ′(z), . . . ) is a polynomial in S(z) and its
derivatives.
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Hence:
If we have a linear differential equation for H(z), via

H(k)(z)

H(z)
= Pk(S(z), S ′(z), . . . ), k = 1, 2, . . . ,

it translates into a differential equation for S(z).

We may then apply our method to this differential equation for
S(z).
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Subgroup numbers of PSL2(Z)

The group PSL2(Z) is freely generated by
(

0 −1
1 0

)
and

(
0 −1
1 1

)
.

Hence
PSL2(Z) = C2 ∗ C3 =

〈
x , y : x2 = y 3 = 1

〉
.

Hence:
Hom(PSL2(Z),Sn) = h2(n) · h3(n),

where h2(n) is the number of involutions in Sn and h3(n) is the
number of permutations of order 3 in Sn.
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Subgroup numbers of PSL2(Z)

We have
Hom(PSL2(Z),Sn) = h2(n) · h3(n).

It is easy to see (and well-known) that

h2(n) = h2(n − 1) + (n − 1)h2(n − 2),

h3(n) = h3(n − 1) + (n − 1)(n − 2)h3(n − 3).

These are recurrences with polynomial coefficients.
It is then routine (gfun!!) to find a recurrence with polynomial
coefficients for the Hadamard product h2(n) · h3(n).
It is equally routine (gfun!!) to convert this recurrence into a
(linear) differential equation with polynomial coefficients for the
generating function

∑
n≥0 Hom(PSL2(Z),Sn) z

n

n! .
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Subgroup numbers of PSL2(Z)

Godsil, Imrich and Razen found

(z7 − z10)H ′′(z) + (−1 + 4z3 + 2z4 + 4z6 − 2z7 − 4z9)H ′(z)

+ (1 + z + 4z2 + 4z3 − z4 + 4z5 − 2z6 − 2z8)H(z) = 0.

Finally, this is converted into a differential equation for S(z):

(−1+4z3 +2z4 +4z6−2z7−4z9)S(z)+(z7−z10)(S ′(z)+S2(z))

+ 1 + z + 4z2 + 4z3 − z4 + 4z5 − 2z6 − 2z8 = 0.
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Theorem

Let Φ(z) =
∑

n≥0 z2n , and let α be some positive integer. Then
the generating function S(z) = SPSL2(Z)(z), when reduced modulo

23·2α , can be expressed as a polynomial in Φ(z) of degree at most
2α+2 − 1 with coefficients that are Laurent polynomials in z.
Moreover, for any given α, this polynomial can be found
automatically.

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2k behaviour of recursive sequences



Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2k behaviour of recursive sequences



Theorem

Let Φ(z) =
∑

n≥0 z2n . Then, modulo 64, we have

∑
n≥0

sn+1(PSL2(Z)) zn

= z57 + 32z50 + 48z44 + 48z41 + 32z36 + 32z35 + 32z33 + 48z32 + 16z28 + 40z26

+ 16z25 + 32z24 + 32z23 + 16z22 + 16z21 + 52z20 + 32z19 + 40z18

+ 60z17 + 48z16 + 4z14 + 32z13 + 4z12 + 36z11 + 16z10 + 60z9 + 2z8 + 16z7

+ 4z6 + 60z5 + 44z4 + 16z3 + 54z2 + 60z + 32 +
56

z
+

36

z2
+

51

z3
+

33

z4
+

52

z5

+

(
32z34 + 32z26 + 32z25 + 32z24 + 16z22 + 32z21 + 32z20 + 32z17 + 32z16

+ 48z14 + 16z13 + 16z12 + 16z11 + 32z10 + 32z8 + 48z7 + 8z5 + 8z4 + 48z3 + 24z + 32

+
20

z
+

12

z2
+

8

z3
+

36

z4
+

4

z5
+

24

z6

)
Φ(z)

+

(
32z34 + 32z29 + 32z28 + 32z26 + 32z24 + 32z21 + 48z19 + 32z18 + 48z17 + 32z14

+ 48z13 + 32z12 + 56z10 + 8z9 + 16z8 + 48z7 + 24z6 + 56z5 + 44z4 + 16z3

+ 48z2 + 40z + 44 +
60

z
+

50

z2
+

48

z3
+

8

z4
+

50

z5
+

52

z6
+

52

z7

)
Φ2(z)
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+

(
32z28 + 32z24 + 32z21 + 32z20 + 32z19 + 48z16 + 32z14 + 32z13 + 32z12

+ 32z11 + 16z10 + 48z9 + 8z8 + 48z6 + 56z4 + 8z3 + 16z2 + 48z + 56 +
32

z
+

20

z2

+
52

z3
+

4

z4
+

36

z5
+

12

z6
+

36

z7

)
Φ3(z)

+

(
32z44 + 32z41 + 32z33 + 32z32 + 32z31 + 32z30 + 32z28 + 32z27 + 16z26 + 32z24

+ 32z23 + 48z22 + 16z21 + 40z20 + 32z19 + 32z18 + 24z17 + 16z16 + 48z15 + 32z14

+16z13 +8z12 +32z11 +56z10 +56z9 +44z8 +40z7 +48z6 +16z5 +20z4 +56z3 +30z2

+ 32z + 28 +
40

z
+

34

z2
+

52

z3
+

17

z4
+

26

z5
+

40

z6
+

29

z7

)
Φ4(z)

+

(
32z32 +32z30 +32z26 +32z24 +32z23 +32z22 +32z21 +48z20 +48z18 +32z16 +48z14

+ 32z13 + 48z12 + 48z11 + 32z8 + 16z7 + 56z6 + 48z5 + 48z4 + 40z3 + 16z2

+ 32z + 56 +
24

z
+

24

z2
+

20

z3
+

24

z4
+

40

z5
+

20

z6

)
Φ5(z)
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+

(
32z32 + 32z31 + 32z30 + 32z27 + 32z24 + 32z23 + 48z19 + 16z18 + 48z17

+ 16z15 + 48z14 + 32z12 + 32z11 + 56z8 + 40z7 + 56z6 + 16z5

+ 8z4 + 56z3 + 4z2 + 56z + 32 +
8

z
+

52

z2
+

60

z3
+

30

z4
+

20

z5
+

20

z6
+

14

z7

)
Φ6(z)

+

(
32z30 +32z26 +32z21 +32z20 +48z18 +32z16 +48z14 +32z13 +48z10 +16z9 +8z6

+ 32z5 + 16z4 + 16z3 + 8z2 + 48z + 40 +
48

z
+

8

z2
+

40

z3
+

60

z4
+

8

z5
+

24

z6
+

60

z7

)
Φ7(z)

modulo 64.
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What about the homogeneous modular group SL2(Z)?

Here, we have

SL2(Z) =
〈
x , y : x4 = y 6 = 1 and x2 = y 3

〉
.

One can show that

Hom(SL2(Z),Sn) = n!

bn/4c∑

r=0

b2r/3c∑

s=0

(2r)! h2(n − 4r)h3(n − 4r)

22(r−s)3sr ! s! (n − 4r)! (2r − 3s)!
.

We found and used a recurrence of order 50 and polynomial
coefficients of degree 5 for Hom(SL2(Z),Sn). This translates into
a differential equation for the generating function
S(z) :=

∑
n≥0 sn+1(SL2)(Z), with

S(z), S ′(z),S ′′(z),S ′′′(z), S ′′′′(z) appearing.
The method works for this differential equation up to modulus 8.
It does not work for modulus 16!
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Theorem

Let Φ(z) =
∑

n≥0 z2n . Then we have

∑
n≥0

sn+1(SL2(Z)) zn

= 4z20 + 4z17 + 4z14 + 4z12 + 4z10 + 4z9 + 6z8 + 4z5 + 6z4 + 4z2 + 4z + 6

+
7

z2
+

3

z3
+

6

z6
+

6

z7
+

4

z8
+

1

z9
+

3

z11
+

6

z12

+

(
2

z13
+

6

z12
+

4

z10
+

4

z9
+

4

z8
+

2

z7
+

6

z6
+

6

z4
+ 4z3 +

6

z3
+ 4z2 +

4

z

)
Φ(z)

+

(
4z8 + 4z4 + 4z3 + 6z2 + 4 +

4

z
+

6

z2
+

2

z3
+

5

z4
+

2

z5

+
6

z6
+

1

z7
+

4

z8
+

6

z9
+

4

z10
+

6

z11
+

6

z12
+

5

z13

)
Φ2(z)

+

(
4z2 +

4

z2
+

4

z3
+

2

z4
+

4

z5
+

4

z6
+

2

z7
+

4

z9
+

4

z11
+

4

z12
+

2

z13

)
Φ3(z)

modulo 8.
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Theorem

The subgroup numbers sn(SL2(Z)) obey the following congruences
modulo 8 :

(i) sn(SL2(Z)) ≡ 1 (mod 8) if, and only if, n = 1, 2, 4, 10, or if n is of the form
2σ − 3 for some σ ≥ 4;

(ii) sn(SL2(Z)) ≡ 2 (mod 8) if, and only if, n = 7, 12, 17, or if n is of one of the
forms

3 · 2σ − 3, 3 · 2σ − 6, 3 · 2σ − 12, for some σ ≥ 4;

(iii) sn(SL2(Z)) ≡ 4 (mod 8) if, and only if, n = 3, 22, 23, 27, 46, 47, 51, or if n is of
one of the forms

2σ + 6, 2σ + 7, 2σ + 11, 2σ + 12, 2σ + 18,

2σ + 21, for some σ ≥ 5,

2σ + 2τ − 2, 2σ + 2τ + 1, 2σ + 2τ + 3,

for some σ, τ with σ ≥ 6 and 4 ≤ τ ≤ σ − 1,

2σ + 2τ + 2ν − 12, 2σ + 2τ + 2ν − 6, 2σ + 2τ + 2ν − 3,

for some σ, τ, ν with σ ≥ 6, 5 ≤ ν ≤ σ − 1, and 3 ≤ τ ≤ ν − 1;
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(iv) sn(SL2(Z)) ≡ 5 (mod 8) if, and only if, n = 5, or if n is of one of the forms

2σ − 6, 2σ − 12, for some σ ≥ 5;

(v) sn(SL2(Z)) ≡ 6 (mod 8) if, and only if, n = 6, 11, 14, 18, 19, 21, 33, 34, 35, 37, or
if n is of one of the forms

2σ − 2, 2σ − 4, for some σ ≥ 5,

2σ + 1, 2σ + 2, 2σ + 3, 2σ + 4, 2σ + 5, 2σ + 10, 2σ + 13,

for some σ ≥ 6,

2σ + 2τ − 3, 2σ + 2τ − 6, 2σ + 2τ − 12,

for some σ, τ with σ ≥ 7 and 5 ≤ τ ≤ σ − 2;

(vi) in the cases not covered by items (i)–(v), sn(SL2(Z)) is divisible by 8; in
particular, sn(SL2(Z)) 6≡ 3, 7 (mod 8) for all n.
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Epilogue

What about other primes?
The whole theory can also be developed for other primes. It
works without any problem for Fuß–Catalan numbers.
However, otherwise we are aware of just one (moderately)
interesting example (for the prime 3).

Then how do the subgroup numbers of PSL2(Z) or of SL2(Z)
behave modulo 3 or larger prime numbers?
We do not know ...

There are situations where the modular behaviour can be
described using other “basic series,” for example (this applies
to Motzkin numbers modulo 3) by the series

Ψ(z) =
∑

k≥0

∑

n1>···>nk>0

z
∑k

i=1 3ni =
∞∏

j=1

(1 + z3j ).

We are currently developing a theory for this series.
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There are situations where the modular behaviour can be
described using other “basic series,” for example (this applies
to Motzkin numbers modulo 3) by the series

Ψ(z) =
∑

k≥0

∑

n1>···>nk>0

z
∑k

i=1 3ni =
∞∏

j=1

(1 + z3j ).

We are currently developing a theory for this series.
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