Enumeration of standard Young tableaux of shapes of the form "staircase minus rectangle"

Christian Krattenthaler and Michael Schlosser

Universität Wien

Standard Young tableaux

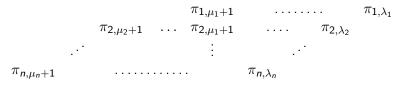
Christian Krattenthaler and Michael Schlosser Enumeration of standard Young tableaux

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ and $\mu = (\mu_1, \mu_2, \dots, \mu_n)$ be two *n*-tuples of non-negative integers which are in non-increasing order and satisfy $\lambda_i \ge \mu_i$ for all *i*. A standard Young tableau of skew shape λ/μ is an arrangement of the numbers $1, 2, \dots, \sum_{i=1}^{n} (\lambda_i - \mu_i)$ of the form

such that numbers along rows and columns are increasing.

Standard Young tableaux

A standard Young tableau of skew shape λ/μ is an arrangement of the numbers $1, 2, ..., \sum_{i=1}^{n} (\lambda_i - \mu_i)$ of the form



such that numbers along rows and columns are increasing.

Standard Young tableaux

A standard Young tableau of skew shape λ/μ is an arrangement of the numbers $1, 2, ..., \sum_{i=1}^{n} (\lambda_i - \mu_i)$ of the form

such that numbers along rows and columns are increasing.

A standard Young tableau of shape (6, 5, 4, 3, 2, 1)/(3, 3, 0, 0, 0, 0):

→ < ∃→

• If you want to develop the *representation theory of the* symmetric group S_n, then you cannot avoid standard Young tableaux;

- - E - - E

- If you want to develop the *representation theory of the* symmetric group S_n, then you cannot avoid standard Young tableaux;
- *standard Young tableaux* encode the possible configurations in many counting problems.

- If you want to develop the *representation theory of the* -symmetric group S_n, then you cannot avoid standard Young -tableaux;
- *standard Young tableaux* encode the possible configurations in many counting problems.

- 4 B b 4 B b

Christian Krattenthaler and Michael Schlosser Enumeration of standard Young tableaux

In the *n*-candidate ballot problem, there are *n* candidates C_1 , C_2 , ..., C_n in an election, C_1 receiving λ_1 votes, C_2 receiving λ_2 votes, ..., C_n receiving λ_n votes. How many ways of counting the votes are there, such that at any stage during the counting C_1 has at least as many votes as C_2 , C_2 has at least as many votes as C_3 , etc.?

In the *n*-candidate ballot problem, there are *n* candidates C_1 , C_2 , ..., C_n in an election, C_1 receiving λ_1 votes, C_2 receiving λ_2 votes, ..., C_n receiving λ_n votes. How many ways of counting the votes are there, such that at any stage during the counting C_1 has at least as many votes as C_2 , C_2 has at least as many votes as C_3 , etc.?

Example

Let n = 3, $\lambda_1 = 5$, $\lambda_2 = 3$, $\lambda_3 = 3$. An "admissible" counting of the votes is

 $C_1 C_2 C_3 C_1 C_1 C_2 C_1 C_1 C_2 C_3 C_3.$

・ 同 ト ・ ヨ ト ・ ヨ ト

In the *n*-candidate ballot problem, there are *n* candidates C_1 , C_2 , ..., C_n in an election, C_1 receiving λ_1 votes, C_2 receiving λ_2 votes, ..., C_n receiving λ_n votes. How many ways of counting the votes are there, such that at any stage during the counting C_1 has at least as many votes as C_2 , C_2 has at least as many votes as C_3 , etc.?

Example

Let n = 3, $\lambda_1 = 5$, $\lambda_2 = 3$, $\lambda_3 = 3$. An "admissible" counting of the votes is

 $C_1 C_2 C_3 C_1 C_1 C_2 C_1 C_1 C_2 C_3 C_3.$

・ 同 ト ・ ヨ ト ・ ヨ ト

In the *n*-candidate ballot problem, there are *n* candidates C_1 , C_2 , ..., C_n in an election, C_1 receiving λ_1 votes, C_2 receiving λ_2 votes, ..., C_n receiving λ_n votes. How many ways of counting the votes are there, such that at any stage during the counting C_1 has at least as many votes as C_2 , C_2 has at least as many votes as C_3 , etc.?

Example

Let n = 3, $\lambda_1 = 5$, $\lambda_2 = 3$, $\lambda_3 = 3$. An "admissible" counting of the votes is

 $C_1 C_2 C_3 C_1 C_1 C_2 C_1 C_1 C_2 C_3 C_3.$

 \rightarrow If the *i*-th letter in this word is C_j , we place *i* into the *j*-th row of a tableau. This produces a standard Young tableau.

・ 同 ト ・ ヨ ト ・ ヨ ト

In the *n*-candidate ballot problem, there are *n* candidates C_1 , C_2 , ..., C_n in an election, C_1 receiving λ_1 votes, C_2 receiving λ_2 votes, ..., C_n receiving λ_n votes. How many ways of counting the votes are there, such that at any stage during the counting C_1 has at least as many votes as C_2 , C_2 has at least as many votes as C_3 , etc.?

Example

Let n = 3, $\lambda_1 = 5$, $\lambda_2 = 3$, $\lambda_3 = 3$. An "admissible" counting of the votes is

 \rightarrow If the *i*-th letter in this word is C_j , we place *i* into the *j*-th row of a tableau, i = 1, 2, ... This produces a standard Young tableau.

・ロト ・同ト ・ヨト ・ヨト

Let n = 3, $\lambda_1 = 5$, $\lambda_2 = 3$, $\lambda_3 = 3$. An "admissible" counting of the votes is

$$C_1 C_2 C_3 C_1 C_1 C_2 C_1 C_1 C_2 C_3 C_3.$$

$$C_1 C_2 C_3 C_1 C_1 C_2 C_1 C_2 C_3 C_3.$$

$$C_1 C_2 C_3 C_1 C_1 C_2 C_1 C_2 C_3 C_3.$$

 \rightarrow If the *i*-th letter in this word is C_j , we place *i* into the *j*-th row of a tableau, i = 1, 2, ... This produces a standard Young tableau.

Let n = 3, $\lambda_1 = 5$, $\lambda_2 = 3$, $\lambda_3 = 3$. An "admissible" counting of the votes is

$$C_1 C_2 C_3 C_1 C_1 C_2 C_1 C_1 C_2 C_3 C_3.$$

$$C_1 C_2 C_3 C_1 C_1 C_2 C_1 C_2 C_3 C_3.$$

$$C_1 C_2 C_3 C_1 C_1 C_2 C_1 C_2 C_3 C_3.$$

 \rightarrow If the *i*-th letter in this word is C_j , we place *i* into the *j*-th row of a tableau, i = 1, 2, ... This produces a standard Young tableau.

Let n = 3, $\lambda_1 = 5$, $\lambda_2 = 3$, $\lambda_3 = 3$. An "admissible" counting of the votes is

$$C_1 C_2 C_3 C_1 C_1 C_2 C_1 C_1 C_2 C_3 C_3.$$

$$C_1 C_2 C_3 C_1 C_1 C_2 C_2 C_3 C_3.$$

$$C_1 C_2 C_3 C_1 C_1 C_2 C_2 C_3 C_3.$$

$$C_1 C_2 C_3 C_1 C_1 C_2 C_3 C_3.$$

 \rightarrow If the *i*-th letter in this word is C_j , we place *i* into the *j*-th row of a tableau, i = 1, 2, ... This produces a standard Young tableau.

In general, this defines a bijection between standard Young tableaux of shape λ and "admissible" vote countings for the ballot problem, where candidate C_j receives λ_j votes, j = 1, 2, ..., n.

We can also accomodate *skew* standard Young tableaux:

We can also accomodate *skew* standard Young tableaux:

Given *n* candidates C_1, C_2, \ldots, C_n in an election, C_1 receiving λ_1 votes, C_2 receiving λ_2 votes, \ldots , C_n receiving λ_n votes. How many ways of counting the votes are there, such that we start at a stage where already μ_1 votes were counted for C_1 , μ_2 votes for C_2 , \ldots , and μ_n votes for C_n , and at any stage during the (subsequent) counting C_1 has at least as many votes as C_2 , C_2 has at least as many votes as C_3 , etc.?

Let n = 6, $\mu = (3, 3, 0, 0, 0, 0)$, $\lambda = (6, 5, 4, 3, 2, 1)$. An "admissible" counting of the votes is

$C_3C_1C_2C_3C_1C_4C_5C_3C_2C_6C_4C_3C_1C_5C_4.$

Let n = 6, $\mu = (3, 3, 0, 0, 0, 0)$, $\lambda = (6, 5, 4, 3, 2, 1)$. An "admissible" counting of the votes is

$C_3C_1C_2C_3C_1C_4C_5C_3C_2C_6C_4C_3C_1C_5C_4.$

Let n = 6, $\mu = (3, 3, 0, 0, 0, 0)$, $\lambda = (6, 5, 4, 3, 2, 1)$. An "admissible" counting of the votes is

$C_3C_1C_2C_3C_1C_4C_5C_3C_2C_6C_4C_3C_1C_5C_4.$

 \rightarrow If the *i*-th letter in this word is C_j , we place *i* into the *j*-th row of a tableau. This produces a *skew* standard Young tableau.

Example						
Let $n = 6$, $\mu = (3, 3, 0, 0, 0, 0)$, $\lambda = (6, 5, 4)$ "admissible" counting of the votes is	, 4, 3,	2,1)	. An			
$C_3C_1C_2C_3C_1C_4C_5C_3C_2C_6C_4C_3C_1C_5C_4.$	1 6 7 10	4 11 14	8 15	2 3 12	5 9	13
\rightarrow If the <i>i</i> -th letter in this word is C_j , we place <i>i</i> into the <i>j</i> -th row of a tableau. This produces a <i>skew</i> standard Young tableau.						

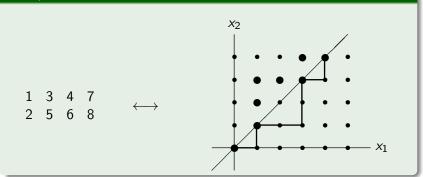
・ 同 ト ・ ヨ ト ・ ヨ ト

э

Given a standard Young tableau of shape λ , we form a lattice path from $\mathbf{0} = (0, 0, ..., 0)$ to $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$ by reading through the entries of the tableau (in order) and drawing a step in x_j -direction, if entry *i* is in the *j*-th row of the tableaux, i = 1, 2, ...

This defines a bijection between standard Young tableaux of shape λ and lattice paths from the origin to $(\lambda_1, \lambda_2, \ldots, \lambda_n)$ which are staying in the region $x_1 \ge x_2 \ge \cdots \ge x_n$.

Example



< E

э

More generally, given a standard Young tableau of skew shape λ/μ , we form a lattice path from $\mu = (\mu_1, \mu_2, \dots, \mu_n)$ to $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ by reading through the entries of the tableau (in order) and drawing a step in x_j -direction, if entry *i* is in the *j*-th row of the tableaux, $i = 1, 2, \dots$.

This defines a bijection between standard Young tableaux of shape λ/μ and lattice paths from $\mu = (\mu_1, \mu_2, \dots, \mu_n)$ to $(\lambda_1, \lambda_2, \dots, \lambda_n)$ which are staying in the region $x_1 \ge x_2 \ge \dots \ge x_n$.

How do we count standard Young tableaux?

How do we count standard Young tableaux?

• count the corresponding lattice paths

How do we count standard Young tableaux?

- count the corresponding lattice paths
- by the reflection principle!

The "reflection principle"

For simplicity, let us take n = 2, and count lattice paths from (μ_1, μ_2) to (λ_1, λ_2) staying in the region $x_1 \ge x_2$. Clearly,

$$\begin{aligned} \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \ge x_2) \right| \\ &= \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2)) \right| \\ &- \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \not\ge x_2 \text{ at least once}) \right|. \end{aligned}$$

The "reflection principle"

$$\begin{aligned} \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \ge x_2) \right| \\ &= \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2)) \right| \\ &- \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \not\ge x_2 \text{ at least once}) \right|. \end{aligned}$$

The "reflection principle"

$$\begin{split} \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \geq x_2) \right| \\ &= \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2)) \right| \\ &- \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \not\geq x_2 \text{ at least once}) \right|. \\ \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2)) \right| \text{ is given by a binomial coefficient.} \\ \end{split}$$
We claim:

$$\begin{split} \left| P\big((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \not\geq x_2 \text{ at least once} \big) \right| \\ &= \left| P\big((\mu_2 - 1, \mu_1 + 1) \to (\lambda_1, \lambda_2) \big) \right|. \end{split}$$

The "reflection principle"

$$\begin{split} \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \geq x_2) \right| \\ &= \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2)) \right| \\ &- \left| P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \not\geq x_2 \text{ at least once}) \right|. \\ P((\mu_1, \mu_2) \to (\lambda_1, \lambda_2)) \right| \text{ is given by a binomial coefficient.} \\ \text{We claim:} \end{split}$$

$$\begin{split} \left| P\big((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \not\geq x_2 \text{ at least once} \big) \right| \\ &= \left| P\big((\mu_2 - 1, \mu_1 + 1) \to (\lambda_1, \lambda_2) \big) \right|. \end{split}$$

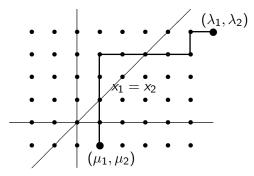
The last expression is again given by a binomial coefficient.

The "reflection principle"

$$\begin{split} \left| P\big((\mu_1,\mu_2) \to (\lambda_1,\lambda_2) \mid x_1 \not\geq x_2 \text{ at least once} \big) \right| \\ &= \left| P\big((\mu_2-1,\mu_1+1) \to (\lambda_1,\lambda_2)\big) \right|. \end{split}$$

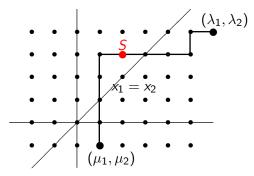
The "reflection principle"

$$\begin{split} \left| P\big((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \not\geq x_2 \text{ at least once} \big) \right| \\ &= \left| P\big((\mu_2 - 1, \mu_1 + 1) \to (\lambda_1, \lambda_2) \big) \right|. \end{split}$$



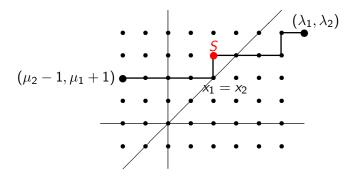
The "reflection principle"

$$\begin{split} \left| P\big((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \not\geq x_2 \text{ at least once} \big) \right| \\ &= \left| P\big((\mu_2 - 1, \mu_1 + 1) \to (\lambda_1, \lambda_2) \big) \right|. \end{split}$$



The "reflection principle"

$$\begin{split} \left| P\big((\mu_1, \mu_2) \to (\lambda_1, \lambda_2) \mid x_1 \not\geq x_2 \text{ at least once} \big) \right| \\ &= \left| P\big((\mu_2 - 1, \mu_1 + 1) \to (\lambda_1, \lambda_2) \big) \right|. \end{split}$$



As a consequence, we obtain that the number of standard Young tableaux of shape $(\lambda_1, \lambda_2)/(\mu_1, \mu_2)$ is given by

$$\begin{pmatrix} \lambda_1 - \mu_1 + \lambda_2 - \mu_2 \\ \lambda_1 - \mu_1 \end{pmatrix} - \begin{pmatrix} \lambda_1 - \mu_1 + \lambda_2 - \mu_2 \\ \lambda_1 - \mu_2 + 1 \end{pmatrix}$$
$$= \left(\sum_{i=1}^2 (\lambda_i - \mu_i)\right)! \cdot \det_{1 \le i,j \le 2} \left(\frac{1}{(\lambda_i - i - \mu_j + j)!}\right).$$

As a consequence, we obtain that the number of standard Young tableaux of shape $(\lambda_1, \lambda_2)/(\mu_1, \mu_2)$ is given by

$$\begin{pmatrix} \lambda_1 - \mu_1 + \lambda_2 - \mu_2 \\ \lambda_1 - \mu_1 \end{pmatrix} - \begin{pmatrix} \lambda_1 - \mu_1 + \lambda_2 - \mu_2 \\ \lambda_1 - \mu_2 + 1 \end{pmatrix}$$
$$= \left(\sum_{i=1}^2 (\lambda_i - \mu_i)\right)! \cdot \det_{1 \le i, j \le 2} \left(\frac{1}{(\lambda_i - i - \mu_j + j)!}\right).$$

More generally:

Aitken's Formula

The number of all standard Young tableaux of shape λ/μ equals

$$\left(\sum_{i=1}^{n} (\lambda_i - \mu_i)\right)! \cdot \det_{1 \leq i,j \leq n} \left(\frac{1}{(\lambda_i - i - \mu_j + j)!}\right).$$

Aitken's Formula

The number of all standard Young tableaux of shape λ/μ equals

$$\left(\sum_{i=1}^{n} (\lambda_i - \mu_i)\right)! \cdot \det_{1 \le i,j \le n} \left(\frac{1}{(\lambda_i - i - \mu_j + j)!}\right)$$

٠

Aitken's Formula

The number of all standard Young tableaux of shape λ/μ equals

$$\left(\sum_{i=1}^{n} (\lambda_i - \mu_i)\right)! \cdot \det_{1 \le i,j \le n} \left(\frac{1}{(\lambda_i - i - \mu_j + j)!}\right)$$

٠

Aitken's Formula

The number of all standard Young tableaux of shape λ/μ equals

$$\left(\sum_{i=1}^{n} (\lambda_i - \mu_i)\right)! \cdot \det_{1 \leq i,j \leq n} \left(\frac{1}{(\lambda_i - i - \mu_j + j)!}\right)$$

Are there cases where the determinant can be evaluated?

Aitken's Formula

The number of all standard Young tableaux of shape λ/μ equals

$$\left(\sum_{i=1}^{n} (\lambda_i - \mu_i)\right)! \cdot \det_{1 \leq i,j \leq n} \left(\frac{1}{(\lambda_i - i - \mu_j + j)!}\right)$$

Are there cases where the determinant can be evaluated? Yes! Namely, if $\mu_1 = \mu_2 = \cdots = \mu_n = 0$.

The hook-length formula

Theorem (Frame, Robinson, Thrall)

The number of all standard Young tableaux of shape λ equals $\frac{(\lambda_1 + \lambda_2 + \dots + \lambda_n)!}{\prod_{\rho \in \lambda} h(\rho)},$

where $h(\rho)$ denotes the hook-length of the cell ρ .

The hook-length formula

Theorem (Frame, Robinson, Thrall)

The number of all standard Young tableaux of shape λ equals $\frac{(\lambda_1 + \lambda_2 + \dots + \lambda_n)!}{\prod_{\rho \in \lambda} h(\rho)},$

where $h(\rho)$ denotes the hook-length of the cell ρ .

The hook-length formula

Theorem (Frame, Robinson, Thrall)

The number of all standard Young tableaux of shape λ equals $\frac{(\lambda_1 + \lambda_2 + \dots + \lambda_n)!}{\prod_{\rho \in \lambda} h(\rho)},$

where $h(\rho)$ denotes the hook-length of the cell ρ .

Example

The hook-lengths of the cells of the shape (5,3,3) are

Hence, the number of standard Young tableaux of shape (5,3,3) is equal to

$$\frac{(5+3+3)!}{7\cdot 6\cdot 5\cdot 2\cdot 1\cdot 4\cdot 3\cdot 2\cdot 3\cdot 2\cdot 1} = 660.$$

Theorem (FRAME, ROBINSON, THRALL)

The number of all standard Young tableaux of shape λ equals $\frac{(\lambda_1 + \lambda_2 + \dots + \lambda_n)!}{\prod_{\rho \in \lambda} h(\rho)},$

where $h(\rho)$ denotes the hook-length of the cell ρ .

Theorem (FRAME, ROBINSON, THRALL)

The number of all standard Young tableaux of shape λ equals $\frac{(\lambda_1 + \lambda_2 + \dots + \lambda_n)!}{\prod_{\rho \in \lambda} h(\rho)},$

where $h(\rho)$ denotes the hook-length of the cell ρ .

Theorem (FRAME, ROBINSON, THRALL)

The number of all standard Young tableaux of shape λ equals $\frac{(\lambda_1 + \lambda_2 + \dots + \lambda_n)!}{\prod_{\rho \in \lambda} h(\rho)},$

where $h(\rho)$ denotes the hook-length of the cell ρ .

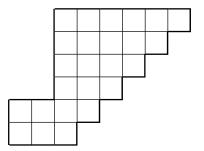
Are there cases where the determinant can be evaluated other than $\mu = (0, 0, \dots, 0)$?

My student Elizabeth DeWitt has found a closed formula for the number of standard Young tableaux of skew shape, where the outer shape is a staircase and the inner shape a rectangle. Have you seen this before?

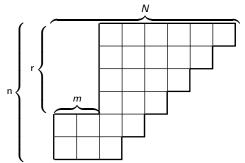
My student Elizabeth DeWitt has found a closed formula for the number of standard Young tableaux of skew shape, where the outer shape is a staircase and the inner shape a rectangle. Have you seen this before?



We shall do something more general than DeWitt here: we shall enumerate all standard Young tableaux of a skew shape, where the outer shape is a (possibly incomplete) staircase and the inner shape is a rectangle.



Our goal: Let N, n, m, r be non-negative integers. Compute the number of all standard Young tableaux of shape $(N, N - 1, ..., N - n + 1)/(m^r)$, where (m^r) stands for (m, m, ..., m, 0, ..., 0) with r components m).



Recall:

Aitken's Formula

The number of all standard Young tableaux of shape λ/μ equals

$$\left(\sum_{i=1}^n (\lambda_i - \mu_i)\right)! \cdot \det_{1 \leq i,j \leq n} \left(\frac{1}{(\lambda_i - i - \mu_j + j)!}\right).$$

We substitute in Aitken's formula:

$$\left(\binom{N+1}{2} - \binom{N-n+1}{2} - mr\right)! \det_{1 \le i,j \le n} \left(\begin{cases} \frac{1}{(N+1-2i-m+j)!} & j \le r \\ \frac{1}{(N+1-2i+j)!} & j > r \end{cases} \right)$$

•

We substitute in Aitken's formula:

$$\left(\binom{N+1}{2} - \binom{N-n+1}{2} - mr\right)! \det_{1 \le i,j \le n} \left(\begin{cases} \frac{1}{(N+1-2i-m+j)!} & j \le r \\ \frac{1}{(N+1-2i+j)!} & j > r \end{cases} \right)$$

.

We now do a Laplace expansion with respect to the first r columns:

$$\begin{pmatrix} \binom{N+1}{2} - \binom{N-n+1}{2} - mr \end{pmatrix}! \\ \times \sum_{1 \le k_1 < \dots < k_r \le n} (-1)^{\binom{r+1}{2} + \sum_{i=1}^r k_i} \det_{1 \le i, j \le r} \left(\frac{1}{(N+1-2k_i-m+j)!} \right) \\ \cdot \det_{\substack{1 \le i \le n, i \notin \{k_1, \dots, k_r\}}} \left(\frac{1}{(N+1-2i+j)!} \right).$$

$$\begin{pmatrix} \binom{N+1}{2} - \binom{N-n+1}{2} - mr \end{pmatrix}! \\ \times \sum_{1 \le k_1 < \dots < k_r \le n} (-1)^{\binom{r+1}{2} + \sum_{i=1}^r k_i} \det_{1 \le i, j \le r} \left(\frac{1}{(N+1-2k_i-m+j)!} \right) \\ \cdot \det_{1 \le i \le n, i \notin \{k_1, \dots, k_r\}} \left(\frac{1}{(N+1-2i+j)!} \right).$$

$$\begin{pmatrix} \binom{N+1}{2} - \binom{N-n+1}{2} - mr \end{pmatrix}! \\ \times \sum_{1 \le k_1 < \dots < k_r \le n} (-1)^{\binom{r+1}{2} + \sum_{i=1}^r k_i} \det_{1 \le i, j \le r} \left(\frac{1}{(N+1-2k_i-m+j)!} \right) \\ \cdot \det_{1 \le i \le n, i \notin \{k_1, \dots, k_r\}} \left(\frac{1}{(N+1-2i+j)!} \right).$$

Both determinants can be evaluated by means of

$$\det_{1\leq i,j\leq s}\left(\frac{1}{(X_i+j)!}\right) = \prod_{i=1}^{s}\frac{1}{(X_i+s)!}\prod_{1\leq i< j\leq s}(X_i-X_j),$$

After a lot of simplification, one arrives at

$$(-1)^{\binom{r}{2}}2^{\binom{r}{2}+\binom{n-r}{2}}\left(\binom{N+1}{2}-\binom{N-n+1}{2}-mr\right)! \\ \times \prod_{i=1}^{n} \frac{(i-1)!}{(N+n+1-2i)!} \prod_{i=1}^{r} \frac{(N+n-1)!}{(n-1)!(N-m+r-1)!} \\ \times \sum_{0 \le k_{1} < \dots < k_{r} \le n-1} \prod_{1 \le i < j \le r} (k_{j}-k_{i})^{2} \\ \cdot \prod_{i=1}^{r} \frac{\left(-\frac{N-m+r-1}{2}\right)_{k_{i}} \left(-\frac{N-m+r-2}{2}\right)_{k_{i}} (-n+1)_{k_{i}}}{\left(-\frac{N+n-1}{2}\right)_{k_{i}} \left(-\frac{N+n-2}{2}\right)_{k_{i}} k_{i}!}.$$

After a lot of simplification, one arrives at

$$(-1)^{\binom{r}{2}} 2^{\binom{r}{2} + \binom{n-r}{2}} \left(\binom{N+1}{2} - \binom{N-n+1}{2} - mr \right)! \\ \times \prod_{i=1}^{n} \frac{(i-1)!}{(N+n+1-2i)!} \prod_{i=1}^{r} \frac{(N+n-1)!}{(n-1)! (N-m+r-1)!} \\ \times \sum_{0 \le k_1 < \dots < k_r \le n-1} \prod_{1 \le i < j \le r} (k_j - k_i)^2 \\ \cdot \prod_{i=1}^{r} \frac{\left(-\frac{N-m+r-1}{2} \right)_{k_i} \left(-\frac{N-m+r-2}{2} \right)_{k_i} (-n+1)_{k_i}}{\left(-\frac{N+n-1}{2} \right)_{k_i} \left(-\frac{N+n-2}{2} \right)_{k_i} k_i!}$$

 \rightarrow multiple hypergeometric series associated to root systems!

\longrightarrow multiple hypergeometric series associated to root systems!

\longrightarrow multiple hypergeometric series associated to root systems!

MICHAEL SCHLOSSER

 \rightarrow multiple hypergeometric series associated to root systems!

MICHAEL SCHLOSSER (translated into English):

In a multi-dimensional ${}_{12}V_{11}$ transformation formula for elliptic hypergeometric series conjectured by Warnaar, which has subsequently been proven by Rains and, independently, by Coskun and Gustafson, let p=0, $d \rightarrow aq/d$, $f \rightarrow aq/f$, and then $a \rightarrow 0$ and $q \rightarrow 1$. If I am not mistaken, this should do the trick. Elliptic hypergeometric series?

Elliptic hypergeometric series?

Given a complex number p with |p| < 1, define a (rescaled) theta function $\theta(x; p)$ by

$$\theta(x; p) = \prod_{j=0}^{\infty} (1 - p^j x)(1 - p^{j+1}/x).$$

Furthermore, fixing another complex parameter, q say, and a non-negative integer m, we set

$$(a; q, p)_m = \theta(a; p) \theta(aq; p) \cdots \theta(aq^{m-1}; p).$$

For convenience, we also employ the short notation

$$(a_1, a_2, \ldots, a_k; q, p)_m = (a_1; q, p)_m (a_2; q, p)_m \cdots (a_k; q, p)_m$$

An elliptic transformation formula (RAINS, COSKUN AND GUSTAFSON)

Let a, b, c, d, e, f be indeterminates, let m be a nonnegative integer, and $r \ge 1$. Then

$$\sum_{0 \le k_1 < k_2 < \dots < k_r \le m} q^{\sum_{i=1}^r (2i-1)k_i} \prod_{1 \le i < j \le r} \theta(q^{k_i - k_j}; p)^2 \, \theta(aq^{k_i + k_j}; p)^2 \\ \times \prod_{i=1}^r \frac{\theta(aq^{2k_i}; p)(a, b, c, d, e, f; q, p)_{k_i}}{\theta(a; p)(q, aq/b, aq/c, aq/d, aq/e, aq/f; q, p)_{k_i}} \\ \times \prod_{i=1}^r \frac{(\lambda aq^{2-r+m}/ef, q^{-m}; q, p)_{k_i}}{(efq^{r-1-m}/\lambda, aq^{1+m}; q, p)_{k_i}}$$

$$=\prod_{i=1}^{r} \frac{(b,c,d,ef/a;q,p)_{i-1}}{(\lambda b/a,\lambda c/a,\lambda d/a,ef/\lambda;q,p)_{i-1}}$$

$$\times\prod_{i=1}^{r} \frac{(aq;q,p)_m (aq/ef;q,p)_{m+1-r} (\lambda q/e,\lambda q/f;q,p)_{m-i+1}}{(\lambda q;q,p)_m (\lambda q/ef;q,p)_{m+1-r} (aq/e,aq/f;q,p)_{m-i+1}}$$

$$\times \sum_{0 \le k_1 < k_2 < \dots < k_r \le m} q^{\sum_{i=1}^{r} (2i-1)k_i} \prod_{1 \le i < j \le r} \theta(q^{k_i-k_j};p)^2 \theta(\lambda q^{k_i+k_j};p)^2$$

$$\times \prod_{i=1}^{r} \frac{\theta(\lambda q^{2k_i};p)(\lambda,\lambda b/a,\lambda c/a,\lambda d/a,e,f;q,p)_{k_i}}{\theta(\lambda;p)(q,aq/b,aq/c,aq/d,\lambda q/e,\lambda q/f;q,p)_{k_i}}$$

$$\times \prod_{i=1}^{r} \frac{(\lambda aq^{2-r+m}/ef,q^{-m};q,p)_{k_i}}{(efq^{r-1-m}/\lambda,\lambda q^{1+m};q,p)_{k_i}},$$

where $\lambda = a^2 q^{2-r} / bcd$.

500

In the elliptic transformation formula, we let p = 0, $d \rightarrow aq/d$, $f \rightarrow aq/f$, and then $a \rightarrow 0$. Next we perform the substitutions $b \rightarrow q^b$, $c \rightarrow q^c$, etc., we divide both sides of the identity obtained so far by $(1-q)^{\binom{r}{2}}$, and we let $q \rightarrow 1$.

Corollary

For all non-negative integers m, r and s, we have

$$\begin{split} \sum_{0 \le k_1 < k_2 < \dots < k_r \le m} \prod_{1 \le i < j \le r} (k_i - k_j)^2 \prod_{i=1}^r \frac{(d + k_i)_s (b)_{k_i} (-m)_{k_i}}{k_i! (f)_{k_i}} \\ &= \frac{(-1)^{\binom{r}{2}}}{(r+s-1)!^{s-1}} \prod_{i=1}^r \frac{(b)_{i-1} (-f+b+s+2r-i-m)_{m-r+1}}{(-f-m+i)_{m-i+1}} \\ &\times \prod_{i=1}^{r+s-1} \frac{(i-1)! m!}{(m-i)!} \prod_{i=r}^{r+s-1} \frac{(d-b+1-r)_i}{(r+s-i-1)! (d)_{i-r} (f-b-s+1-r)_i} \\ &\times \sum_{0 \le \ell_1 < \ell_2 < \dots < \ell_s \le r+s-1} \prod_{1 \le i < j \le s} (\ell_i - \ell_j)^2 \\ &\times \prod_{i=1}^s \frac{(d)_{\ell_i} (f-b-s+1-r)_{\ell_i} (-r-s+1)_{\ell_i}}{\ell_i! (d-b+1-r)_{\ell_i} (-m)_{\ell_i}}. \end{split}$$

Corollary

For all non-negative integers m, r and s, we have

$$\begin{split} \sum_{0 \le k_1 < k_2 < \dots < k_r \le m} \prod_{1 \le i < j \le r} (k_i - k_j)^2 \prod_{i=1}^r \frac{(d + k_i)_s (b)_{k_i} (-m)_{k_i}}{k_i! (f)_{k_i}} \\ &= \frac{(-1)^{\binom{r}{2}}}{(r+s-1)!^{s-1}} \prod_{i=1}^r \frac{(b)_{i-1} (-f+b+s+2r-i-m)_{m-r+1}}{(-f-m+i)_{m-i+1}} \\ &\times \prod_{i=1}^{r+s-1} \frac{(i-1)! m!}{(m-i)!} \prod_{i=r}^{r+s-1} \frac{(d-b+1-r)_i}{(r+s-i-1)! (d)_{i-r} (f-b-s+1-r)_i} \\ &\times \sum_{0 \le \ell_1 < \ell_2 < \dots < \ell_s \le r+s-1} \prod_{1 \le i < j \le s} (\ell_i - \ell_j)^2 \\ &\times \prod_{i=1}^s \frac{(d)_{\ell_i} (f-b-s+1-r)_{\ell_i} (-r-s+1)_{\ell_i}}{\ell_i! (d-b+1-r)_{\ell_i} (-m)_{\ell_i}}. \end{split}$$

Theorem

If N - n is even, the number of standard Young tableaux of shape $(N, N - 1, \dots, N - n + 1)/(m^r)$ equals

$$\begin{split} (-1)^{\binom{(N-n)/2}{2} + \frac{1}{2}r(N-n)} 2^{\binom{n}{2} + (N-n-m)r} \left(\binom{N+1}{2} - \binom{N-n+1}{2} - mr\right)! \\ & \times \frac{1}{(r + \frac{N-n-2}{2})!^{(N-n)/2} \left(\frac{N+n-2}{2}\right)!^{(N-n)/2}} \frac{\prod_{i=1}^{(N+n)/2} (i-1)!}{\prod_{i=1}^{n} (N-n+2i-1)!} \\ & \times \prod_{i=1}^{r} \frac{\binom{N-n}{2} + i-1! (n+m-r+2i-1)! \left(\frac{n+m-r}{2} + i\right)_{(N-n)/2}}{(m+i-1)! (N-m-r+2i-1)!} \\ & \times \sum_{0 \le \ell_1 < \ell_2 < \dots < \ell_{(N-n)/2} \le r + \frac{N-n-2}{2}} (-1)^{\sum_{i=1}^{(N-n)/2} \ell_i} \left(\prod_{1 \le i < j \le \frac{N-n}{2}} (\ell_i - \ell_j)^2\right) \\ & \cdot \prod_{i=1}^{\frac{N-n-2}{2}} \left(\frac{N-n-2}{\ell_i} + r\right) \frac{\left(\frac{N+n}{2} - \ell_i\right)_{\ell_i} \left(\frac{n+m-r+1}{2} - i\right)_{r+i-\ell_i-1} \left(\frac{N-m-r+2}{2} - i\right)_{r+i-\ell_i-1}}{\left(\frac{N+m-r+2}{2} - i\right)_{r+i-\ell_i-1}}, \end{split}$$

and there is a similar statement if N - n is odd.

In the case of a full staircase (i.e., n = N), the formula reduces to DeWitt's original result.

Corollary

The number of standard Young tableaux of shape $(n, n-1, \ldots, 1)/(m^r)$ equals

$$2^{\binom{n}{2}-rm}\left(\binom{n+1}{2}-mr\right)!\prod_{i=1}^{n}\frac{(i-1)!}{(2i-1)!} \times \prod_{i=1}^{r}\frac{(n+m-r+2i-1)!(i-1)!}{(m+i-1)!(n-m-r+2i-1)!},$$

The "next" case:

Corollary

The number of standard Young tableaux of shape $(n+1, n, \ldots, 2)/(m^r)$ equals

$$2^{\binom{n}{2}-(m-1)r} \left(\binom{n+2}{2} - mr - 1\right)! \prod_{i=1}^{n} \frac{(i-1)!}{(2i)!} \\ \times \prod_{i=1}^{r} \frac{(n+m-r+2i-1)! (i-1)!}{(m+i-1)! (n-m-r+2i)!} \\ \times \sum_{\ell=0}^{r} (-1)^{r-\ell} \binom{r}{\ell} \frac{(n-\ell+1)_{\ell} \left(\frac{n+m-r}{2}\right)_{r-\ell} \left(\frac{n-m-r+1}{2}\right)_{r-\ell}}{\left(\frac{n+m-r+1}{2}\right)_{r-\ell}}.$$

▶ ◀ ☱ ▶

In general: The number of standard Young tableaux of shape $(N, N - 1, ..., N - n)/(m^r)$ equals an $\lceil (N - n)/2 \rceil$ -fold hypergeometric sum.

I think her approach is much simpler;

I think her approach is much simpler; but I don't think it would extend to the ''next case'' you mention.