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Standard Young tableaux

Let λ = (λ1, λ2, . . . , λn) and µ = (µ1, µ2, . . . , µn) be two n-tuples
of non-negative integers which are in non-increasing order and
satisfy λi ≥ µi for all i .
A standard Young tableau of skew shape λ/µ is an arrangement of
the numbers 1, 2, . . . ,

∑n
i=1(λi − µi ) of the form

π1,µ1+1 . . . . . . . . π1,λ1
π2,µ2+1 . . . π2,µ1+1 . . . . π2,λ2

. . . ... . . .

πn,µn+1 . . . . . . . . . . . . πn,λn

such that numbers along rows and columns are increasing.
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Standard Young tableaux

A standard Young tableau of skew shape λ/µ is an arrangement of
the numbers 1, 2, . . . ,

∑n
i=1(λi − µi ) of the form

π1,µ1+1 . . . . . . . . π1,λ1
π2,µ2+1 . . . π2,µ1+1 . . . . π2,λ2

. . . ... . . .

πn,µn+1 . . . . . . . . . . . . πn,λn

such that numbers along rows and columns are increasing.

A standard Young tableau of shape (6, 5, 4, 3, 2, 1)/(3, 3, 0, 0, 0, 0):

2 5 13
3 9

1 4 8 12
6 11 15
7 14

10
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Standard Young tableaux

Why are mathematicians interested in standard Young tableaux?

If you want to develop the representation theory of the
symmetric group Sn, then you cannot avoid standard Young
tableaux;
standard Young tableaux encode the possible configurations in
many counting problems.
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Classical ballot problem

In the n-candidate ballot problem, there are n candidates C1, C2,
. . . , Cn in an election, C1 receiving λ1 votes, C2 receiving λ2 votes,
. . . , Cn receiving λn votes. How many ways of counting the votes
are there, such that at any stage during the counting C1 has at
least as many votes as C2, C2 has at least as many votes as C3,
etc.?

Example

Let n = 3, λ1 = 5, λ2 = 3, λ3 = 3. An “admissible” counting of
the votes is

C1C2C3C1C1C2C1C1C2C3C3.

→ If the i-th letter in this word is Cj , we place i into the j-th row
of a tableau. This produces a standard Young tableau.
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Ballot problem with initial bias

We can also accomodate skew standard Young tableaux:

Given n candidates C1, C2, . . . , Cn in an election, C1 receiving λ1
votes, C2 receiving λ2 votes, . . . , Cn receiving λn votes. How
many ways of counting the votes are there, such that we start at a
stage where already µ1 votes were counted for C1, µ2 votes for C2,
. . . , and µn votes for Cn, and at any stage during the (subsequent)
counting C1 has at least as many votes as C2, C2 has at least as
many votes as C3, etc.?
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Ballot problem with initial bias

Example

Let n = 6, µ = (3, 3, 0, 0, 0, 0), λ = (6, 5, 4, 3, 2, 1). An
“admissible” counting of the votes is

C3C1C2C3C1C4C5C3C2C6C4C3C1C5C4.

→ If the i-th letter in this word is Cj , we place i into the j-th row
of a tableau. This produces a skew standard Young tableau.
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Ballot problem with initial bias

Example

Let n = 6, µ = (3, 3, 0, 0, 0, 0), λ = (6, 5, 4, 3, 2, 1). An
“admissible” counting of the votes is
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2 5 13
3 9

1 4 8 12
6 11 15
7 14

10

→ If the i-th letter in this word is Cj , we place i into the j-th row
of a tableau. This produces a skew standard Young tableau.
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Lattice paths and reflection principle

Given a standard Young tableau of shape λ, we form a lattice path
from 0 = (0, 0, . . . , 0) to λ = (λ1, λ2, . . . , λn) by reading through
the entries of the tableau (in order) and drawing a step in
xj -direction, if entry i is in the j-th row of the tableaux,
i = 1, 2, . . . .

This defines a bijection between standard Young tableaux of shape
λ and lattice paths from the origin to (λ1, λ2, . . . , λn) which are
staying in the region x1 ≥ x2 ≥ · · · ≥ xn.
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Lattice paths and reflection principle

Example

1 3 4 7
2 5 6 8

←→

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•
•
•
• • •

• •

�
�
�
�

�
�
�
�

�
��

x1

x2
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Lattice paths and reflection principle

More generally, given a standard Young tableau of skew shape
λ/µ, we form a lattice path from µ = (µ1, µ2, . . . , µn) to
λ = (λ1, λ2, . . . , λn) by reading through the entries of the tableau
(in order) and drawing a step in xj -direction, if entry i is in the j-th
row of the tableaux, i = 1, 2, . . . .

This defines a bijection between standard Young tableaux of shape
λ/µ and lattice paths from µ = (µ1, µ2, . . . , µn) to
(λ1, λ2, . . . , λn) which are staying in the region x1 ≥ x2 ≥ · · · ≥ xn.
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Lattice paths and reflection principle

How do we count standard Young tableaux?

count the corresponding lattice paths

by the reflection principle!
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Lattice paths and reflection principle

The “reflection principle”

For simplicity, let us take n = 2, and count lattice paths from
(µ1, µ2) to (λ1, λ2) staying in the region x1 ≥ x2.

Clearly,∣∣P((µ1, µ2)→ (λ1, λ2) | x1 ≥ x2
)∣∣

=
∣∣P((µ1, µ2)→ (λ1, λ2)

)∣∣
−
∣∣P((µ1, µ2)→ (λ1, λ2) | x1 6≥ x2 at least once

)∣∣ .
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Lattice paths and reflection principle

The “reflection principle”

∣∣P((µ1, µ2)→ (λ1, λ2) | x1 ≥ x2
)∣∣

=
∣∣P((µ1, µ2)→ (λ1, λ2)

)∣∣
−
∣∣P((µ1, µ2)→ (λ1, λ2) | x1 6≥ x2 at least once

)∣∣ .

∣∣P((µ1, µ2)→ (λ1, λ2)
)∣∣ is given by a binomial coefficient.

We claim:∣∣P((µ1, µ2)→ (λ1, λ2) | x1 6≥ x2 at least once
)∣∣

=
∣∣P((µ2 − 1, µ1 + 1)→ (λ1, λ2)

)∣∣ .
The last expression is again given by a binomial coefficient.
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Lattice paths and reflection principle

As a consequence, we obtain that the number of standard Young
tableaux of shape (λ1, λ2)/(µ1, µ2) is given by(

λ1 − µ1 + λ2 − µ2
λ1 − µ1

)
−
(
λ1 − µ1 + λ2 − µ2

λ1 − µ2 + 1

)
=

( 2∑
i=1

(λi − µi )
)

! · det
1≤i ,j≤2

(
1

(λi − i − µj + j)!

)
.

More generally:

Aitken’s Formula

The number of all standard Young tableaux of shape λ/µ equals( n∑
i=1

(λi − µi )
)

! · det
1≤i ,j≤n

(
1

(λi − i − µj + j)!

)
.
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Lattice paths and reflection principle

Aitken’s Formula

The number of all standard Young tableaux of shape λ/µ equals( n∑
i=1

(λi − µi )
)

! · det
1≤i ,j≤n

(
1

(λi − i − µj + j)!

)
.

Are there cases where the determinant can be evaluated?
Yes! Namely, if µ1 = µ2 = · · · = µn = 0.
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The hook-length formula

Theorem (Frame, Robinson, Thrall)

The number of all standard Young tableaux of shape λ equals

(λ1 + λ2 + · · ·+ λn)!∏
ρ∈λ h(ρ)

,

where h(ρ) denotes the hook-length of the cell ρ.

Example

The hook-lengths of the cells of the shape (5, 3, 3) are

7 6 5 2 1
4 3 2
3 2 1

Hence, the number of standard Young tableaux of shape (5, 3, 3) is
equal to

(5 + 3 + 3)!

7 · 6 · 5 · 2 · 1 · 4 · 3 · 2 · 3 · 2 · 1
= 660.
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Lattice paths and reflection principle

Theorem (Frame, Robinson, Thrall)

The number of all standard Young tableaux of shape λ equals

(λ1 + λ2 + · · ·+ λn)!∏
ρ∈λ h(ρ)

,

where h(ρ) denotes the hook-length of the cell ρ.

Are there cases where the determinant can be evaluated
other than µ = (0, 0, . . . , 0)?
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“staircase minus rectnngle”

John Stembridge:

My student Elizabeth DeWitt has found a closed

formula for the number of standard Young tableaux of

skew shape, where the outer shape is a staircase and

the inner shape a rectangle. Have you seen this

before?
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“staircase minus rectnngle”

We shall do something more general than DeWitt here: we shall
enumerate all standard Young tableaux of a skew shape, where the
outer shape is a (possibly incomplete) staircase and the inner
shape is a rectangle.
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Our goal: Let N, n,m, r be non-negative integers. Compute the
number of all standard Young tableaux of shape
(N,N − 1, . . . ,N − n + 1)/(mr ), where (mr ) stands for
(m,m, . . . ,m, 0, . . . , 0) with r components m).


r


n

N︷ ︸︸ ︷

m︷ ︸︸ ︷
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Recall:

Aitken’s Formula

The number of all standard Young tableaux of shape λ/µ equals( n∑
i=1

(λi − µi )
)

! · det
1≤i ,j≤n

(
1

(λi − i − µj + j)!

)
.
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We substitute in Aitken’s formula:

((N+1
2

)
−
(N−n+1

2

)
−mr

)
! det
1≤i ,j≤n




1

(N + 1− 2i −m + j)!
j ≤ r

1

(N + 1− 2i + j)!
j > r

 .

We now do a Laplace expansion with respect to the first r columns:((N+1
2

)
−
(N−n+1

2

)
−mr

)
!

×
∑

1≤k1<···<kr≤n
(−1)(r+1

2 )+
∑r

i=1 ki det
1≤i ,j≤r

(
1

(N + 1− 2ki −m + j)!

)

· det
1≤i≤n, i /∈{k1,...,kr}

r+1≤j≤n

(
1

(N + 1− 2i + j)!

)
.
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((N+1
2

)
−
(N−n+1

2

)
−mr

)
!

×
∑

1≤k1<···<kr≤n
(−1)(r+1

2 )+
∑r

i=1 ki det
1≤i ,j≤r

(
1

(N + 1− 2ki −m + j)!

)

· det
1≤i≤n, i /∈{k1,...,kr}

r+1≤j≤n

(
1

(N + 1− 2i + j)!

)
.

Both determinants can be evaluated by means of

det
1≤i ,j≤s

(
1

(Xi + j)!

)
=

s∏
i=1

1

(Xi + s)!

∏
1≤i<j≤s

(Xi − Xj),
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After a lot of simplification, one arrives at

(−1)(r
2)2(r

2)+(n−r
2 )
((N+1

2

)
−
(N−n+1

2

)
−mr

)
!

×
n∏

i=1

(i − 1)!

(N + n + 1− 2i)!

r∏
i=1

(N + n − 1)!

(n − 1)! (N −m + r − 1)!

×
∑

0≤k1<···<kr≤n−1

∏
1≤i<j≤r

(kj − ki )
2

·
r∏

i=1

(
−N−m+r−1

2

)
ki

(
−N−m+r−2

2

)
ki

(−n + 1)ki(
−N+n−1

2

)
ki

(
−N+n−2

2

)
ki
ki !

.

−→ multiple hypergeometric series associated to root systems!
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“staircase minus rectnngle”

−→ multiple hypergeometric series associated to root systems!

Michael Schlosser (translated into English):

In a multi-dimensional 12V11 transformation formula

for elliptic hypergeometric series conjectured by

Warnaar, which has subsequently been proven by Rains

and, independently, by Coskun and Gustafson, let

p = 0, d → aq/d, f → aq/f , and then a→ 0 and q → 1.
If I am not mistaken, this should do the trick.
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Elliptic hypergeometric series?

Given a complex number p with |p| < 1, define a (rescaled) theta
function θ(x ; p) by

θ(x ; p) =
∞∏
j=0

(1− pjx)(1− pj+1/x).

Furthermore, fixing another complex parameter, q say, and a
non-negative integer m, we set

(a; q, p)m = θ(a; p) θ(aq; p) · · · θ(aqm−1; p).

For convenience, we also employ the short notation

(a1, a2, . . . , ak ; q, p)m = (a1; q, p)m (a2; q, p)m · · · (ak ; q, p)m.
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An elliptic transformation formula (Rains, Coskun and
Gustafson)

Let a, b, c , d , e, f be indeterminates, let m be a nonnegative
integer, and r ≥ 1. Then∑

0≤k1<k2<···<kr≤m
q
∑r

i=1(2i−1)ki
∏

1≤i<j≤r
θ(qki−kj ; p)2 θ(aqki+kj ; p)2

×
r∏

i=1

θ(aq2ki ; p)(a, b, c , d , e, f ; q, p)ki
θ(a; p)(q, aq/b, aq/c , aq/d , aq/e, aq/f ; q, p)ki

×
r∏

i=1

(λaq2−r+m/ef , q−m; q, p)ki
(efqr−1−m/λ, aq1+m; q, p)ki
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“staircase minus rectnngle”

=
r∏

i=1

(b, c , d , ef /a; q, p)i−1
(λb/a, λc/a, λd/a, ef /λ; q, p)i−1

×
r∏

i=1

(aq; q, p)m (aq/ef ; q, p)m+1−r (λq/e, λq/f ; q, p)m−i+1

(λq; q, p)m (λq/ef ; q, p)m+1−r (aq/e, aq/f ; q, p)m−i+1

×
∑

0≤k1<k2<···<kr≤m
q
∑r

i=1(2i−1)ki
∏

1≤i<j≤r
θ(qki−kj ; p)2 θ(λqki+kj ; p)2

×
r∏

i=1

θ(λq2ki ; p)(λ, λb/a, λc/a, λd/a, e, f ; q, p)ki
θ(λ; p)(q, aq/b, aq/c , aq/d , λq/e, λq/f ; q, p)ki

×
r∏

i=1

(λaq2−r+m/ef , q−m; q, p)ki
(efqr−1−m/λ, λq1+m; q, p)ki

,

where λ = a2q2−r/bcd.
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In the elliptic transformation formula, we let p = 0, d → aq/d ,
f → aq/f , and then a→ 0. Next we perform the substitutions
b → qb, c → qc , etc., we divide both sides of the identity obtained

so far by (1− q)(r
2), and we let q → 1.
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Corollary

For all non-negative integers m, r and s, we have

∑
0≤k1<k2<···<kr≤m

∏
1≤i<j≤r

(ki − kj)
2

r∏
i=1

(d + ki )s (b)ki (−m)ki
ki ! (f )ki

=
(−1)(r

2)

(r + s − 1)!s−1

r∏
i=1

(b)i−1 (−f + b + s + 2r − i −m)m−r+1

(−f −m + i)m−i+1

×
r+s−1∏
i=1

(i − 1)!m!

(m − i)!

r+s−1∏
i=r

(d − b + 1− r)i
(r + s − i − 1)! (d)i−r (f − b − s + 1− r)i

×
∑

0≤`1<`2<···<`s≤r+s−1

∏
1≤i<j≤s

(`i − `j)2

×
s∏

i=1

(d)`i (f − b − s + 1− r)`i (−r − s + 1)`i
`i ! (d − b + 1− r)`i (−m)`i

.
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Theorem

If N − n is even, the number of standard Young tableaux of shape
(N,N − 1, . . . ,N − n + 1)/(mr ) equals

(−1)
(
(N−n)/2

2

)
+ 1

2
r(N−n)

2

(
n
2

)
+(N−n−m)r

((N+1
2

)
−
(N−n+1

2

)
−mr

)
!

×
1(

r + N−n−2
2

)
!(N−n)/2

(
N+n−2

2

)
!(N−n)/2

∏(N+n)/2
i=1 (i − 1)!∏n

i=1(N − n + 2i − 1)!

×
r∏

i=1

(
N−n
2

+ i − 1
)
! (n +m − r + 2i − 1)!

(
n+m−r

2
+ i
)
(N−n)/2

(m + i − 1)! (N −m − r + 2i − 1)!

×
∑

0≤`1<`2<···<`(N−n)/2≤r+ N−n−2
2

(−1)
∑(N−n)/2

i=1 `i

( ∏
1≤i<j≤ N−n

2

(`i − `j )2
)

·

N−n
2∏

i=1

(N−n−2
2

+ r

`i

)(N+n
2
− `i

)
`i

(
n+m−r+1

2
− i
)
r+i−`i−1

(
N−m−r+2

2
− i
)
r+i−`i−1(

N+m−r+2
2

− i
)
r+i−`i−1

,

and there is a similar statement if N − n is odd.
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In the case of a full staircase (i.e., n = N), the formula reduces to
DeWitt’s original result.

Corollary

The number of standard Young tableaux of shape
(n, n − 1, . . . , 1)/(mr ) equals

2(n2)−rm
((n+1

2

)
−mr

)
!

n∏
i=1

(i − 1)!

(2i − 1)!

×
r∏

i=1

(n + m − r + 2i − 1)! (i − 1)!

(m + i − 1)! (n −m − r + 2i − 1)!
,
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The “next” case:

Corollary

The number of standard Young tableaux of shape
(n + 1, n, . . . , 2)/(mr ) equals

2(n2)−(m−1)r
((n+2

2

)
−mr − 1

)
!

n∏
i=1

(i − 1)!

(2i)!

×
r∏

i=1

(n + m − r + 2i − 1)! (i − 1)!

(m + i − 1)! (n −m − r + 2i)!

×
r∑
`=0

(−1)r−`
(
r

`

)
(n − `+ 1)`

(
n+m−r

2

)
r−`
(
n−m−r+1

2

)
r−`(

n+m−r+1
2

)
r−`

.
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In general:
The number of standard Young tableaux of shape
(N,N − 1, . . . ,N − n)/(mr ) equals an d(N − n)/2e-fold
hypergeometric sum.
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John Stembridge:

I think her approach is much simpler;

but I don’t think it would extend to the ‘‘next

case’’ you mention.
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