A method for determining the mod- 2^k behaviour of (certain) recursive sequences

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller

Universität Linz; Universität Wien; Queen Mary, University of London

Let $(a_n)_{n\geq 0}$ be a sequence of integers, where a_n is the number of ... of "size" n.

э

Let $(a_n)_{n\geq 0}$ be a sequence of integers, where a_n is the number of ... of "size" n.

What can we say about modular properties of these numbers?

Let $(a_n)_{n\geq 0}$ be a sequence of integers, where a_n is the number of ... of "size" n.

What can we say about modular properties of these numbers? In this talk:

What can we say about the value of a_n modulo 2^k ?

Let $(a_n)_{n\geq 0}$ be a sequence of integers, where a_n is the number of ... of "size" n.

What can we say about modular properties of these numbers? In this talk:

What can we say about the value of a_n modulo 2^k ?

Theorem (STOTHERS 1977)

The number s_n of index-n-subgroups in the inhomogeneous modular group $PSL_2(\mathbb{Z})$ is odd if, and only if, n is of the form $2^k - 3$ or $2^{k+1} - 6$, for some positive integer $k \ge 2$.

The first few numbers s_n , $n \ge 1$, are 1, 1, 4, 8, 5, 22, 42, 40, 120, 265, 286, 764, 1729, . . .

Let $(a_n)_{n\geq 0}$ be a sequence of integers, where a_n is the number of ... of "size" n.

What can we say about modular properties of these numbers? In this talk:

What can we say about the value of a_n modulo 2^k ?

Theorem (STOTHERS 1977)

The number s_n of index-n-subgroups in the inhomogeneous modular group $PSL_2(\mathbb{Z})$ is odd if, and only if, n is of the form $2^k - 3$ or $2^{k+1} - 6$, for some positive integer $k \ge 2$.

The first few numbers s_n , $n \ge 1$, are 1, 1, 4, 8, 5, 22, 42, 40, 120, 265, 286, 764, 1729, . . .

Let $(a_n)_{n\geq 0}$ be a sequence of integers, where a_n is the number of ... of "size" n.

What can we say about modular properties of these numbers? In this talk:

What can we say about the value of a_n modulo 2^k ?

Theorem (STOTHERS 1977)

The number s_n of index-n-subgroups in the inhomogeneous modular group $PSL_2(\mathbb{Z})$ is odd if, and only if, n is of the form $2^k - 3$ or $2^{k+1} - 6$, for some positive integer $k \ge 2$.

The first few numbers s_n , $n \ge 1$, are

 $1, 1, 4, 8, 5, 22, 42, 40, 120, 265, 286, 764, 1729, \ldots$

Stothers proved his result by clever counting of coset diagrams. A different proof of this result was given by GODSIL, IMRICH, and RAZEN.

DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS FOR THE MODULAR GROUP

THOMAS W. MÜLLER and JAN-CHRISTOPH SCHLAGE-PUCHTA

ABSTRACT. Let $\Gamma = PSL_2(Z)$ be the classical modular group. It has been shown by Stothers (*Proc. Royal Soc. Edinburgh* **78A**, 105–112) that s_n , the number of index nsubgroups in Γ , is odd if and only if n + 3 or n + 6 is a 2-power. Moreover, Stothers loc. cit. also showed that f_A , the number of free subgroups of index 6λ in Γ , is odd if and only if $\lambda + 1$ is a 2-power. Here, these divisibility results for f_A and s_n are generalized to congruences modulo higher powers of 2. We also determine the behaviour modulo 3 of f_A . Our results are naturally expressed in terms of the binary respectively ternary expansion of the index.

1. Introduction and results

Let $\Gamma = \text{PSL}_2(\mathbb{Z})$ be the classical modular group. We denote by s_n the number of index n subgroups in Γ , and by f_{λ} the number of free subgroups in Γ of index 6λ . These days, quite a lot is known concerning the subgroup arithmetic of Γ . Newman [5, Theorem 4] gave an asymptotic formula for s_n ; for a more general and more precise result see [3, Theorem 1]. Based on numerical computations of Newman, Johnson conjectured that s_n is odd if and only if $n = 2^a - 3, a \ge 2$ or $n = 2^a - 6, a \ge 3$. This conjecture was first proved by Stothers [6]. He first used coset diagrams to establish a relation between s_n and f_{λ} for various λ in the range $1 \le \lambda \le \frac{n+d}{2}$, and then showed that f_{λ} is odd if and only if $\lambda = 2^a - 1, a \ge 1$. The parity pattern for f_{λ} found by Stothers has been shown to hold for a larger class of virtually free groups, including free products $\Gamma = f_{\lambda} = s_{\lambda} = f_{\lambda} = 0$.

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS

(iii) For λ odd with $\mathfrak{s}_2(\lambda+1) = 2$, write $\lambda = 2^a + 2^b - 1$, $a > b \ge 1$. Then we have

$$f_{\lambda} \equiv \begin{cases} 14, & b = 1\\ 6, & b = 2\\ 2, & a = b + 1 \pmod{16}, \\ 6, & a = b + 2\\ 14, & \text{otherwise} \end{cases}$$

(iv) For λ odd with s₂(λ + 1) = 3, write λ = 2^a + 2^b + 2^c − 1, where a > b > c ≥ 1. Assume that precisely k of the equations a = b+1, and b = c+1 hold, k = 0,1,2. Then we have

$$f_{\lambda} \equiv \begin{cases} 4, & k \equiv 0 \, (2) \\ 12, & k \equiv 1 \, (2) \end{cases} \pmod{16}.$$

- (v) If λ is odd with $\mathfrak{s}_2(\lambda + 1) = 4$, then $f_{\lambda} \equiv 8(16)$.
- (vi) If λ is odd with $\mathfrak{s}_2(\lambda + 1) \ge 5$, then $f_\lambda \equiv 0$ (16).

The regular behaviour of the function f_{λ} described in Theorem 1 breaks down for $\lambda < 20$. Here the values modulo 16 are as follows.

Theorem 2. Let $n \ge 22$ be an integer. Then we have modulo 8

$$s_{n} \equiv \begin{cases} 1, & n = 2^{a} - 3\\ 5, & n = 2^{a} - 6\\ 2, & n = 3 \cdot 2^{a} - 3, 3 \cdot 2^{a} - 6\\ 6, & n = 2^{a} + 2^{b} - 3, 2^{a} + 2^{b} - 6, 2^{a} + 3, \ a \ge b + 2\\ 4, & n = 2^{a} + 2^{b} + 2^{c} - 6, a > b > c \ge 2, 2^{a} + 2^{b} + 2^{c} - 3, a > b > c \ge 2, b \ge 4, \\ & n = 2^{a} + 2^{b} + 3, a > b \ge 2\\ 0, & otherwise. \end{cases}$$

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

 $\mathbf{2}$

In this way we may simplify the last displayed expression as follows.

$$\begin{split} & 2\#\{n=2^a+2^b,a>b\geq 2\}+2\#\{n=2^a+2^b-3,a\geq 3,b\geq 2\}\\ & +2\#\{n=2^a+2^b-6,a>b\geq 3\}-2\#\{n=2^a+2^b+3,a>b\}\\ & -2\#\{n=2^a+2^b,a\geq 3,b\geq 2\}-2\#\{n=2^a+2^b-3,a>b\geq 3\}\\ & +4\#\{n=2^b+2^c+4,b>c\geq 2,b\geq 4\}+4\#\{n=2^a+9,a\geq 3\}\\ & +4\#\{n=2^b+2^c+1,b>c\geq 2\}+4\#\{n=2^a+2^b+2^c-6,b>c\geq 2,a\geq 3\}\\ & +4\#\{n=2^a+2^b+2^c,b>c\geq 2,a\geq 2\}+4\#\{n=2^a+2^b+2^c-3,b>c\geq 2,a\geq 3\}\\ & +4\#\{n=2^a+2^b+2^c,b>c\geq 2,a\geq 2\}+4\#\{n=2^a+2^b+2^c-3,b>c\geq 2,a\geq 3\}\\ & +4\#\{n=2^a+2^b+3,a\geq 3,b\geq 2\}+4\#\{n=2^a+2^b+9,a,b\geq 2\} \end{split}$$

Next consider for example the quantity $4\#\{n = 2^a + 2^b + 6, a \ge 3, b \ge 2\}$. If (a, b) is a solution with $a > b \ge 3$, then (b, a) is also a solution, that is, the number of solutions is even, unless n is of the form $n = 2^a + 10, a \ge 3$, or n is of the form $2^a + 6$ with $a \ge 4$. The same argument may be applied to several other terms as well, which allows us to simplify the expression further to obtain the following.

$$\begin{split} & 2\#\{n=2^a+2^b,a>b\}+4\#\{n=2^a+1,a\geq 3\}+2\#\{n=2^a-3,a\geq 4\}\}\\ & +4\#\{n=2^a+2^b-3,a>b\geq 2\}+2\#\{n=2^a+2^b-6,a>b\geq 3\}-2\#\{n=2^a+2^b+3,a>b\}\\ & -2\#\{n=2^a+4,a\geq 3\}-2\#\{n=2^a,a\geq 4\}+4\#\{n=2^a+2^b,a>b\geq 2\}\\ & -2\#\{n=2^a+2^b-3,a>b\geq 3\}+4\#\{n=2^b+2^c+4,b>c\geq 2,b\geq 4\}\\ & +4\#\{n=2^b+2^c+1,b>c\geq 2\}+4\#\{n=2^a+2^b+2^c-6,b>c\geq 2,a\geq 3\}\\ & +4\#\{n=2^a+2^b+2^c,b>c\geq 2,a\geq 2\}+4\#\{n=2^a+2^b+2^c-3,b>c\geq 2,a\geq 3\}\\ & +4\#\{n=2^a+7,a\geq 3\}+4\#\{n=2^a+3,a\geq 4\}\end{split}$$

Finally, consider the quantity $\#\{n = 2^a + 2^b + 2^c, b > c \ge 2, a \ge 2\}$. Let (a, b, c) be a solution counted. If all three components are distinct, there are no solutions with two \triangleleft

14

To ease further computations, we consider sets with one, two, and three parameters separately. Sets defined by one parameter contribute

$$\begin{split} &\{4|n=2^a,2^a-3,a\geq 3\}+\{2|n=2^a-2,2^a+1,a\geq 3\}+\{1|n=2^a,a\geq 3\}\\ &+\{4|n=3\cdot2^a,a\geq 3\}+\{4|n=2^a+9,a\geq 3\}+\{6|n=2^a+1,2^a+4,a\geq 3\}\\ &+\{7|n=2^a+3,a\geq 3\}+\{4|n=3\cdot2^a+3,a\geq 3\}+\{4|n=2^a+12\}\\ &+\{1|n=2^a-6,2^a\}+\{7|n=2^a-3,2^a+3\}+\{4|n=2^a+12,2^a+15,a>b\geq 2\}\\ &+\{4|n=2^a+1,a\geq 3\}+\{2|n=2^a-3,a\geq 4\}\}-\{2|n=2^a+4,a\geq 3\}\\ &-\{2|n=2^a,a\geq 4\}+\{4|n=2^a-2,a\geq 5\}+\{4|n=2^a-6,a\geq 5\}\\ &+\{4|n=3\cdot2^a-6,a\geq 5\}+\{4|n=2^a+15,a\geq 2\}+\{4|n=2^a+7,a\geq 4\}\\ &+\{4|n=2^a+3,a\geq 4\}+\{4|n=3\cdot2^a,a\geq 4\}+\{4|n=2^a+1,a\geq 4\}\\ &+\{4|n=2^a,a\geq 4\}+\{4|n=3\cdot2^a,a\geq 4\}+\{4|n=2^a+1,a\geq 4\}\\ &+\{4|n=2^a-3,a\geq 4\}+\{4|n=3\cdot2^a-3,a\geq 4\}+\{4|n=2^a+7,a\geq 3\}\\ &+\{4|n=2^a+3,a\geq 4\}+\{4|n=3\cdot2^a-3,a\geq 4\}+\{4|n=2^a+7,a\geq 3\}\\ &+\{4|n=2^a+3,a\geq 4\}+\{4|n=3\cdot2^a-3,a\geq 4\}+\{4|n=2^a+3,a\geq 4\}, \end{split}$$

which is congruent to

$$\begin{split} \{5|n=2^a-6, a\geq 5\} + \{1|n=2^a-3, a\geq 3\} + \{6|n=2^a-2, a\geq 3\} \\ + \{6|n=2^a+3, a\geq 3\} + \{4|n=2^a+9, a\geq 3\} \\ + \{4|n=3\cdot 2^a-6, a\geq 3\} + \{4|n=3\cdot 2^a-3, a\geq 4\}. \end{split}$$

Next, we collect all 2-parameter sets. These contribute

$$\begin{split} &\{4|n=2^a+2^b+1,2^a+2^b-2,a>b\geq 2\}+\{2|n=2^a+2^b,a>b\geq 2\}\\ &+\{4|n=2^a+2^b+4,2^a+2^b+1,a>b\geq 2\}+\{2|n=2^a+2^b+3,a>b\geq 2\}\\ &+\{4|n=2^a+2^b,2^a+2^b+3,2^a+2^b-6,2^a+2^b-3,a>b\geq 2\}\\ &+\{2|n=2^a+2^b,a>b\}+\{4|n=2^a+2^b-3,a>b\geq 2\}\\ &+\{2|n=2^a+2^b,a>b\geq 3\}-\{2|n=2^a+2^b+3,a>b\}\\ &+\{4|n=2^a+2^b,a>b\geq 2\}-\{2|n=2^a+2^b-3,a>b\geq 3\} \end{split}$$

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

э

Let us have another look at Stothers' theorem:

Theorem (STOTHERS 1977)

The number s_n of index-n-subgroups in the inhomogeneous modular group $PSL_2(\mathbb{Z})$ is odd if, and only if, n is of the form $2^k - 3$ or $2^{k+1} - 6$, for some positive integer $k \ge 2$.

Let us have another look at Stothers' theorem:

Theorem (STOTHERS 1977)

The number s_n of index-n-subgroups in the inhomogeneous modular group $PSL_2(\mathbb{Z})$ is odd if, and only if, n is of the form $2^k - 3$ or $2^{k+1} - 6$, for some positive integer $k \ge 2$.

Let us have another look at Stothers' theorem:

Theorem (STOTHERS 1977)

The number s_n of index-n-subgroups in the inhomogeneous modular group $PSL_2(\mathbb{Z})$ is odd if, and only if, n is of the form $2^k - 3$ or $2^{k+1} - 6$, for some positive integer $k \ge 2$.

In other words: Let

$$\Phi(z) = \sum_{n \ge 0} z^{2^n} = z + z^2 + z^4 + z^8 + z^{16} + \cdots$$

Then

$$\sum_{n\geq 0} s_{n+1} z^n = (z^{-7} + z^{-4}) \Phi(z) + z^{-6} + z^{-5} + z^{-2} \mod 2.$$

DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS

(iii) For λ odd with $\mathfrak{s}_2(\lambda+1) = 2$, write $\lambda = 2^a + 2^b - 1$, $a > b \ge 1$. Then we have

$$f_{\lambda} \equiv \begin{cases} 14, & b = 1\\ 6, & b = 2\\ 2, & a = b + 1 \pmod{16}, \\ 6, & a = b + 2\\ 14, & \text{otherwise} \end{cases}$$

(iv) For λ odd with s₂(λ + 1) = 3, write λ = 2^a + 2^b + 2^c − 1, where a > b > c ≥ 1. Assume that precisely k of the equations a = b+1, and b = c+1 hold, k = 0,1,2. Then we have

$$f_{\lambda} \equiv \begin{cases} 4, & k \equiv 0 \, (2) \\ 12, & k \equiv 1 \, (2) \end{cases} \pmod{16}.$$

- (v) If λ is odd with $\mathfrak{s}_2(\lambda + 1) = 4$, then $f_{\lambda} \equiv 8(16)$.
- (vi) If λ is odd with $\mathfrak{s}_2(\lambda + 1) \ge 5$, then $f_\lambda \equiv 0$ (16).

The regular behaviour of the function f_{λ} described in Theorem 1 breaks down for $\lambda < 20$. Here the values modulo 16 are as follows.

Theorem 2. Let $n \ge 22$ be an integer. Then we have modulo 8

$$s_{n} \equiv \begin{cases} 1, & n = 2^{a} - 3\\ 5, & n = 2^{a} - 6\\ 2, & n = 3 \cdot 2^{a} - 3, 3 \cdot 2^{a} - 6\\ 6, & n = 2^{a} + 2^{b} - 3, 2^{a} + 2^{b} - 6, 2^{a} + 3, \ a \ge b + 2\\ 4, & n = 2^{a} + 2^{b} + 2^{c} - 6, a > b > c \ge 2, 2^{a} + 2^{b} + 2^{c} - 3, a > b > c \ge 2, b \ge 4, \\ & n = 2^{a} + 2^{b} + 3, a > b \ge 2\\ 0, & otherwise. \end{cases}$$

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

 $\mathbf{2}$

Let

$$\Phi(z) = \sum_{n \ge 0} z^{2^n} = z + z^2 + z^4 + z^8 + z^{16} + \cdots$$

Then the result of Müller and Schlage–Puchta can be compactly expressed in the form

$$\begin{split} \sum_{n\geq 0} s_{n+1}z^n &= z^{57} + 4z^{20} + 4z^{17} + 4z^{14} + 4z^{12} + 4z^{11} + 4z^{10} + 4z^9 + 2z^8 + 4z^5 + 2z^4 + 4z^3 + 2z^2 \\ &+ 4z + 2 + \frac{1}{z^2} + \frac{7}{z^3} + \frac{5}{z^4} + \frac{5}{z^5} + \frac{2}{z^6} + \left(\frac{6}{z^7} + \frac{2}{z^6} + \frac{2}{z^4} + 4z^3 + \frac{2}{z^3} + 4z^2 + \frac{4}{z}\right) \Phi(z) \\ &+ \left(4z^8 + \frac{3}{z^7} + \frac{2}{z^6} + \frac{2}{z^5} + 4z^4 + \frac{3}{z^4} + 4z^3 + \frac{6}{z^3} + 2z^2 + \frac{2}{z^2} + \frac{4}{z} + 4\right) \Phi^2(z) \\ &+ \left(\frac{6}{z^7} + \frac{4}{z^6} + \frac{4}{z^5} + \frac{6}{z^4} + \frac{4}{z^3} + 4z^2 + \frac{4}{z^2}\right) \Phi^3(z) \mod 8. \end{split}$$

- 17

э

It is a simple observation that $\Phi(z) = \sum_{n \ge 0} z^{2^n}$ satisfies $\Phi^2(z) - \Phi(z) - z = 0 \mod 2.$

3

It is a simple observation that $\Phi(z) = \sum_{n \ge 0} z^{2^n}$ satisfies

$$\Phi^2(z) - \Phi(z) - z = 0 \quad \text{modulo } 2.$$

Suppose that we want to determine the behaviour of the sequence $(f_n)_{n\geq 0}$ modulo 2. We form the generating function $F(z) = \sum_{n\geq 0} f_n z^n$, and suppose that we know that it satisfies a differential equation of the form

$$\mathcal{P}(z;F(z),F'(z),F''(z),\ldots,F^{(s)}(z))=0,$$

where \mathcal{P} is a polynomial with integer coefficients, which has a unique formal power series solution.

We know

$$\Phi^2(z) - \Phi(z) - z = 0 \quad \text{modulo 2.} \tag{1}$$

э

and

$$\mathcal{P}(z; F(z), F'(z), F''(z), \dots, F^{(s)}(z)) = 0.$$

We know

$$\Phi^2(z) - \Phi(z) - z = 0 \quad \text{modulo 2.} \tag{1}$$

and

$$\mathcal{P}(z; F(z), F'(z), F''(z), \dots, F^{(s)}(z)) = 0.$$

Then, to prove a guessed congruence of the form

$$F(z) = a_0(z) + a_1(z)\Phi(z) \mod 2,$$

where $a_0(z)$, $a_1(z)$ are Laurent polynomials, is trivial: one substitutes the guess into the differential equation, one reduces higher powers of $\Phi(z)$ by means of (1), one reduces the result modulo 2, using the trivial fact that

$$\Phi'(z) = 1 \mod 2$$
,

and one verifies that everything vanishes.

We know

$$\Phi^2(z) - \Phi(z) - z = 0 \quad \text{modulo 2.} \tag{1}$$

and

$$\mathcal{P}(z; F(z), F'(z), F''(z), \dots, F^{(s)}(z)) = 0.$$

Then, to prove a guessed congruence of the form

$$F(z) = a_0(z) + a_1(z)\Phi(z) \mod 2,$$

where $a_0(z)$, $a_1(z)$ are Laurent polynomials, is trivial: one substitutes the guess into the differential equation, one reduces higher powers of $\Phi(z)$ by means of (1), one reduces the result modulo 2, using the trivial fact that

$$\Phi'(z) = 1 \mod 2$$
,

and one verifies that everything vanishes.

A computer can do this!

Example: Catalan numbers

æ

∃►

- ● ● ●

Example: Catalan numbers

Everybody knows that the generating function $C(z) = \sum_{n\geq 0} \operatorname{Cat}_n z^n$ for the Catalan numbers $\operatorname{Cat}_n = \frac{1}{n+1} \binom{2n}{n}$ satisfies the equation

$$zC^{2}(z) - C(z) + 1 = 0.$$

Example: Catalan numbers

Everybody knows that the generating function $C(z) = \sum_{n\geq 0} \operatorname{Cat}_n z^n$ for the Catalan numbers $\operatorname{Cat}_n = \frac{1}{n+1} {\binom{2n}{n}}$ satisfies the equation

$$zC^{2}(z) - C(z) + 1 = 0.$$

It is easy to guess that

$$C(z) = z^{-1}\Phi(z) \mod 2.$$

It is even easier to prove that: we substitute in the equation,

$$\begin{aligned} z(z^{-1}\Phi(z))^2 - z^{-1}\Phi(z) + 1 &= z^{-1}\Phi^2(z) - z^{-1}\Phi(z) + 1 \\ &= z^{-1}(\Phi(z) + z) - z^{-1}\Phi(z) + 1 = 0 \quad \text{modulo } 2, \end{aligned}$$

and do the reduction!

First we need a polynomial equation satisfied by $\Phi(z)$. Recalling the congruence

$$\Phi^2(z) - \Phi(z) - z = 0 \quad \text{modulo } 2,$$

we might take

$$(\Phi^2(z) - \Phi(z) - z)^k = 0 \mod 2^k.$$

First we need a polynomial equation satisfied by $\Phi(z)$. Recalling the congruence

$$\Phi^2(z) - \Phi(z) - z = 0 \quad \text{modulo } 2,$$

we might take

$$(\Phi^2(z) - \Phi(z) - z)^k = 0 \mod 2^k.$$

As it turns out, this is not "optimal." For example, we have actually

$$\Phi^4(z) + 6\Phi^3(z) + (2z+3)\Phi^2(z) + (2z+6)\Phi(z) + 2z + 5z^2 = 0$$

modulo 8.

In general, we are not able to provide a formula for a monic polynomial of minimal degree satisfied by $\Phi(z)$ modulo 2^k . We do have a precise conjecture for the minimal degree, though, and a procedure for computing such a polynomial of minimal degree for every specific k.

So, in lack of a precise formula, we base our considerations on the congruence

$$(\Phi^{4}(z)+6\Phi^{3}(z)+(2z+3)\Phi^{2}(z)+(2z+6)\Phi(z)+2z+5z^{2})^{2^{\alpha}}=0$$

modulo 8^{2^{\alpha}} = 2^{3·2^{\alpha}}.

In general, we are not able to provide a formula for a monic polynomial of minimal degree satisfied by $\Phi(z)$ modulo 2^k . We do have a precise conjecture for the minimal degree, though, and a procedure for computing such a polynomial of minimal degree for every specific k.

So, in lack of a precise formula, we base our considerations on the congruence

$$(\Phi^{4}(z)+6\Phi^{3}(z)+(2z+3)\Phi^{2}(z)+(2z+6)\Phi(z)+2z+5z^{2})^{2^{\alpha}}=0$$

modulo $8^{2^{\alpha}}=2^{3\cdot 2^{\alpha}}$.

This is a polynomial relation of degree $2^{\alpha+2}$.

э

Idea:

Make the Ansatz

$$F(z) = \sum_{i=0}^{2^{lpha+2}-1} a_i(z) \Phi^i(z) \mod 2^{3\cdot 2^{lpha}},$$

where the $a_i(z)$'s are (at this point) undetermined Laurent polynomials in z.

Then, gradually determine approximations $a_{i,\beta}(z)$ to $a_i(z)$ such that our differential equation

$$\mathcal{P}(z; F(z), F'(z), F''(z), \ldots, F^{(s)}(z)) = 0$$

holds modulo 2^{β} , for $\beta = 1, 2, \dots, 3 \cdot 2^{\alpha}$.

The base step:

Substitute

$${\sf F}(z)=\sum_{i=0}^{2^{lpha+2}-1}{\sf a}_{i,1}(z)\Phi^i(z)\quad {
m modulo} \; 2$$

into the differential equation, considered modulo 2,

$$\mathcal{P}(z; F(z), F'(z), F''(z), \dots, F^{(s)}(z)) = 0 \mod 2,$$

use $\Phi'(z) = 1$ modulo 2, reduce high powers of $\Phi(z)$ modulo the polynomial relation of degree $2^{\alpha+2}$ satisfied by $\Phi(z)$, and compare coefficients of powers $\Phi^k(z)$, $k = 0, 1, \ldots, 2^{\alpha+2} - 1$. This yields a system of $2^{\alpha+2}$ (algebraic differential) equations (modulo 2) for the unknown Laurent polynomials $a_{i,1}(z)$, $i = 0, 1, \ldots, 2^{\alpha+2} - 1$, which may or may not have a solution.

The iteration:

Provided we have already found $a_{i,\beta}(z)$, $i = 0, 1, ..., 2^{\alpha+2} - 1$, such that

$$F(z) = \sum_{i=0}^{2^{\alpha+2}-1} a_{i,\beta}(z) \Phi^i(z)$$

solves our differential equation modulo 2^{β} , we put

$$a_{i,eta+1}(z) := a_{i,eta}(z) + 2^eta b_{i,eta+1}(z), \quad i = 0, 1, \dots, 2^{lpha+2} - 1,$$

where the $b_{i,\beta+1}(z)$'s are (at this point) undetermined Laurent polynomials in z. Next we substitute

$${\mathcal F}(z)=\sum_{i=0}^{2^{lpha+2}-1}{\mathsf a}_{i,eta+1}(z)\Phi^i(z)$$

in the differential equation.

The "method" for proving congruences modulo 2^k *The iteration*:

0

One uses

$$\Phi'(z)=\sum_{n=0}^{
ho}2^nz^{2^n-1} \mod 2^{eta+1},$$

one reduces high powers of $\Phi(z)$ using the polynomial relation satisfied by $\Phi(z)$, and one compares coefficients of powers $\Phi^j(z)$, $j = 0, 1, \ldots, 2^{\alpha+2} - 1$. After simplification, this yields a system of $2^{\alpha+2}$ (linear differential) equations (modulo 2) for the unknown Laurent polynomials $b_{i,\beta+1}(z)$, $i = 0, 1, \ldots, 2^{\alpha+2} - 1$, which may or may not have a solution. **The "method" for proving congruences modulo** 2^k *The iteration*:

One uses

$$\Phi'(z) = \sum_{n=0}^{\beta} 2^n z^{2^n-1} \mod 2^{\beta+1},$$

one reduces high powers of $\Phi(z)$ using the polynomial relation satisfied by $\Phi(z)$, and one compares coefficients of powers $\Phi^j(z)$, $j = 0, 1, \ldots, 2^{\alpha+2} - 1$. After simplification, this yields a system of $2^{\alpha+2}$ (linear differential) equations (modulo 2) for the unknown Laurent polynomials $b_{i,\beta+1}(z)$, $i = 0, 1, \ldots, 2^{\alpha+2} - 1$, which may or may not have a solution.

(More precisely, in general this will be a system of linear equations in the $b_{i,\beta+1}(z)$'s and $b'_{i,\beta+1}(z)$'s, $i = 0, 1, \ldots, 2^{\alpha+2} - 1$. By separating each unknown polynomial b(z) into "even part" and "odd part," $b(z) = b^{(e)}(z) + b^{(o)}(z)$, and by using the observation

$$b'(z) = z^{-1}b^{(o)}(z) \mod 2,$$

this system can be converted into a system of linear equations in the even and odd parts of the $b_{i,\beta+1}(z)$'s.)

э

∃►

A ►

The Ansatz:

$$C(z) = \sum_{i=0}^{2^{lpha+2}-1} a_i(z) \Phi^i(z) \mod 2^{3\cdot 2^{lpha}}.$$

э

The Ansatz:

$$\mathcal{C}(z) = \sum_{i=0}^{2^{lpha+2}-1} a_i(z) \Phi^i(z) \mod 2^{3\cdot 2^{lpha}}.$$

The base step:

We have

$$C(z) = \sum_{k=0}^{\alpha} z^{2^{k}-1} + z^{-1} \Phi^{2^{\alpha+1}}(z) \mod 2.$$

The Ansatz:

$$\mathcal{C}(z) = \sum_{i=0}^{2^{lpha+2}-1} a_i(z) \Phi^i(z) \quad ext{modulo } 2^{3\cdot 2^{lpha}}.$$

The base step:

We have

$$C(z) = \sum_{k=0}^{\alpha} z^{2^{k}-1} + z^{-1} \Phi^{2^{\alpha+1}}(z) \mod 2.$$

The iteration: works automatically without problems.

Theorem

Let $\Phi(z) = \sum_{n\geq 0} z^{2^n}$, and let α be some positive integer. Then the generating function C(z) for Catalan numbers, reduced modulo $2^{3\cdot 2^{\alpha}}$, can be expressed as a polynomial in $\Phi(z)$ of degree at most $2^{\alpha+2} - 1$ with coefficients that are Laurent polynomials in z. Moreover, for any given α , this polynomial can be found automatically.

Catalan Numbers Modulo 2^k

Shu-Chung Liu¹ Department of Applied Mathematics National Hsinchu University of Education Hsinchu, Taiwan liularry@mail.nhcue.edu.tw

and

Jean C.-C. Yeh Department of Mathematics Texas A & M University College Station, TX 77843-3368 USA

Abstract

In this paper, we develop a systematic tool to calculate the congruences of some combinatorial numbers involving n!. Using this tool, we re-prove Kummer's and Lucas' theorems in a unique concept, and classify the congruences of the Catalan numbers $c_n \pmod{6}$. To achieve the second goal, $c_n \pmod{8}$ and $c_n \pmod{16}$ are also classified. Through the approach of these three congruence problems, we develop several general

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

For those $c_n \pmod{64}$ with $\omega_2(c_n) = 2$, we can simply plug $u_{16}(c_n)$ given in (47) into (32). Here we also show a precise classification by tables.

Theorem 6.3. Let $n \in \mathbb{N}$ with $d(\alpha) = 2$. Then we have

$$c_n \equiv_{64} (-1)^{2r(\alpha)} 4 \times 5^{u_{16}(CF_2(c_n))}$$

where $u_{16}(CF_2(c_n))$ is given in (47). Precisely, let $[\alpha]_2 = \langle 10^a 10^b \rangle_2$, i.e., $[n]_2 = \langle 10^a 10^{b+1} 1^\beta \rangle_2$, and then we have $c_n \pmod{64}$ shown in the following four tables.

	a = 0	a = 1	a = 2	$a \ge 3$			a = 0	a = 1	a = 2	$a \ge 3$			
b = 0	4	28	44	12	l	b = 0	52	12	28	60			
b = 1	12	36	52	20	l	b = 1	44	4	20	52			
b = 2	60	20	36	4	l	b = 2	60	20	36	4			
$b \ge 3$	28	52	4	36	l	$b \ge 3$	28	52	4	36			
	w	hen $\beta =$	0			when $\beta = 1$							
	a = 0	a = 1	a = 2	$a \ge 3$			a = 0	a = 1	a = 2	$a \ge 3$			
b = 0	a = 0 36	a = 1 28	a = 2 44	$a \ge 3$ 12	l	b = 0	a = 0 4	a = 1 60	a = 2 12	$a \ge 3$ 44			
b = 0 b = 1													
	36	28	44	12	l	b = 0	4	60	12	44			
b = 1	36 28	28 20	44 36	12 4	l	b = 0 b = 1	4 60	60 52	12 4	44 36			

Proof. Notice that there are difference between $a \ge 3$ and a = 3, and similarly for b and β . We split (47) into two parts as follows:

$$A := \chi(\beta' = 0)(2\ddot{\alpha}_1 - \ddot{\alpha}_0 - 1) - \chi(\beta' = 1) + 2\chi(\beta' = 2)\ddot{\alpha}_0 + 2\chi(\beta' = 3)(1 - \ddot{\alpha}_0),$$

$$B := 2[c_2(\ddot{\alpha}) + \ddot{\alpha}_0(1 - \ddot{\alpha}_2) + \#(S_4(\ddot{\alpha}), \{\langle 0011 \rangle_2, \langle 1x00 \rangle_2 \})] - r_1(\ddot{\alpha}) - zr_1(\ddot{\alpha}) + \ddot{\alpha}_0\ddot{\alpha}_1 + 1.$$

Clearly, B is independent on β' . We will only prove the first table of this theorem. The other three tables can be checked in the same way. With simple calculation we obtain the values of A as $\beta = 0$ and B as follows:

		a = 0	a = 1	a = 2	a = 3			a = 1				_	
	b = 0	0	2	2	2	b = 0	0	2	1P'	3=>	1 2 1	- 2	$\mathcal{O}\mathcal{Q}$
Manuel Kauers, Christian Krattenthaler and Thomas W. Müller							behav	iour of r	ecursiv	e sequence	s		

Theorem (LIU AND YEH, compactly)

Let $\Phi(z) = \sum_{n \ge 0} z^{2^n}$. Then, modulo 64, we have

$$\begin{split} \sum_{n=0}^{\infty} \operatorname{Cat}_{n} z^{n} &= 32z^{5} + 16z^{4} + 6z^{2} + 13z + 1 + \left(32z^{4} + 32z^{3} + 20z^{2} + 44z + 40\right) \Phi(z) \\ &+ \left(16z^{3} + 56z^{2} + 30z + 52 + \frac{12}{z}\right) \Phi^{2}(z) + \left(32z^{3} + 60z + 60 + \frac{28}{z}\right) \Phi^{3}(z) \\ &+ \left(32z^{3} + 16z^{2} + 48z + 18 + \frac{35}{z}\right) \Phi^{4}(z) + \left(32z^{2} + 44\right) \Phi^{5}(z) \\ &+ \left(48z + 8 + \frac{50}{z}\right) \Phi^{6}(z) + \left(32z + 32 + \frac{4}{z}\right) \Phi^{7}(z) \quad \text{modulo 64.} \end{split}$$

3 x 3

/⊒ > < ∃ >

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

Theorem

Let
$$\Phi(z) = \sum_{n \ge 0} z^{2^n}$$
. Then, modulo 4096, we have

$$\sum_{n=0}^{\infty} \operatorname{Cat}_n z^n = 2048z^{14} + 3072z^{13} + 2048z^{12} + 3584z^{11} + 640z^{10} + 2240z^9 + 32z^8 + 832z^7 + 2412z^6 + 1042z^5 + 2702z^4 + 53z^3 + 2z^2 + z + 1 + (2048z^{12} + 3840z^{10} + 2112z^8 + 2112z^7 + 552z^6 + 3128z^5 + 2512z^4 + 4000z^3 + 3904z^2) \Phi(z) + (2048z^{13} + 3072z^{11} + 1536z^{10} + 1152z^9 + 1024z^8 + 4000z^7 + 3440z^6 + 3788z^5 + 3096z^4 + 3416z^3 + 2368z^2 + 288z) \Phi^2(z) + (2048z^{11} + 2048z^{10} + 2304z^9 + 512z^8 + 2752z^7 + 3072z^6 + 728z^5 + 3528z^4 + 1032z^3 + 3168z^2 + 3456z + 3904) \Phi^3(z) + (2048z^{12} + 3072z^{11} + 1024z^{10} + 2048z^9 + 1152z^8 + 1728z^7 + 2272z^6 + 2464z^5 + 3452z^4 + 3154z^3 + 2136z^2 + 3896z + 1600 + \frac{48}{z}) \Phi^4(z) + (2048z^{10} + 2048z^9 + 1792z^8 + 1792z^7 + 1088z^6 + 1536z^5 + 1704z^4 + 3648z^3 + 3288z^2 + 200z + 3728 + \frac{2272}{z}) \Phi^5(z)$$

$$+ \left(2048z^{11}1024z^9 + 1536z^8 + 3200z^7 + 2816z^6 + 1312z^5 + 3824z^4 + 140z^3 + 592z^2 + 3692z + 488 + \frac{2760}{z}\right)\Phi^6(z) \\ + \left(2048z^9 + 2304z^7 + 2304z^6 + 3520z^5 + 960z^4 + 2456z^3 + 2128z^2 + 2936z + 1784 + \frac{4024}{z}\right)\Phi^7(z) \\ + \left(2048z^{10} + 1024z^9 + 2048z^8 + 512z^7 + 3968z^6 + 1088z^5 + 1888z^4 + 832z^3 + 1444z^2 + 2646z + 3258 + \frac{339}{z}\right)\Phi^8(z) \\ + \left(2048z^8 + 3328z^6 + 1536z^5 + 3008z^4 + 320z^3 + 2168z^2 + 1144z + 3992 + \frac{3152}{z}\right)\Phi^9(z) \\ + \left(2048z^9 + 3072z^7 + 512z^6 + 1408z^5 + 2560z^4 + 3424z^3 + 3408z^2 + 1316z + 3608 + \frac{2380}{z}\right)\Phi^{10}(z) \\ + \left(2048z^7 + 2048z^6 + 2816z^5 + 3072z^4 + 1856z^3 + 2688z^2 + 1288z + 3880 + \frac{3904}{z}\right)\Phi^{11}(z)$$

We have also a procedure for extracting coefficients of powers of $\Phi(z)$.

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

Given a group G, let $s_n(G)$ denote the number of subgroups of index n in G.

Given a group G, let $s_n(G)$ denote the number of subgroups of index n in G.

How to get a differential equation for $\sum_{n>0} s_{n+1}(G) z^n$?

Given a group G, let $s_n(G)$ denote the number of subgroups of index n in G.

How to get a differential equation for $\sum_{n>0} s_{n+1}(G) z^n$?

Theorem (DEY 1965)

We have

$$\sum_{n=0}^{\infty} |\operatorname{Hom}(G, S_n)| \frac{z^n}{n!} = \exp\left(\sum_{n=1}^{\infty} s_n(G) \frac{z^n}{n}\right).$$

$$\sum_{n=0}^{\infty} |\operatorname{Hom}(G, S_n)| \frac{z^n}{n!} = \exp\left(\sum_{n=1}^{\infty} s_n(G) \frac{z^n}{n}\right).$$

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

<ロ> <同> <同> < 同> < 同>

æ

$$\sum_{n=0}^{\infty} |\operatorname{Hom}(G,S_n)| \frac{z^n}{n!} = \exp\left(\sum_{n=1}^{\infty} s_n(G) \frac{z^n}{n}\right).$$

Let

$$H(z):=\sum_{n=0}^{\infty}|\operatorname{Hom}(G,S_n)|\frac{z^n}{n!} \quad \text{and} \quad S(z):=\sum_{n=1}^{\infty}s_{n+1}(G)z^n.$$

▲□▶ ▲□▶ ▲ □▶

문 🛌 문

$$\sum_{n=0}^{\infty} |\operatorname{Hom}(G, S_n)| \frac{z^n}{n!} = \exp\left(\sum_{n=1}^{\infty} s_n(G) \frac{z^n}{n}\right).$$

$$H(z):=\sum_{n=0}^{\infty}|\operatorname{Hom}(G,S_n)|\frac{z^n}{n!} \quad \text{and} \quad S(z):=\sum_{n=1}^{\infty}s_{n+1}(G)z^n.$$

Then

Let

$$\frac{H^{(k)}(z)}{H(z)} = P_k(S(z), S'(z), \dots), \qquad k = 1, 2, \dots,$$

- **→** → **→**

where $P_k(S(z), S'(z), ...)$ is a polynomial in S(z) and its derivatives.

Hence: If we have a *linear* differential equation for H(z), via

$$\frac{H^{(k)}(z)}{H(z)} = P_k(S(z), S'(z), \dots), \qquad k = 1, 2, \dots,$$

it translates into a differential equation for S(z).

We may then apply our method to this differential equation for S(z).

э

The group $PSL_2(\mathbb{Z})$ is freely generated by

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$.

Hence

$$PSL_2(\mathbb{Z}) = C_2 * C_3 = \langle x, y : x^2 = y^3 = 1 \rangle.$$

The group $PSL_2(\mathbb{Z})$ is freely generated by

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$.

Hence

$$PSL_2(\mathbb{Z}) = C_2 * C_3 = \langle x, y : x^2 = y^3 = 1 \rangle.$$

Hence:

$$\operatorname{Hom}(PSL_2(\mathbb{Z}),S_n)=h_2(n)\cdot h_3(n),$$

where $h_2(n)$ is the number of involutions in S_n and $h_3(n)$ is the number of permutations of order 3 in S_n .

We have

$$\operatorname{Hom}(PSL_2(\mathbb{Z}),S_n)=h_2(n)\cdot h_3(n).$$

э

We have

$$\operatorname{Hom}(PSL_2(\mathbb{Z}),S_n)=h_2(n)\cdot h_3(n).$$

It is easy to see (and well-known) that

$$h_2(n) = h_2(n-1) + (n-1)h_2(n-2),$$

$$h_3(n) = h_3(n-1) + (n-1)(n-2)h_3(n-3).$$

These are recurrences with polynomial coefficients.

It is then routine (gfun!!) to find a recurrence with polynomial coefficients for the Hadamard product $h_2(n) \cdot h_3(n)$. It is equally routine (gfun!!) to convert this recurrence into a (linear) differential equation with polynomial coefficients for the

generating function $\sum_{n\geq 0} \operatorname{Hom}(PSL_2(\mathbb{Z}), S_n) \frac{z^n}{n!}$.

Godsil, Imrich and Razen found

$$(z^{7} - z^{10})H''(z) + (-1 + 4z^{3} + 2z^{4} + 4z^{6} - 2z^{7} - 4z^{9})H'(z) + (1 + z + 4z^{2} + 4z^{3} - z^{4} + 4z^{5} - 2z^{6} - 2z^{8})H(z) = 0.$$

Finally, this is converted into a differential equation for S(z):

$$(-1+4z^{3}+2z^{4}+4z^{6}-2z^{7}-4z^{9})S(z)+(z^{7}-z^{10})(S'(z)+S^{2}(z)) + 1+z+4z^{2}+4z^{3}-z^{4}+4z^{5}-2z^{6}-2z^{8}=0.$$

Theorem

Let $\Phi(z) = \sum_{n \ge 0} z^{2^n}$, and let α be some positive integer. Then the generating function $S(z) = S_{PSL_2(\mathbb{Z})}(z)$, when reduced modulo $2^{3 \cdot 2^{\alpha}}$, can be expressed as a polynomial in $\Phi(z)$ of degree at most $2^{\alpha+2} - 1$ with coefficients that are Laurent polynomials in z. Moreover, for any given α , this polynomial can be found automatically. DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS

(iii) For λ odd with $\mathfrak{s}_2(\lambda+1) = 2$, write $\lambda = 2^a + 2^b - 1$, $a > b \ge 1$. Then we have

$$f_{\lambda} \equiv \begin{cases} 14, & b = 1\\ 6, & b = 2\\ 2, & a = b + 1 \pmod{16}, \\ 6, & a = b + 2\\ 14, & \text{otherwise} \end{cases}$$

(iv) For λ odd with s₂(λ + 1) = 3, write λ = 2^a + 2^b + 2^c − 1, where a > b > c ≥ 1. Assume that precisely k of the equations a = b+1, and b = c+1 hold, k = 0,1,2. Then we have

$$f_{\lambda} \equiv \begin{cases} 4, & k \equiv 0 \, (2) \\ 12, & k \equiv 1 \, (2) \end{cases} \pmod{16}.$$

- (v) If λ is odd with $\mathfrak{s}_2(\lambda + 1) = 4$, then $f_{\lambda} \equiv 8(16)$.
- (vi) If λ is odd with $\mathfrak{s}_2(\lambda + 1) \ge 5$, then $f_\lambda \equiv 0$ (16).

The regular behaviour of the function f_{λ} described in Theorem 1 breaks down for $\lambda < 20$. Here the values modulo 16 are as follows.

Theorem 2. Let $n \ge 22$ be an integer. Then we have modulo 8

$$s_n \equiv \begin{cases} 1, & n = 2^a - 3\\ 5, & n = 2^a - 6\\ 2, & n = 3 \cdot 2^a - 3, 3 \cdot 2^a - 6\\ 6, & n = 2^a + 2^b - 3, 2^a + 2^b - 6, 2^a + 3, \ a \ge b + 2\\ 4, & n = 2^a + 2^b + 2^c - 6, a \ge b > c \ge 2, 2^a + 2^b + 2^c - 3, a \ge b > c \ge 2, b \ge 4, \\ & n = 2^a + 2^b + 3, a \ge b \ge 2\\ 0, & otherwise. \end{cases}$$

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

 $\mathbf{2}$

Theorem

Let
$$\Phi(z) = \sum_{n \ge 0} z^{2^n}$$
. Then, modulo 64, we have

$$\begin{split} &\sum_{n\geq 0} s_{n+1} (PSL_2(\mathbb{Z})) \, z^n \\ &= z^{57} + 32z^{50} + 48z^{44} + 48z^{41} + 32z^{36} + 32z^{35} + 32z^{33} + 48z^{32} + 16z^{28} + 40z^{26} \\ &\quad + 16z^{25} + 32z^{24} + 32z^{23} + 16z^{22} + 16z^{21} + 52z^{20} + 32z^{19} + 40z^{18} \\ &\quad + 60z^{17} + 48z^{16} + 4z^{14} + 32z^{13} + 4z^{12} + 36z^{11} + 16z^{10} + 60z^9 + 2z^8 + 16z^7 \\ &\quad + 4z^6 + 60z^5 + 44z^4 + 16z^3 + 54z^2 + 60z + 32 + \frac{56}{z} + \frac{36}{z^2} + \frac{51}{z^3} + \frac{33}{z^4} + \frac{52}{z^5} \\ &\quad + \left(32z^{34} + 32z^{26} + 32z^{25} + 32z^{24} + 16z^{22} + 32z^{21} + 32z^{20} + 32z^{17} + 32z^{16} \\ &\quad + 48z^{14} + 16z^{13} + 16z^{12} + 16z^{11} + 32z^{10} + 32z^8 + 48z^7 + 8z^5 + 8z^4 + 48z^3 + 24z + 32 \\ &\quad + \frac{20}{z} + \frac{12}{z^2} + \frac{8}{z^3} + \frac{36}{z^4} + \frac{4}{z^5} + \frac{24}{z^6} \right) \Phi(z) \\ &\quad + \left(32z^{34} + 32z^{29} + 32z^{28} + 32z^{26} + 32z^{24} + 32z^{21} + 48z^{19} + 32z^{18} + 48z^{17} + 32z^{14} \\ &\quad + 48z^{13} + 32z^{12} + 56z^{10} + 8z^9 + 16z^8 + 48z^7 + 24z^6 + 56z^5 + 44z^4 + 16z^3 \\ &\quad + 48z^2 + 40z + 44 + \frac{60}{z} + \frac{50}{z^2} + \frac{48}{z^3} + \frac{8}{z^4} + \frac{50}{z^5} + \frac{52}{z^6} + \frac{52}{z^7} \right) \Phi^2(z) \end{split}$$

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

$$+ \left(32z^{28} + 32z^{24} + 32z^{21} + 32z^{20} + 32z^{19} + 48z^{16} + 32z^{14} + 32z^{13} + 32z^{12} + 32z^{11} + 16z^{10} + 48z^9 + 8z^8 + 48z^6 + 56z^4 + 8z^3 + 16z^2 + 48z + 56 + \frac{32}{z} + \frac{20}{z^2} + \frac{52}{z^3} + \frac{4}{z^4} + \frac{36}{z^5} + \frac{12}{z^6} + \frac{36}{z^7}\right)\Phi^3(z)$$

$$+ \left(32z^{44} + 32z^{41} + 32z^{33} + 32z^{32} + 32z^{31} + 32z^{30} + 32z^{28} + 32z^{27} + 16z^{26} + 32z^{24} + 32z^{23} + 48z^{22} + 16z^{21} + 40z^{20} + 32z^{19} + 32z^{18} + 24z^{17} + 16z^{16} + 48z^{15} + 32z^{14} + 16z^{13} + 8z^{12} + 32z^{11} + 56z^{10} + 56z^9 + 44z^8 + 40z^7 + 48z^6 + 16z^5 + 20z^4 + 56z^3 + 30z^2 + 32z + 28 + \frac{40}{z} + \frac{34}{z^2} + \frac{52}{z^3} + \frac{17}{z^4} + \frac{26}{z^5} + \frac{40}{z^6} + \frac{29}{z^7}\right)\Phi^4(z)$$

$$+ \left(32z^{32} + 32z^{30} + 32z^{26} + 32z^{24} + 32z^{23} + 32z^{22} + 32z^{21} + 48z^{20} + 48z^{18} + 32z^{16} + 48z^{14} + 32z^{13} + 48z^{12} + 48z^{11} + 32z^8 + 16z^7 + 56z^6 + 48z^5 + 48z^4 + 40z^3 + 16z^2 + 32z + 56 + \frac{24}{z} + \frac{24}{z^2} + \frac{20}{z^3} + \frac{24}{z^4} + \frac{40}{z^5} + \frac{20}{z^6}\right)\Phi^5(z)$$

・ロン ・雪 と ・ ヨ と ・ ヨ と

E 990

Manuel Kauers, Christian Krattenthaler and Thomas W. Müller Mod-2^k behaviour of recursive sequences

$$+ \left(32z^{32} + 32z^{31} + 32z^{30} + 32z^{27} + 32z^{24} + 32z^{23} + 48z^{19} + 16z^{18} + 48z^{17} + 16z^{15} + 48z^{14} + 32z^{12} + 32z^{11} + 56z^8 + 40z^7 + 56z^6 + 16z^5 + 8z^4 + 56z^3 + 4z^2 + 56z + 32 + \frac{8}{z} + \frac{52}{z^2} + \frac{60}{z^3} + \frac{30}{z^4} + \frac{20}{z^5} + \frac{20}{z^6} + \frac{14}{z^7}\right)\Phi^6(z) + \left(32z^{30} + 32z^{26} + 32z^{21} + 32z^{20} + 48z^{18} + 32z^{16} + 48z^{14} + 32z^{13} + 48z^{10} + 16z^9 + 8z^6 + 32z^5 + 16z^4 + 16z^3 + 8z^2 + 48z + 40 + \frac{48}{z} + \frac{8}{z^2} + \frac{40}{z^3} + \frac{60}{z^4} + \frac{8}{z^5} + \frac{24}{z^6} + \frac{60}{z^7}\right)\Phi^7(z)$$
modulo 64.

э

Here, we have

$$SL_2(\mathbb{Z}) = \left\langle x, y : x^4 = y^6 = 1 \text{ and } x^2 = y^3 \right\rangle.$$

э

Here, we have

$$SL_2(\mathbb{Z}) = \left\langle x, y : x^4 = y^6 = 1 \text{ and } x^2 = y^3 \right\rangle.$$

One can show that

$$\operatorname{Hom}(SL_2(\mathbb{Z}), S_n) = n! \sum_{r=0}^{\lfloor n/4 \rfloor} \sum_{s=0}^{\lfloor 2r/3 \rfloor} \frac{(2r)! h_2(n-4r)h_3(n-4r)}{2^{2(r-s)}3^s r! s! (n-4r)! (2r-3s)!}.$$

We found and used a recurrence of order 50 and polynomial coefficients of degree 5 for $\text{Hom}(SL_2(\mathbb{Z}), S_n)$. This translates into a differential equation for the generating function $S(z) := \sum_{n \ge 0} s_{n+1}(SL_2)(\mathbb{Z})$, with $S(z), S'(z), \overline{S''}(z), S'''(z), S'''(z)$ appearing.

Here, we have

$$SL_2(\mathbb{Z}) = \left\langle x, y : x^4 = y^6 = 1 \text{ and } x^2 = y^3
ight
angle.$$

One can show that

$$\operatorname{Hom}(SL_2(\mathbb{Z}), S_n) = n! \sum_{r=0}^{\lfloor n/4 \rfloor} \sum_{s=0}^{\lfloor 2r/3 \rfloor} \frac{(2r)! h_2(n-4r)h_3(n-4r)}{2^{2(r-s)}3^s r! s! (n-4r)! (2r-3s)!}.$$

We found and used a recurrence of order 50 and polynomial coefficients of degree 5 for Hom $(SL_2(\mathbb{Z}), S_n)$. This translates into a differential equation for the generating function $S(z) := \sum_{n \ge 0} s_{n+1}(SL_2)(\mathbb{Z})$, with $S(z), S'(z), \overline{S''(z)}, S'''(z), S''''(z)$ appearing. The method works for this differential equation up to modulus 8. It does not work for modulus 16!

Let
$$\Phi(z) = \sum_{n \ge 0} z^{2^n}$$
. Then we have

2

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ...

The subgroup numbers $s_n(SL_2(\mathbb{Z}))$ obey the following congruences modulo 8 :

æ

The subgroup numbers $s_n(SL_2(\mathbb{Z}))$ obey the following congruences modulo 8 :

(i) $s_n(SL_2(\mathbb{Z})) \equiv 1 \pmod{8}$ if, and only if, n = 1, 2, 4, 10, or if n is of the form $2^{\sigma} - 3$ for some $\sigma \geq 4$;

э

The subgroup numbers $s_n(SL_2(\mathbb{Z}))$ obey the following congruences modulo 8 :

- (i) $s_n(SL_2(\mathbb{Z})) \equiv 1 \pmod{8}$ if, and only if, n = 1, 2, 4, 10, or if n is of the form $2^{\sigma} 3$ for some $\sigma \geq 4$;
- (ii) $s_n(SL_2(\mathbb{Z})) \equiv 2 \pmod{8}$ if, and only if, n = 7, 12, 17, or if n is of one of the forms

 $3 \cdot 2^{\sigma} - 3, \ 3 \cdot 2^{\sigma} - 6, \ 3 \cdot 2^{\sigma} - 12,$ for some $\sigma \ge 4$;

э

The subgroup numbers $s_n(SL_2(\mathbb{Z}))$ obey the following congruences modulo 8 :

- (i) $s_n(SL_2(\mathbb{Z})) \equiv 1 \pmod{8}$ if, and only if, n = 1, 2, 4, 10, or if n is of the form $2^{\sigma} 3$ for some $\sigma \geq 4$;
- (ii) $s_n(SL_2(\mathbb{Z})) \equiv 2 \pmod{8}$ if, and only if, n = 7, 12, 17, or if n is of one of the forms

 $3 \cdot 2^{\sigma} - 3, \ 3 \cdot 2^{\sigma} - 6, \ 3 \cdot 2^{\sigma} - 12,$ for some $\sigma \ge 4$;

(iii) $s_n(SL_2(\mathbb{Z})) \equiv 4 \pmod{8}$ if, and only if, n = 3, 22, 23, 27, 46, 47, 51, or if n is of one of the forms

 $\begin{array}{ll} 2^{\sigma}+6,\ 2^{\sigma}+7,\ 2^{\sigma}+11,\ 2^{\sigma}+12,\ 2^{\sigma}+18,\\ 2^{\sigma}+21, & \mbox{for some } \sigma\geq 5,\\ 2^{\sigma}+2^{\tau}-2,\ 2^{\sigma}+2^{\tau}+1,\ 2^{\sigma}+2^{\tau}+3,\\ & \mbox{for some } \sigma,\tau \mbox{ with } \sigma\geq 6 \mbox{ and } 4\leq\tau\leq\sigma-1,\\ 2^{\sigma}+2^{\tau}+2^{\nu}-12,\ 2^{\sigma}+2^{\tau}+2^{\nu}-6,\ 2^{\sigma}+2^{\tau}+2^{\nu}-3,\\ & \mbox{for some } \sigma,\tau,\nu \mbox{ with } \sigma\geq 6,\ 5\leq\nu\leq\sigma-1,\ \mbox{and } 3\leq\tau\leq\nu-1; \end{array}$

イロト イポト イラト イラト

3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(iv) $s_n(SL_2(\mathbb{Z})) \equiv 5 \pmod{8}$ if, and only if, n = 5, or if n is of one of the forms

 $2^{\sigma}-6, 2^{\sigma}-12,$ for some $\sigma \geq 5;$

・同・ ・ヨ・ ・ヨ・ ・ヨ

(iv) $s_n(SL_2(\mathbb{Z})) \equiv 5 \pmod{8}$ if, and only if, n = 5, or if n is of one of the forms

$$2^{\sigma} - 6$$
, $2^{\sigma} - 12$, for some $\sigma > 5$;

(v) $s_n(SL_2(\mathbb{Z})) \equiv 6 \pmod{8}$ if, and only if, n = 6, 11, 14, 18, 19, 21, 33, 34, 35, 37, or if n is of one of the forms

 $\begin{array}{ll} 2^{\sigma}-2,\ 2^{\sigma}-4, & \mbox{for some } \sigma \geq 5, \\ 2^{\sigma}+1,\ 2^{\sigma}+2,\ 2^{\sigma}+3,\ 2^{\sigma}+4,\ 2^{\sigma}+5,\ 2^{\sigma}+10,\ 2^{\sigma}+13, \\ & \mbox{for some } \sigma \geq 6, \\ 2^{\sigma}+2^{\tau}-3,\ 2^{\sigma}+2^{\tau}-6,\ 2^{\sigma}+2^{\tau}-12, \\ & \mbox{for some } \sigma, \tau \mbox{ with } \sigma \geq 7 \mbox{ and } 5 \leq \tau \leq \sigma-2; \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

(iv) $s_n(SL_2(\mathbb{Z})) \equiv 5 \pmod{8}$ if, and only if, n = 5, or if n is of one of the forms

$$2^{\sigma} - 6$$
, $2^{\sigma} - 12$, for some $\sigma > 5$;

(v) $s_n(SL_2(\mathbb{Z})) \equiv 6 \pmod{8}$ if, and only if, n = 6, 11, 14, 18, 19, 21, 33, 34, 35, 37, or if n is of one of the forms

$$\begin{array}{ll} 2^{\sigma}-2,\ 2^{\sigma}-4, & \mbox{for some } \sigma \geq 5, \\ 2^{\sigma}+1,\ 2^{\sigma}+2,\ 2^{\sigma}+3,\ 2^{\sigma}+4,\ 2^{\sigma}+5,\ 2^{\sigma}+10,\ 2^{\sigma}+13, \\ & \mbox{for some } \sigma \geq 6, \\ 2^{\sigma}+2^{\tau}-3,\ 2^{\sigma}+2^{\tau}-6,\ 2^{\sigma}+2^{\tau}-12, \\ & \mbox{for some } \sigma, \tau \mbox{ with } \sigma \geq 7 \mbox{ and } 5 \leq \tau \leq \sigma-2; \end{array}$$

(vi) in the cases not covered by items (i)–(v), $s_n(SL_2(\mathbb{Z}))$ is divisible by 8; in particular, $s_n(SL_2(\mathbb{Z})) \not\equiv 3,7 \pmod{8}$ for all n.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

æ

• What about other primes?

э

 What about other primes? The whole theory can also be developed for other primes. It works without any problem for *FuB-Catalan numbers*. However, otherwise we are aware of just one (moderately) interesting example (for the prime 3).

- What about other primes? The whole theory can also be developed for other primes. It works without any problem for *FuB-Catalan numbers*. However, otherwise we are aware of just one (moderately) interesting example (for the prime 3).
- Then how do the subgroup numbers of $PSL_2(\mathbb{Z})$ or of $SL_2(\mathbb{Z})$ behave modulo 3 or larger prime numbers?

- What about other primes? The whole theory can also be developed for other primes. It works without any problem for *FuB-Catalan numbers*. However, otherwise we are aware of just one (moderately) interesting example (for the prime 3).
- Then how do the subgroup numbers of PSL₂(ℤ) or of SL₂(ℤ) behave modulo 3 or larger prime numbers?
 We do not know ...

• What about other primes?

The whole theory can also be developed for other primes. It works without any problem for $Fu\beta$ -Catalan numbers. However, otherwise we are aware of just one (moderately) interesting example (for the prime 3).

- Then how do the subgroup numbers of PSL₂(ℤ) or of SL₂(ℤ) behave modulo 3 or larger prime numbers?
 We do not know ...
- There are situations where the modular behaviour can be described using other "basic series," for example (this applies to *Motzkin numbers* modulo 3) by the series

$$\Psi(z) = \sum_{k \ge 0} \sum_{n_1 \ge \dots \ge n_i \ge 0} z^{\sum_{i=1}^k 3^{n_i}} = \prod_{i=1}^\infty (1+z^{3^i}).$$

We are currently developing a theory for this series.