Exercises for Algebraic Topology

SS 2006

Andreas Kriegl

1.1.A1.
Prove the following statements:

(a) Let X and Y be topological spaces, A C X, B C Y. Then A x BUA x B is the boundary of
Ax Bin X xY.

(b) Let A CR™ and B C R"™ be convex. Then A x B C R"™™ is convex.

1.1.A2.
The convex hull (A)., of A CR™ is defined to be the smallest convex subset of R” which contains A.
This is the intersection of all convex subsets of R™ containing A. Show that

A= {i)\lxlqu,/\ZZO,xl EA,i)\Zzl}

=0 1=0

1.1.A3.
For R > r > 0 let X be the subset of R? obtained by rotating a circle in the z-z-plane with center
(R,0,0) and radius r around the z-axes. Prove that

(a) X is given by the equation (y/22 + y2 — R)? + 22 = r2.
(b) (z,y) = (x1,72;91,92) — ((R+7y1)x,7y2) is an embedding of S' x S! onto X.

(c) The filled torus V' C R3 is the union {(z,y,2) : (v/22+ 4% — R)? + 22 < r?} of X and its
“interior”. Show that the formula in (b) gives a homeomorphism S x D? 2 V.

1.1.A4.
Show that for any 2,y € D™ there is a homeomorphism of pairs (D" {z}) =2 (D", {y}).

1.3.A1.
Show that the mapping (i1,...,4,) : X1 V- VX, — X1 x...x X, defined in (1.41) is an embedding.

1.3.A2.
Show: (St x S1)/(Stv St) = 52,

1.3.A3. .
Show that R"/D™ = R™ and that R"/D™ is not Hausdorff.

1.3.A4.
Show that any continuous f : X — Y induces a continuous mapping C(f) : C(X) — C(Y) between
the cones, via f x [ : X xI —Y x I.

1.3.A5.
The suspension (dt. Einhéngung) of a topological space X is E(X) := C(X)/X, where X is embedded
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into C(X) via ¢ — (z,1). Show that f : X — Y induces a mapping E(f) : E(X) — E(Y). Show
furthermore, that E(D™) = D"t and E(S™) = St

1.5.A4.
Show that the lens space L(3) is homeomorphic to P§.

1.6.A2.
Describe a mapping f : S — S? v ST such that (S? v S1) Uy D3 = 52 x S'. Hint: (1.12).

1.6.A3.

Consider the subspace X := S' U D! C C and a mapping f : S — X which runs through the top
half circle, the diameter D', the bottom half circle, and again the diameter. Show that X U I D? is
homeomorphic to the Mobius strip. Hint: Use (1.94).

1.7.A3.
Let Z act on R? by n : (z1,22) — (1 + n, (—1)"x3). Show that R?/Z is homeomorphic to the open
Mébius strip (i.e. the Mobius strip from (1.59) without ist boundary St).

1.7.A5.
Let G be the subgroup of homeomorphisms on R? generated by (21, x2) +— (21 + 1,22) and (21, 22)
(—x1,22 + 1). Show that R?/G is homeomorphic to Kleins bottle.

1.7.A6.
Let T be the torus into R? as in (1.18). Consider the action of the group S = {£1} on T given by

(1) (z,y,2) — (=, —y, z) and show that 7/S° = S x S*.

(2) (z,y,2) — (x, -y, —2) and show that T//S° = §2.

(3) (z,y,2) = (—x, —y, —z) and show that T'/S® is homeomorphic to Kleins bottle.

2.1.A2.
Show that X x Y is contractible provided X and Y are contractible.

2.1.A5.

Two homeomorphisms fy, f1 : X — Y are called isotopic, iff there exists a homotopy ¢ — f; consisting
of homeomorphism f; : X — Y only. Let f : D™ — D™ be a homeomorphism with f|g»-1 = id and
£(0) = 0. Show that idp, is isotopic f to via f, :  +— ¢ f(z/t), where f : R” — R™ is an appropriate
extension of f.

2.1.A7.
Show that X is contractible if and only if A: X — X x X, z — (x,z) is 0-homotopic.

2.2.A1.
Show that the pointwise multiplication defines an Abelian group structure on [X, S'] and, furthermore,
that deg : [S!, S1] — (Z, +) is a group-homomorphism with respect to this group structure for X := S*.

2.2.A2.
Let f : D* — R? be a continuous function with f|s1 odd. Show that there exists an z € D? with
f(2) = 0. Deduce the existence of a solution (z,y) € R? for

zcos(y) = 22 +y* — 1 and ycos(z) = sin(27(z? + %))
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2.2.A4.

Show that S is contractible.

Hint: Let p : R* \ {0} — S5 given by z TaT;> Where lzll2 == />, 3. Show that h; :
(xo,21,22,...) — p((1 — t)xo, txo + (1 — )z, tx1 + (1 — t)zo, txg + (1 — t)x3,...) defines a homo-
topy between idge and the right shift S — {z € S : 25 = 0}. Now consider the homotopy
(0,21,22,...) — p(t, (1 — t)ay, (1 —t)x,...).

2.4.A3.
Let p,q € S' x St be different points. Show that S* x S*\ {p,q} ~ St v St v St

2.4.A4.
Show that R3\ S* ~ SV §2 where S! is the unit-circle in R? x {0}.

2.4.A5.
Show that S3\ S! ~ St where S! is the unit-circle in R? x {(0,0)}.

2.4.A9.
Show that the mapping cylinder of z — 22, S' — S! is homeomorphic to the Mobius strip.

2.4.A10.
Show that for f: S"™' — Y one has M;/S"~' ~Y U; D"

2.4.A13.

Show that O(n) C GL(n) is an SDR. Hint: Apply Gram-Schmidt orthonormalization to the columns of
A € GL(n) to obtain r(A4) € O(n). This procedure is given by multiplication with an upper triangular
matrix with positive diagonal entries depending smoothly on A. Now deform the matrix to the identity
matrix.

3.1.A8.

Let K be a simplicial complex in R™ and p € R™*1\ R™. The cone C(K,p) is the set consisting of {p},
all simplices of K, and all simplicies (p, zo,...,x;) for (zg,...,z;) € K. The suspension is E(K) :=
C(K,p) UC(K,—p). Show that C(K,p) and E(K) are simplicial complexes with |C(K,p)| = C(|K])
and |E(K)| = E(|K]).

3.1.A9.
The cartesian product of two polyeder is a polyeder. Hint: Show that the product of two closed
simplices ¢ and 7 can be triangulated using C((c X 7)) =& X 7.

3.1.A13.
Let K be a simplicial complex and «; the number of i-simplices of K. The number x(K) := .. ,(—1)
is called Euler-characteristic of K. Show that B

lal

For any triangulation K of S we have y(K) = 0.

X(C(K,p)) =1 for the cone C(K,p) given in exercise (3.1.A8).

X(E(K)) =2 — x(K) for the suspension E(K) given in exercise (3.1.A8).

x(6) =1+ (—1)" where ¢ := {7 : 7 < o} for any n + 1-simplex o.

3.2.A2.
Let o, ..., x4 be vertices of K. Show that stx (x¢) N+ Nstr(ze) #0 < (xo,...,24) € K.

3.3.A1.
Show that S % S™ for n > 1 and deduce R? 2 R"*!. Hint: (3.33).
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4.1.A1.
Describe CW-decompositions with as few cells as possible for D™, St x I, the closed Mébiusstrip, and
the disk D? with g holes as in (1.4.13).

4.1.A5.

Show that the lens space L(%) is a 3-dimensional CW-complex with exactly one cell in each dimension.
Hint: Consider the CW-decomposition of D? given by the p-th unit-roots on S' C S? C D3, the
segments on S' between them, the two hemispheres of S? and the interior of D3. Now take the images
under the quotient mapping D3 — L(%).

4.2.A1.

Show that S™ x 8™ /8™ v S™ is a CW-space which is homeomorphic to ™.

4.2.A2.
Show that the cone and the suspension of a CW-space is also a CW-space.

4.2.A3.
Show that the mapping cylinder of a cellular mapping between CW-spaces is a CW-space.

4.3.A1.
Show that a CW-space X is path-connected if and only if X! is path-connected. Hint: (4.3.4)

4.3.A2.

Let X be a CW-space and 29 € X°. Let Y be a connected CW-space without 1-cells and hence with
only one 0-cell yo. Then any two homotopic mappings f; : X — Y which preserve the basepoints are
homotopic relative {zo}. Hint: (4.3.4).

4.3.A4.
Let X be a CW-space with dim(X) < n. Show that [X, S"] = {0}. Hint: (4.3.4) and cellular mappings
X — Sm =% Uem™ are constant.

5.4.A4.
Determine the fundamental group of St x P2, P2 v P2, P2 x P2, S x ™ for m > 2, and of R?\ S1.

The following exercises (5.3.7A)—(5.7.A4e) show, that the isomorphy problem is algorithmically unsol-
vable for m-manifolds with m > 4. For this it is enough to show that evevry finitely presented group
appears as fundamental group of such a manifold.

5.3.A7.
Let M be a connected manifold of dimension m > 3. Show that w1 (M \ DY) = 7y (M) for M \ DY as
in (1.5.5).

5.3.A8.
Let M and N be connected manifolds of dimension m > 3. Then for the connected sum we have
T (MYN) = i (M) [T (N).

5.7.A4da.
Show that for m > 4 the fundamental group of the connected sum M of k copies of S x S™~! is the
free group ({s1,...,sr} : @) with k generators.

5.7.A4dc.

Let f: S8 x D™™! — M an embedding into an m-manifold M. Show that 71 (M) = 71 (M \ f(S! x
Dmfl)).
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5.7.A4d.
Let f be as in (5.7.A4c) with M as in (5.7.A4a). Show that w(M Uy (D? x S™72) 2 ({s1,..., s} :
{fls1xqor})-

5.7.A4de.

Let G = ({s1,...,8k} : {r1,...,m}) be a finitely represented group. Now construct a compact connec-
ted manifold without boundary recursively by starting with M from (5.7.A4a) and cutting for every
r; € m1(M) a neighborhood homeomorphic to S x D™~ of a appropriately choosen representant of
r; and pasting a cylinder D? x S™~2 as in (5.7.A4d).

6.1.A1.
Show that for a, b, ¢, d € Z with m := ad—bc # 0 the mapping S' xS* — St x S, (z,w) — (22w’ z°w?)
is an m-fold covering.

6.1.A5.
Consider a torus 7' C R3 with the z-axes as rotation axis. Now glue g > 2 many handles to T such
that the resulting surface F,; is symetric with respect to rotation R around the z-axes by the angle
21 /g. Let G be the cyclic group generated by R. Show that F,;,/G = F5 and hence Fy 1 — F» is a
covering.

6.3.A3.
Consider the covering p : R — St ¢t — 2™ Let Y := S1v S C S x St and X := (p x p)~}(Y) =
{(z,y) € R? : € Z oder y € Z}. Show that:

1. (p xp)ly : X — Y is an infinite covering.
2. m(X) is a free group with infinite many generators (Hint: (5.5.14))
3. Show that the image of 71 (X) in 71 (Y") is the commutator subgroup of 7 (Y) =Z ][ Z.

4. Note that this subgroup of the free group with 2 generators is a free group with infinite many
generators.

7.2.10A.
Determine the homology of the Mébius strip M as in (7.2.10). Use this to calculate the relative
homology H(M,0M), see (7.4.7).

7.1.A6.

For a simplicial complex K let §, be the Betti-number of G := H,(K), i.e. the rank of the free part
G/ Tor(G), where Tor(G) :={g € G:3n > 0:n-g =0} denotes the torsion subgroup. Show that the
Euler-charakteristik from example (3.1.A13) is

X(K) =3 (-1)'8,

Hint: Let oy, p; and 7, denote the rank of the free abelian groups Cy(K), Bq(K) and Z4(K) then
Qg =Yg+ pg—1 and v, = B, + pg- Use the formula rank(A/B) + rank(B) = rank(A) from the proof of
(8.2.1a).

9.2.A4.

Let A C X be path-connected. Show that H;(X) — H;(X,A) — 0 is exakt and give a geometric
interpretation of this result.
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