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of “size” n.

Manuel Kauers, Christian Krattenthaler and Thomas W. Miiller Mod-2X behaviour of recursive sequences



Let (an)n>0 be a sequence of integers, where a, is the number of
. of "size" n.

What can we say about modular properties of these numbers?

Manuel Kauers, Christian Krattenthaler and Thomas W. Miiller Mod-2X behaviour of recursive sequences



Combinatorial sequences modulo powers of 2

Let (an)n>0 be a sequence of integers, where a, is the number of
. of "size" n.

What can we say about modular properties of these numbers?
In this talk:

What can we say about the value of a, modulo 2%?
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Combinatorial sequences modulo powers of 2

Let (an)n>0 be a sequence of integers, where a, is the number of
. of "size" n.

What can we say about modular properties of these numbers?
In this talk:

What can we say about the value of a, modulo 2%?

Theorem (STOTHERS 1977)

The number s, of index-n-subgroups in the inhomogeneous
modular group PSLy(7Z) is odd if, and only if, n is of the form
2k — 3 or 2kt1 _ 6, for some positive integer k > 2.

The first few numbers s,, n > 1, are
1,1,4,8,5,22,42, 40,120, 265, 286, 764, 1729, . ..
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Combinatorial sequences modulo powers of 2

Let (an)n>0 be a sequence of integers, where a, is the number of
. of "size" n.

What can we say about modular properties of these numbers?
In this talk:

What can we say about the value of a, modulo 2%?

Theorem (STOTHERS 1977)

The number s, of index-n-subgroups in the inhomogeneous
modular group PSLy(7Z) is odd if, and only if, n is of the form
2k — 3 or 2kt1 _ 6, for some positive integer k > 2.

The first few numbers s,, n > 1, are
1,1,4,8,5,22,42 40,120, 265,286, 764,1729, ...
Stothers proved his result by clever counting of coset diagrams.
A different proof of this result was given by GODsIL, IMRICH, and
RAZEN.
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DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS FOR THE
MODULAR GROUP

TuoMAs W. MULLER and JAN-CHRISTOPH SCHLAGE-PUCHTA

ABSTRACT. Let I' = PSLy(Z) be the classical modular group. It has been shown by
Stothers (Proc. Royal Soc. Edinburgh T8A, 105-112) that s, the number of index n
subgroups in T', is odd if and only if n+3 or n+6 is a 2-power. Moreover, Stothers loc.
cit. also showed that fy, the number of free subgroups of index 6 in I', is odd if and
only if A4 1 is a 2-power. Here, these divisibility results for fy and s, are generalized
to congruences modulo higher powers of 2. We also determine the behaviour modulo 3
of fx. Our results are naturally expressed in terms of the binary respectively ternary
expansion of the index.

1. INTRODUCTION AND RESULTS

Let I' = PSLy(Z) be the classical modular group. We denote by s, the number of index
n subgroups in I', and by f) the number of free subgroups in I of index 6. These days,
quite a lot is known concerning the subgroup arithmetic of I'. Newman [5, Theorem 4]
gave an asymptotic formula for s,; for a more general and more precise result see [3,
Theorem 1]. Based on numerical computations of Newman, Johnson conjectured that
sp is odd if and only if n = 2% —3,a > 2 or n = 2* —6,a > 3. This conjecture was first
proved by Stothers [6]. He first used coset diagrams to establish a relation between s,
and fy for various A in the range 1 < A < %, and then showed that fy is odd if and
only if A =2*—1,a > 1. The parity pattern for f) found by Stothers has been shown
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2 DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS

(iit) For A odd with so(A+1) = 2, write A\ =2+ 2" — 1,a > b > 1. Then we have

4, b=1
6, b=2

Hh=<2 a=b+1 (mod 16).
6, a=b+2

14,  otherwise

(iv) For X odd with so(\ + 1) = 3, write X = 2% + 2" +2° — 1, where a > b > ¢ > 1.
Assume that precisely k of the equations a = b+1, and b = c+1 hold, k = 0,1,2.

Then we have
; 1, k=0(2) (mod 16)
= mod .
Tl k=12

(v) If X is odd with so(X + 1) = 4, then f\ = 8(16).
(vi) If X is odd with s5(A+ 1) > 5, then fy = 0(16).

The regular behaviour of the function fy described in Theorem 1 breaks down for
A < 20. Here the values modulo 16 are as follows.
A1 203[4|5]6|7[8[9]10[11[12[13]14]15]16]17|18]19
fﬂs‘lﬂl‘U‘Z‘U‘S‘O‘G‘ U‘ 2‘ U‘ 4‘ U‘ 5‘ 0‘ 6‘ O‘ 6
Theorem 2. Let n > 22 be an integer. Then we have modulo 8

1, n=2*-3

5, n=2-6

2, n=3-2°-33-2°-6
spn=96, m=2042-32042"—62°+3 a>b+2

4, n=24224+2°6,a>b>c>220+20+2° -3 a>b>c>2b>4,
n=2+2"+3a>b>2
0, otherwise.
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14 DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS
In this way we may simplify the last displayed expression as follows.
2#{n=2042"a>b>2} +2#{n=2+2"-3,a>3,0>2}
F2#{n=2"+2"—6,a>b>3} —2#{n=2"+2"+3,a > b}
2 {n=204+2"a>3,b>2} —2#{n=24+2"-3,a>b>3}

A =2+ 2+ 4,b > ¢ > 2,0 > 4} + 44{n = 2"+ 9,a > 3}
+4#{n:2b+2°+1.b>(122}+4#{n:2“+2b+2“76‘b>02 2,a >3}
A {n=2+2"+2°+3,b>c>2a>2b>4}

AN =2"+2"+2°b > c>2,a > 2} +4#{n=2"+2"+2°— 3, b > ¢ > 2,a > 3}

+A#{n =20 +2"+3,a>3,0> 2} +4#{n =2"+2"+9,a,b > 2}
Next consider for example the quantity 4#{n = 2% +2°+6,a > 3,b > 2}. If (a,b) is a
solution with @ > b > 3, then (b, a) is also a solution, that is, the number of solutions
is even, unless n is of the form n = 2*+10,a > 3, or n is of the form 2* + 6 with a > 4.
The same argument may be applied to several other terms as well, which allows us to
simplify the expression further to obtain the following.
2{n=2"+2"a>b} +4#{n =2"+1,a > 3} + 2#{n =2" - 3,a > 4}}
+4H{n = 2°42"-3,a > b > 2}+2#{n = 2°42"—6,a > b > 3} —24{n = 2°+2"+3,a > b}
—2#n=2"+4,0a>3} —2#{n=2"a>4} +4#{n=2"+2a>b>2}
—2#{n=242"-3,a>b> 3} +4#{n=2"+ 2+ 4,b > c>2,b> 4}

F A =2 424 1> > 2} 4 AN =2 42" +2° —6,b>c>2,a> 3}
AN =2"+2"+2°+3,b>c>2,a > 2,b >4}
FA#{n=2042"4+2°b>c>2,a> 2 +4#{n=2+2" +2°—3,b>c>2a >3}

+A#{n =2"+T7,a >3} +4#{n=2"+3,a > 4}

Finally, consider the quantity #{n = 2% 4+ 2" +2°b > ¢ > 2,a > 2}. Let (a,b,c) be a
solution counted. If all three components are distinct, there are no solutions with-two
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DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS 17

further computations, we consider sets with one, two, and three parameters

ly. Sets defined by one parameter contribute
{An =22 —3,a>3} + {2 =2"—2,2"+ 1,0 > 3} + {1jn = 2,a > 3}
+{4n=3-2"a>3t+{4n=2"49,a > 3} + {6ln =2"+ 1,2 +4,a > 3}
+{7n=2"+3,a>3} +{4n=3-2"43,a > 3} + {4|n = 2° + 12}
+{lln=2"=6,2} + {7|n = 2 — 3,2" + 3} + {4|n = 2" + 12,2 + 15,a > b > 2}
+{4n=2"+1a>3}+{2n=2"-3,a>4}} —{2In=2"+4,a > 3}
—{2n=2%a>4} +{4n=2"-2,a > 5} + {4n =2" - 6,a > 5}
+{4n=3-2"-6,a>5}+{4n=2"+15,a>2} + {4n=2"+T7,a > 4}
+{4n=2"+3,a>4}+{4n=3-2+3,a >4} + {4n =2"+4,a > 4}
+{4n=2"a>4}+{4n=3-2"a>4} +{4n=2"+1,a > 4}

+{4n=2"-3,a>4}+{4n=3-2"-3,a>4} + {4]n =2"+T7,a > 3}
+{4n=2"4+3,a >4},

which is congruent to
{Bln=2"-6,a>5}+{lln=2"-3,a >3} 4+ {6|n =2 — 2,a > 3}
+{6ln=2"+3,a>3}+{4n=2"+9,a >3}
+{4n=3-2"-6,a>3} +{4n=3-2°-3,a > 4}.

Next, we collect all 2-parameter sets. These contribute
{An=2"+2"+1,2+2"-2a>b>2} +{2n=2"+2"a > b > 2}
+{dn=2+2"+4,2°+2" + L,a>b>2} +{2n=2"+2"+3,a > b > 2}
+{4ln =2 42°29+2° +3,2° +2° — 6,2 + 2" — 3,a > b > 2}
+{2ln=2"+2"a>b}+{4n=2"+2"-3,a>b>2}
+{2n=2"42"-6,a>b>3} —{2ln=2"+2"+3,a > b}
—3.a>0>3

4ln =2+ 2" a>b>2} {2n=2"+2
Mod behaviour of recursive sequences
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Generating Functions!!

Let us have another look at Stothers’ theorem:

Theorem (STOTHERS 1977)

The number s, of index-n-subgroups in the inhomogeneous
modular group PSL>(Z) is odd if, and only if, n is of the form
2k — 3 or 2kt — 6, for some positive integer k > 2.
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Generating Functions!!

Let us have another look at Stothers’ theorem:

Theorem (STOTHERS 1977)

The number s, of index-n-subgroups in the inhomogeneous
modular group PSL>(Z) is odd if, and only if, n is of the form
2k — 3 or 2kt — 6, for some positive integer k > 2.

In other words: Let

o)=Y =zt
n>0

Then

Z Sp12" = (27T + 27 HP(2)+ 2z %+ 25 +22 modulo 2.
n>0
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2 DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS

(iit) For A odd with so(A+1) = 2, write A\ =2+ 2" — 1,a > b > 1. Then we have
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1, n=2*-3

5, n=2-6
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0, otherwise.
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Let
CD(z):Zzzn:Z+z2—|—z4+z8—|—zl6+---
n>0

Then the result of Miiller and Schlage—Puchta can be compactly
expressed in the form

Z snt12" = 24470147 140 1472 4 4 4 47104 4% 428 44754274 14734222
n>0
1 7 5 5 2 6 2 2 2
+4Z+2+7+73+74+75+76+ +*+*+4Z+ +4Z+ d(2)
z z z
2 2 2
+ (428+%+;+;+4z4+ LA + o 72+ S+ +4)¢2(z)

6 4 2 3
+<?+;+;+27+;+42 +;>d>(z) modulo 8.

Manuel Kauers, Christian Krattenthaler and Thomas W. Miiller Mod-2X behaviour of recursive sequences



A proof “method” for congruences modulo 2
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A proof “method” for congruences modulo 2

2

It is a simple observation that ®(z) = ", z*" satisfies

<D2(z) —®(z) —z=0 modulo 2.
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A proof “method” for congruences modulo 2

2

It is a simple observation that ®(z) = ", z*" satisfies

<D2(z) —®(z) —z=0 modulo 2.

Suppose that we want to determine the behaviour of the sequence
(fn)n>0 modulo 2. We form the generating function

F(z) =)_,>0fnz", and suppose that we know that it satisfies a
differential equation of the form

P(z; F(2),F'(2), F"(2),...,F®)(z2)) =0,

where P is a polynomial with integer coefficients, which has a
unique formal power series solution.
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A proof “method” for congruences modulo 2
We know
®3(z) = d(z) —z=0 modulo 2. (1)

and
P(z; F(2),F'(2), F"(2),...,F¥(z)) = 0.
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A proof “method” for congruences modulo 2
We know
®3(z) = d(z) —z=0 modulo 2. (1)

and
P(z; F(2),F'(2), F"(2),...,F¥(z)) = 0.

Then, to prove a guessed congruence of the form
F(z) = ao(z) + a1(z)®(z) modulo 2,

where ag(z), a1(z) are Laurent polynomials, is trivial:

one substitutes the guess into the differential equation, one reduces
higher powers of ®(z) by means of (1), one reduces the result
modulo 2, using the trivial fact that

®'(z) =1 modulo 2,

and one verifies that everything vanishes.
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A proof “method” for congruences modulo 2

We know
®3(z) = d(z) —z=0 modulo 2. (1)

and
P(z; F(2),F'(2), F"(2),...,F¥(z)) = 0.

Then, to prove a guessed congruence of the form
F(z) = ao(z) + a1(z)®(z) modulo 2,

where ag(z), a1(z) are Laurent polynomials, is trivial:

one substitutes the guess into the differential equation, one reduces
higher powers of ®(z) by means of (1), one reduces the result
modulo 2, using the trivial fact that

®'(z) =1 modulo 2,

and one verifies that everything vanishes.
A computer can do this!
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Example: Catalan numbers
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Example: Catalan numbers

Everybody knows that the generating function
C(z) = >_,>0 Caty 2" for the Catalan numbers Cat, = nil (2n")
satisfies the equation

zC%(z) - C(z)+1=0.
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Example: Catalan numbers

Everybody knows that the generating function
C(z) = 3,50 Catn 2" for the Catalan numbers Cat, = -2 (")
satisfies the equation

zC%(z) - C(z)+1=0.
It is easy to guess that
C(z) =z '®(z) modulo 2.
It is even easier to prove that: we substitute in the equation,

2(z7'0(2))? - z710(2) + 1=z 1% (2) — 2 1d(2) + 1
=7 Y d(2)+2) —z71d(z) +1=0 modulo 2,

and do the reduction!
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What about congruences modulo higher powers of 27

First we need a polynomial equation satisfied by ®(z). Recalling
the congruence

d>2(z) —®(z) —z=0 modulo 2,
we might take

(¢2(Z) —d(z) — Z)k =0 modulo 2.
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What about congruences modulo higher powers of 27

First we need a polynomial equation satisfied by ®(z). Recalling
the congruence

d>2(z) —®(z) —z=0 modulo 2,
we might take
(d>2(z) —d(z) — z)k =0 modulo 2.

As it turns out, this is not “optimal.” For example, we have
actually

®*(2) +693(2) + (22 + 3)9?%(2) + (22 + 6)d(2) + 22z + 522 = 0
modulo 8.
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What about congruences modulo higher powers of 27

In general, we are not able to provide a formula for a monic
polynomial of minimal degree satisfied by ®(z) modulo 2.

We do have a precise conjecture for the minimal degree, though,
and a procedure for computing such a polynomial of minimal
degree for every specific k.

So, in lack of a precise formula, we base our considerations on the
congruence

(0*(2) +6D3(2)+ (22 +3)P?(2) + (22 +6)P(2) +22+52%)* =0

modulo 8% = 2327,
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What about congruences modulo higher powers of 27

In general, we are not able to provide a formula for a monic
polynomial of minimal degree satisfied by ®(z) modulo 2.

We do have a precise conjecture for the minimal degree, though,
and a procedure for computing such a polynomial of minimal
degree for every specific k.

So, in lack of a precise formula, we base our considerations on the
congruence

(0*(2) +6D3(2)+ (22 +3)P?(2) + (22 +6)P(2) +22+52%)* =0

modulo 8% = 2327,

This is a polynomial relation of degree 2912
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The “method” for proving congruences modulo 2¥
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The “method” for proving congruences modulo 2¥

Idea:

Make the Ansatz
2021

F(z) = ai(z)®'(z) modulo 2327,
i=0

where the a;(z)’s are (at this point) undetermined Laurent
polynomials in z.
Then, gradually determine approximations a; g(z) to aj(z) such
that our differential equation

P(z; F(2), F'(2), F"(2),...,F®(z)) =0
holds modulo 2%, for 6 =1,2,...,3- 2%
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The “method” for proving congruences modulo 2¥

The base step:
Substitute

20421
F(z)= > ai1(2)®(z) modulo 2
i=0
into the differential equation, considered modulo 2,
P(z; F(2), F'(2), F"(2),..., F®)(z)) =0 modulo 2,

use ¢’(z) = 1 modulo 2, reduce high powers of ®(z) modulo the
polynomial relation of degree 212 satisfied by ®(z), and compare
coefficients of powers ®(z), k =0,1,...,2°"2 — 1. This yields a
system of 22%2 (algebraic differential) equations (modulo 2) for
the unknown Laurent polynomials a; 1(z), i = 0,1,...,29%2 — 1,
which may or may not have a solution.
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The “method” for proving congruences modulo 2¥

The iteration:

Provided we have already found a; 5(z), i = 0,1,...,2972 — 1,

such that
2a+271

F(Z) = Z a,'”g(z)d)i(z)
i=0
solves our differential equation modulo 28 we put
aig+1(2) == aig(z) + 2°big1(2), i=0,1,...,2°72 — 1,

where the b; g,1(z)’s are (at this point) undetermined Laurent
polynomials in z. Next we substitute
20421
F(z)= Y aipn(2)9(2)
i=0
in the differential equation.
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The “method” for proving congruences modulo 2¥
The iteration:

One uses A .,
P'(z) = Z 27221 modulo 2°+1,
n=0

one reduces high powers of ®(z) using the polynomial relation
satisfied by ®(z), and one compares coefficients of powers /(z),
j=0,1,...,2°T2 _ 1. After simplification, this yields a system of
29%2 (linear differential) equations (modulo 2) for the unknown
Laurent polynomials b; g41(2), i =0,1,...,2%72 — 1, which may
or may not have a solution.
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The “method” for proving congruences modulo 2¥
The iteration:

One uses A .,
P'(z) = Z 27221 modulo 2°+1,
n=0

one reduces high powers of ®(z) using the polynomial relation
satisfied by ®(z), and one compares coefficients of powers /(z),
j=0,1,...,2°T2 _ 1. After simplification, this yields a system of
29%2 (linear differential) equations (modulo 2) for the unknown
Laurent polynomials b; g41(2), i =0,1,...,2%72 — 1, which may
or may not have a solution.

(More precisely, in general this will be a system of linear equations
in the b; 511(2)'s and b} 5,,(2)'s, i =0,1,...,2°"2 — 1. By

separating each unknown polynomial b(z) into “even part” and
“odd part,” b(z) = b(&)(z) + b(°)(z), and by using the observation

b'(z) = z7'6)(z) modulo 2,

this system can be converted into a system of linear equations in
the even and odd parts of the b; 311(2)'s.)
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Catalan numbers again
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Catalan numbers again

The Ansatz:

2a+271
C(z) = Z ai(z)®'(z) modulo 232,
i=0
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Catalan numbers again

The Ansatz:

2a+271
C(z) = Z ai(z)®'(z) modulo 232,
i=0
The base step:
We have

C(z) = Zsz_l +z7 1o (z) modulo 2.
k=0
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Catalan numbers again

The Ansatz:

2a+271
C(z) = Z ai(z)®'(z) modulo 232,
i=0
The base step:
We have

C(z) = Zsz_l +z7 1o (z) modulo 2.
k=0

The iteration: works automatically without problems.
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Theorem

Let ®(z) =Y, 2%, and let o be some positive integer. Then
the generating function C(z) for Catalan numbers, reduced
modulo 232", can be expressed as a polynomial in ®(z) of degree
at most 2°T2 — 1 with coefficients that are Laurent polynomials in
z. Moreover, for any given «, this polynomial can be found
automatically.
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Abstract
In this paper, we develop a systematic tool to calculate the congruences of some
combinatorial numbers involving n!. Using this tool, we re-prove Kummer’s and Lucas’
theorems in a unique concept, and classify the congruences of the Catalan numbers ¢,
(mod 64). To achieve the second goal, ¢, (mod 8) and ¢, (mod 16) are also ified.
Through the approach of these three congruence problems, we develop several general
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For those ¢, (mod 64) with wa(c,) = 2, we can simply plug u4(c,,) given in (47) into (32).
Here we also show a precise classification by tables.

Theorem 6.3. Let n € N with d(a) = 2. Then we have

Cn =1 (=1)7 (@)« Szm,(C‘Fz(m)):

where wis(C Fa(c,)) is given in (47). Precisely, let [a], = (10710%),, i.e.,
and then we have ¢,, (mod 64) shown in the following four tables.

a=0 a=1 a=2 a>3 a=0 a= a=2 a>3
b 4 28 44 12 b=0] 52 12 28 60
b=11] 12 36 52 20 b=1] 44 4 20 52
b=21] 60 20 36 4 b=21] 60 20 36 4
b>3] 28 52 4 36 b>3| 28 52 4 36
when 3 =0 when 3 =1
a=0 a=1 a=2 a>3 a=0 a=1 a=2 a>3
b=01] 36 28 44 12 b=0 4 60 12 44
b=1] 28 20 36 4 b=1] 60 52 4 36
b=2 44 36 52 20 b=2 12 4 20 52
b>3 12 4 20 52 b>3 44 36 52 20
when =2 when 3 >3

Proof. Notice that there are difference between a > 3 and a = 3, and similarly for b
and B. We split (47) into two parts as follows:

=0)(2d) — o — 1) = x(8' = 1) +2x(8' = 2o + 20(8' = 3)(1 - ),
) + dio(1 — o) + #(Sa(@), {(0011)s, (1x00)2})] — (&) — 27 (&)
+éigdn + 1.

y, B is independent on 3. We will only prove the first table of this theorem. The
other three tables can be checked in the same way. With simple calculation we obtain the
values of A as 3 =0 and B as follows:

a=2 a=3

‘(1:0 a ‘(L:U a
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Theorem (L1u AND YEH, compactly)
Let d(z) =359 z?". Then, modulo 64, we have

D Catyz" = 322° +162" +62° + 132+ 1+ (322" + 322> 4 202° + 44z + 40) &(2)
n=0
3 2 12 2 3 28 3
+ (162 +56z° + 30z + 52+ — | ®“(z) + ( 32z° + 60z + 60 + — | °(2)
z z

35
+ (32z3 +162% + 48z + 18 + —) &*(2) + (322° + 44) °(z2)
z

4
+ (482 +8+ @) »5(z) + (322 +32+ 7) ®’(z)  modulo 64.
z z
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Let (z) =Y ,50 2> . Then, modulo 4096, we have

oo
Z Cat, z" = 2048z + 3072z%3 + 2048212 + 358421 + 640210 + 22402° + 3228
n=0

+ 83227 + 24122° + 10422° + 27022* + 532% + 222 + z + 1
+ (204822 + 38402 + 211228 + 211227 + 5522°
+31282° + 25122* + 40002° + 39042%) &(z2)
+ (204823 + 30722" 4 153620 + 11522° + 10242° + 400027 + 34402°
+37882° + 3096z* + 34162° + 236822 + 288z) ¢%(z)
+ (20482 + 20482 4 23042° + 5122° + 275227 + 30722° + 7282°
+35282" + 10322% + 316822 + 34562 + 3904) ®3(z)
+ (20482'2 + 3072z + 10242 + 20482° + 115228 + 172827 + 22722° + 24642°

48
+34522% + 315423 + 213622 + 38962 + 1600 + 7) *(2)
z
+ (20482 + 20482° + 17922° + 179227 + 10882° + 15362°

z

2272
+1704z" + 36482° + 328822 + 200z + 3728 + ) °(2)
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+ (20482'110242° + 15362° + 320027 + 28162° + 13122° + 38242*
414023 + 59222 4 3692z 4 488 + 760) 5(z2)
+ (20482° + 2304z" + 23042° + 35202 + 960z* + 24562°
421282% 4- 29362 4 1784 + 4024) >7(2)
+ (204820 + 10242° + 204828 + 51227 + 39682° + 10882° + 18882*
+8322% 4 144422 4 26462 + 3258 + %9) 8(z)
+ (20482° + 33282° + 15362° + 3008z*
+3202% 4 216822 4 1144z + 3992 + %) ®%(z)
+ (20482° + 307227 + 5122° + 14082° + 2560z

14342473 + 34082° + 13162 + 3608 +

2380) 10(2)

+ (20482 +20482° + 28162° + 3072z* + 18562

1268822 4 1288z 4 3880 +

3904) ol1(2)
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+ (20482° + 102427 + 30722° + 20482° + 14082*

358
+26242% 4 14402 4 2247 + 948 + > »12(z2)
2384\ 3
+ 20482° + 20482° +3328z% + 28162° + 1984z% + 384z + 2488+ —— ) »(2)
+ (20482 +10242° 4 5122* + 243223 4 17922% 4 3040z + 336 + ) ol (z2)

¢15(Z)

2696
(20482 + 7682° + 25622 + 64z + 2752 + )

modulo 4096.
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+ (20482° + 102427 + 30722° + 20482° + 14082*

358
+26242% 4 14402 4 2247 + 948 + > »12(z2)
2384\ 3
+ 20482° + 20482° +3328z% + 28162° + 1984z% + 384z + 2488+ —— ) »(2)
+ (20482 +10242° 4 5122* + 243223 4 17922% 4 3040z + 336 + ) ol (z2)

¢15(Z)

2696
(20482 + 7682° + 25622 + 64z + 2752 + )

modulo 4096.
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+ (20482° + 102427 + 30722° + 20482° + 14082*

358
+26242% 4 14402 4 2247 + 948 + > »12(z2)
2384\ 3
+ 20482° + 20482° +3328z% + 28162° + 1984z% + 384z + 2488+ —— ) »(2)
+ (20482 +10242° 4 5122* + 243223 4 17922% 4 3040z + 336 + ) ol (z2)

¢15(Z)

2696
(20482 + 7682° + 25622 + 64z + 2752 + )

modulo 4096.

We have also a procedure for extracting coefficients of powers of
d(2).
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Subgroup numbers and homomorphism numbers
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Subgroup numbers and homomorphism numbers

Given a group G, let s,(G) denote the number of subgroups of
index nin G.
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Subgroup numbers and homomorphism numbers

Given a group G, let s,(G) denote the number of subgroups of
index nin G.

How to get a differential equation for 3 - sp+1(G)z"?
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Subgroup numbers and homomorphism numbers

Given a group G, let s,(G) denote the number of subgroups of
index nin G.

How to get a differential equation for 3 - sp+1(G)z"?

Theorem (DEY 1965)

We have

Z|HomGS) = exp an
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(o] Z” o0 Z”
Z|Hom(G,5,,)\F:exp an(c)7
n=0 ’ n=1
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(o] Z” o0 Z”
Z|Hom(G,5,,)\F:exp an(c)7
n=0 ’ n=1

Let
H(z) ::Z]Hom(G,S,,)\% and  S(z):= Y sni1(G)z".
n=0 ’ n=1
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S n S n
Z | Hom(G, Sn)‘m = exp <Z Sn(G)n) .
n=0 ’ n=1

Let
o Z” o ,
H(z) := ;)]Hom(G,S,,)n! and  S(z) ;:z_:lsnﬂ(c)z :
Then
H®)(z2)

= P(S(2),S'(2),...), k=1,2,...,

H(z)

where Py(5(z),S'(z),...) is a polynomial in S(z) and its
derivatives.
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Hence:
If we have a linear differential equation for H(z), via

HY(2) /
W—Pk(S(Z),S(Z%...), k—l72,...7
it translates into a differential equation for 5(z).

We may then apply our method to this differential equation for
5(2).
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Subgroup numbers of PSL,(7)
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Subgroup numbers of PSL,(7)

The group PSLy(Z) is freely generated by
0 -1 0 -1
<1 0) and <1 1 ) .

PSLy(Z) = G * G = (x,y : x> = y> =1).

Hence
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Subgroup numbers of PSL,(7)

The group PSLy(Z) is freely generated by
0 -1 0 -1
<1 0) and <1 1 ) .

PSLy(Z) = G * G = (x,y : x> = y> =1).

Hence

Hence:
Hom(PSLx(Z), Sp) = ha(n) - h3(n),

where hy(n) is the number of involutions in S, and h3(n) is the
number of permutations of order 3 in 5,,.
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Subgroup numbers of PSL,(7)

We have
Hom(PSL2(Z), Sp) = ha(n) - h3(n).
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Subgroup numbers of PSL,(7)

We have
Hom(PSL2(Z), Sp) = ha(n) - h3(n).

It is easy to see (and well-known) that

ha(n) = ha(n— 1) + (n — 1)ha(n — 2),

hs(n) = hs(n— 1) + (n = 1)(n — 2)ha(n — 3).
These are recurrences with polynomial coefficients.
It is then routine (gfun!!) to find a recurrence with polynomial
coefficients for the Hadamard product hy(n) - h3(n).
It is equally routine (gfun!!) to convert this recurrence into a

(linear) differential equation with polynomial coefficients for the
generating function }_, - Hom(PSL2(Z), Sn)Z

‘nl*
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Subgroup numbers of PSL,(7)

Godsil, Imrich and Razen found
(2" = 2ZH"(2) + (—1 4 4% + 22* 4+ 42° — 22" — 4°)H'(2)
+(1+z+4822 +422 - 2* +42° - 22° —22%)H(z) = 0.
Finally, this is converted into a differential equation for S(z):
(—14+423 4224425 - 22" —42°)S(2) + (2" — 21°)(5'(2) + 5%(2))
+ 14244224427 — 2% +42° - 2528 =0,
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Theorem

Let ®(z) =3 59 7%, and let o be some positive integer. Then

the generating function S(z) = Spsy,(z)(z), when reduced modulo
932
2a+2

, can be expressed as a polynomial in ®(z) of degree at most
— 1 with coefficients that are Laurent polynomials in z.
Moreover, for any given «, this polynomial can be found
automatically.
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2 DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS

(iit) For A odd with so(A+1) = 2, write A\ =2+ 2" — 1,a > b > 1. Then we have

4, b=1
6, b=2

Hh=<2 a=b+1 (mod 16).
6, a=b+2

14,  otherwise

(iv) For X odd with so(\ + 1) = 3, write X = 2% + 2" +2° — 1, where a > b > ¢ > 1.
Assume that precisely k of the equations a = b+1, and b = c+1 hold, k = 0,1,2.

Then we have
; 1, k=0(2) (mod 16)
= mod .
Tl k=12

(v) If X is odd with so(X + 1) = 4, then f\ = 8(16).
(vi) If X is odd with s5(A+ 1) > 5, then fy = 0(16).

The regular behaviour of the function fy described in Theorem 1 breaks down for
A < 20. Here the values modulo 16 are as follows.
A1 203[4|5]6|7[8[9]10[11[12[13]14]15]16]17|18]19
fﬂs‘lﬂl‘U‘Z‘U‘S‘O‘G‘ U‘ 2‘ U‘ 4‘ U‘ 5‘ 0‘ 6‘ O‘ 6
Theorem 2. Let n > 22 be an integer. Then we have modulo 8

1, n=2*-3

5, n=2-6

2, n=3-2°-33-2°-6
spn=96, m=2042-32042"—62°+3 a>b+2

4, n=24224+2°6,a>b>c>220+20+2° -3 a>b>c>2b>4,
n=2+2"+3a>b>2
0, otherwise.
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Let ®(z) =3 >0 z2". Then, modulo 64, we have

> sn11(PSL2(2)) 2"

n>0
= 257 4+ 32250 4 482 1 482*" + 32230 4 327%5 1 32233 1 4872 4 16228 + 402°°
+162%° 4+ 3222 4+ 322%% 4+ 162%% 4 162°! + 522%° + 32271 4 40718
+ 6027 4 482%0 + 47 1 32713 4 4712 4 3621 4 16210 + 602° + 22° + 1627
+426+6025+44z4+16z3+54z2+602+32+576 + §+§+§+ i—g
+ (32234 +322%0 4 322%° 4 32724 4 162%? + 3222 + 32220 4 32717 4 32716

+482M 1+ 16213 + 16212 + 162 + 32210 1 3228 + 4827 + 82° + 82 + 482% + 24z + 32
20 12 4 24
0 8 36 7) o(2)

e (32234 + 32229 4+ 32228 4+ 32220 4+ 32224 4 32771 4 48210 4+ 32218 4 487Y7 4 32714

+ 48213 1+ 32212 4 56210 + 829 + 162% + 4827 + 242° + 562° + 44z* + 1623

, 60 50 48 8 50 52 52\ ,
+48z°+40z+44+ —+ S + =+ 5 + =+ — + = |P(2)
z z2  z3 A S 26 A
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4 (32z28 + 32224 1+ 32771 + 32270 4 32219 4 48216 4 32714 4 32713 4 32712

32 0
_l'_i

2
+ 322 + 16210 + 482° + 828 + 482° + 562* + 823 + 162° + 482z + 56 + —
z 22

52 4 36 12 36) 4
+§+;+;+;+? (z)
e (32z44 + 32241 132733 4 32232 4 32231 4 32730 4 32,28 4 32277 4 16220 4 322

+ 32223 4 4827 +162%% + 402%° + 3221° + 32218 1 24717 4 16210 + 48215 4 32714
416213 +821% 43221 456210+ 562 + 4428 + 402" + 482° + 162° +20z* + 5623 + 302>
40 34 52 17 26 40 29
+32z+28+—+—2+—3+—4+—5+—6+—7)¢4(z)
z zZ V4 V4 V4 z z
4 (32z32 4322304322264 32224 4 32223 4 302224 32221 4 48220 4 48218 4 32,10 4 48714

+ 32213 4 48212 + 48211 + 3228 + 1627 + 562° + 482° + 482* + 402% + 1622

24 24 20 24 40 20
+32z+56+—+—2+—3+—4+—5+—6)¢5(z)
z z z z z V4
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e (32z32 + 32231 1+ 327%0 32277 4 32724 1 32223 4 48219 + 1628 + 48217
+ 162 + 4821% + 32212 4 3221 4 5628 + 4027 + 562° + 162°

8 52 60 30 20 20 14
+ 82" +562° +42° +562 4324 —+ S+ S+ S+ o+ 5+ )¢’6(z)

4 (32z3° +322%0 132221 1 32720 4 48718 1 32716 1 48214 1+ 32213 1+ 48210+ 162° +82°

48 40
+ 3225 4162 4 162° 4 822 +48z+40+—+—+—+—+—+—+ >¢7( )

modulo 64.
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What about the homogeneous modular group SL>(Z)?
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What about the homogeneous modular group SL>(Z)?

Here, we have

SLQ(Z) = <X,y : X4 = y6 —1 and X2 :y3>
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What about the homogeneous modular group SL>(Z)?

Here, we have
SL(Z) = (x,y : x* =y® =1 and x* = y?).
One can show that

[n/4] |2r/3] I
ho(n — 4r)hs(n — 4r)
H SLy( =n! '
Om( 2 =n Z Z 22!’ 5)35r| Sl(n_4r)|(2r—3s)|

r=0 s=0

We found and used a recurrence of order 50 and polynomial
coefficients of degree 5 for Hom(SL2(Z), Sp). This translates into
a differential equation for the generating function

5(z) := 3 0 Sn+1(SL2)(Z), with
S(2),5'(2),5"(z2),S"(z),S""(z) appearing.
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What about the homogeneous modular group SL>(Z)?

Here, we have
SL(Z) = (x,y : x* =y® =1 and x* = y?).
One can show that

[n/4] |2r/3] I
ho(n — 4r)hs(n — 4r)
H SLy( =n! '
Om( 2 =n Z Z 22!’ 5)35r| Sl(n_4r)|(2r—3s)|

r=0 s=0

We found and used a recurrence of order 50 and polynomial
coefficients of degree 5 for Hom(SL2(Z), Sp). This translates into
a differential equation for the generating function

5(z) := 3 0 Sn+1(SL2)(Z), with
S(2),5'(2),5"(z2),S"(z),S""(z) appearing.

The method works for this differential equation up to modulus 8.
It does not work for modulus 16!
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Theorem
n

Let d(z) = ano 22" Then we have

> " sn1(SLa(z)) 2"
n>0
=470 4 4217 4 421 4 472 4 4710 1 42% 4 628 +42° + 62 +42°+ 42+ 6

3 6 6 4 1 B
7+7

2 Z3 6
2 6 4 4 4 2 6 6 3 6 > 4 ®
+ ﬁ+ﬁ+ﬁ+?+§+?+;+;+4z +;+4Z +; (Z)
6 2 5 2

4
—%O?+4f+4£+6£+4+7+~7+4—+—
z z2 28 z¢ P
6 ,1,4 .6 4 6 6 5),
2 4 4 2 4 4 4 2 3

+(a2+ 24202
z2 23 A B L
modulo 8.

Mod-2X behaviour of recursive sequences
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The subgroup numbers s,(SL2(Z)) obey the following congruences
modulo 8 :
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The subgroup numbers s,(SL2(Z)) obey the following congruences
modulo 8 :

(i) sn(SL2(Z)) =1 (mod 8) if, and only if, n =1,2,4,10, or if n is of the form
29 — 3 for some o > 4;
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The subgroup numbers s,(SL2(Z)) obey the following congruences
modulo 8 :
(i) sn(SL2(Z)) =1 (mod 8) if, and only if, n =1,2,4,10, or if n is of the form
27 — 3 for some o > 4,
(ii) sn(SL2(Z)) = 2 (mod 8) if, and only if, n = 7,12,17, or if n is of one of the
forms

3.29-3,3:279 -6, 3:29 —12, for some g > 4;
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The subgroup numbers s,(SL2(Z)) obey the following congruences
modulo 8 :
(i) sn(SL2(Z)) =1 (mod 8) if, and only if, n =1,2,4,10, or if n is of the form
27 — 3 for some o > 4,
(ii) sn(SL2(Z)) = 2 (mod 8) if, and only if, n = 7,12,17, or if n is of one of the
forms

3.29-3,3:279 -6, 3:29 —12, for some g > 4;

(iii) sn(SL2(Z)) = 4 (mod 8) if, and only if, n = 3,22,23,27,46,47,51, or if n is of
one of the forms

279 46, 2° +7, 27 + 11, 29 + 12, 2° + 18,
29 +21, for some o > 5,
29 427 —2, 29 427 +1, 29 427 4 3,
for some o, 7 witho > 6 and4 <7 <o —1,
28 20 L8 120 22 LN LM — 6, 2% L 20 | 28— 3]
for some o, 7,v witho >6, 5<v<oc—-1, and3<7<v-—1;
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(iv) sn(SL2(Z)) =5 (mod 8) if, and only if, n =5, or if n is of one of the forms

29 — 6, 29 — 12, for some o > 5;
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(iv) sn(SL2(Z)) =5 (mod 8) if, and only if, n =5, or if n is of one of the forms
29 — 6, 29 — 12, for some o > 5;

(v) sn(SL2(Z)) = 6 (mod 8) if, and only if, n = 6,11, 14,18, 19, 21, 33, 34, 35,37, or
if n is of one of the forms

29 —2, 29 — 4, for some o > 5,

29 41, 29 42, 29 43, 29 44, 29 4+ 5, 29 410, 29 4+ 13,
for some o > 6,

29 427 —3, 29 427 —6, 279 +27 — 12,

for some o, 7 witho >7 and5 <7< 0 —2;
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(iv) sn(SL2(Z)) =5 (mod 8) if, and only if, n =5, or if n is of one of the forms
29 — 6, 29 — 12, for some o > 5;

(v) sn(SL2(Z)) = 6 (mod 8) if, and only if, n = 6,11, 14,18, 19, 21, 33, 34, 35,37, or
if n is of one of the forms

29 —2, 29 — 4, for some o > 5,

29 41, 29 42, 29 43, 29 44, 29 4+ 5, 29 410, 29 4+ 13,
for some o > 6,

29 427 —3, 29 427 —6, 279 +27 — 12,

for some o, 7 witho >7 and5 <7< 0 —2;

(vi) in the cases not covered by items (i)—(v), sn(SL2(Z)) is divisible by 8; in
particular, sp(SL(Z)) # 3,7 (mod 8) for all n.
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Epilogue
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Epilogue

@ What about other primes?
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Epilogue

@ What about other primes?
The whole theory can also be developed for other primes. It
works without any problem for FuB—Catalan numbers.
However, otherwise we are aware of just one (moderately)
interesting example (for the prime 3).
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Epilogue

@ What about other primes?
The whole theory can also be developed for other primes. It
works without any problem for FuB—Catalan numbers.
However, otherwise we are aware of just one (moderately)
interesting example (for the prime 3).

@ Then how do the subgroup numbers of PSL>(Z) or of SL(Z)
behave modulo 3 or larger prime numbers?
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Epilogue

@ What about other primes?
The whole theory can also be developed for other primes. It
works without any problem for FuB—Catalan numbers.
However, otherwise we are aware of just one (moderately)
interesting example (for the prime 3).

@ Then how do the subgroup numbers of PSL>(Z) or of SL(Z)
behave modulo 3 or larger prime numbers?
We do not know ...

@ There are situations where the modular behaviour can be
described using other “basic series,” for example (this applies
to Motzkin numbers modulo 3) by the series

o0

vz =Y Y e =Ta+ ).
k>0 n1>--->n >0 Jj=1
We are currently developing a theory for this series.
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