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1.2

1. Building blocks and homeomorphy

For the first chapter I mainly listed the contents in form of short statements. For
details please refer to the book.

Ball, sphere and cell

Problem of homeomorphy.
When is X = Y? Either we find a homeomorphism f : X — Y, or a topological
property, which hold for only one of X and Y, or we cannot decide this question.

1.1 Definition of basic building blocks. [9, 1.1.2]
1. R with the metric given by d(z,y) := |z — y|.
2. I:=100,1]:={z € R: 0 <z <1}, the unit interval.

3. R" = [[,R = [[;c,R = [[') R = {(xi)ico,..n—1 : @; € R}, with the
product topology or, equivalently, with any of the equivalent metrics given
by a norm on this vector space.

I =TI =)y 0< 2 <Vl ={z eR": la—(3,..., )]l < 5},
the n-dimensional unit cube, where ||z_o := max{|z,| : i}.

W~

5. For subsets .A C R™ we denote with A = 9gn A the boundary of A in R™. In
particular, I" := Ogn I™ = {(x;); € I™ : Ji : 2; € {0,1}}, the boundary of I"™
in R™.

6. D" :={x € R" : [|z|]2 := /D _;c,(wi)? < 1}, the n-dimensional closed unit
ball (with respect to the Euclidean norm).
A topological space X is called n-BALL iff X & D™.

7. D" := Oga D" = §"" 1 := {x € R" : ||z|2 = 1}, the n — 1-dimensional unit
sphere.

A topological space X is called n-SPHERE iff X & S™.
8. D" .= {z € R : ||z||2 < 1}, the interior of the n-dimensional unit ball.
A topological space X is called n-CELL iff X = D™.

1.2 Definition. [9, 1.1.3] An AFFINE HOMEOMORPHISMS is a mapping of the form
z +— A-x+ b with an invertible linear A and a fixed vector b.
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1.8 1. BUILDING BLOCKS AND HOMEOMORPHY

Hence the ball in R™ with center b and radius r is homeomorphic to D" and thus
is an n-ball.

1.3 Example. [9, 1.1.4] D! = R: Use the odd functions ¢ — tan(3t), or t

with derivative ¢ (:22_%1)2 >0, ort+—

¢
T
1%‘” with derivative ¢ — 1/(1—|t|) > 0 and
%M.~Note, that any bijective f1~1nction f:10,1) — [0,400)
extends to an odd function f : (—1,1) — R by setting f(t) := —f(—t) for t < 0. For
f(t) == 15 we have f(t) = —ﬁ = 1%‘” and for f(t) := Lz we have f(t) =
—ﬁ = # Note that in both cases f(0) = 0 and 3f'(0) = lim;— o4 f/(2),
hence f is a C* diffeomorphism. However, in the first case lim;—o4 f"(t) = 2 and
hence the odd fucntion f is not C2.

inverse mapping s +—

1.4 Example. [9, 1.1.5] D™ =~ R™: Use for example f : z — =11 = Tay - S]]

with fi(¢) :== 145 and directional derivative f'(z)(v) = 1*}@” v+ (17|<‘§||
for x — 0.

1.5 Corollary. [9, 1.1.6] R™ is a cell; products of cells are cells, since R™ x R™
R™™ by “associativity” of the product.

1.7 Definition. A pPAIR (X, A) of spaces is a topological space X together with a
subspace A C X.

A mAPPING f: (X, A) — (Y, B) of pairs is a continuous mapping
f: X — Y with f(A) € B. A HOMEOMORPHISM f : (X, A) - X Y
(Y, B) of pairs is a mapping of pairs which is a homeomorphism

f: X — Y and satisfies f(A) = B (and hence induces a homeo- fla
morphism f|4 : A — B). A B

1.8 Definition. [9, 1.3.2] A mapping f : (X, A) — (Y, B) of pairs is called RELA-
TIVE HOMEOMORPHISM, iff f: X \ A — Y \ B is a well-defined homeomorphism.

* ©

A homeomorphism of pairs is obviously a A X\A

relative homeomorphism, but not conver-

sely even if f|4 : A — B is a homeomor-

phism: Consider for example A := {—1},

X :=AU(1,2],and f:t s t? —2. B Y\B

However, for X and Y compact any homeomorphism f : X\{zq} — Y \{yo} extends
to a homeomorphism f : (X, {zo}) — (Y, {yo}) of pairs, since X 2 (X \ {20})oo, cf.

. Note that Z,, denotes the 1-point compactification of the locally compact
space Z, see [2, 2.2.5].
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.13

1.9 Example. [9, 1.1.15]

1. R™\ {0} = 5"~ ! x (0,+00) = S"1 x R, %/Ix]
via x — (”71”33, llz]]), ety (y,t).

2. D"\ {0} = 8" 1 x (0,1] =2 5" x (e1],
via (0,1] = (e,1] and (1).

1.6 Definition. A subset A C R™ ist called CONVEX, iff x + t(y — x) € A for
Vr,y € A, t €10,1].

1.10 Theorem. [9,1.1.8] X C R" compact, conver, X #0=(X,X) = (D", S ).
In particular, X is a ball, X isa sphere and X is a cell.
If X CR"™ is (bounded,) open and convex and not empty =X is a cell.

Proof. W.log let 0 G X (translate X by —x¢ with z¢ € )%) The mapping
f: X3z~ HIH x € S"~1is bijective, since it keeps rays from 0 invariant and since
for y # 0 let tg :=max{t >0:ty € X}. Thenty ¢ X for all t > ¢ andtyEXfor
all 0 < t < to (consider the cone with an open 0-neighborhood in X as basis and
toy as apex), hence tg is the unique ¢t > 0 with ty € X . Since X is compact f is a
homeomorphism and by radial extension we get a continuous bijection

D™\ {0} = 5" 1 % (0,1] 2% % « (0,1] — X \ {0},

e (et ) = (7 () ) = v~ )

which extends via 0 — 0 to a continuous bijection of the 1-point compactifications
and hence a homeomorphism of pairs (D", S"1) — (X, X).

The second part follows by applying the first part to X, a compact convex set with
non-empty interior X: In order to see this take a point z in the interior of X. So
there exists a open neighborhood of z in X and we may assume that this is of the
form of an n-simplex (see ) (i.e. a hypertetraeder). Since its vertices are in X
we can approximate them by points in X and hence z lies inside this approximating
simplex contained in X.

That the boundedness condition can be dropped can be found for a much more
general situation in [5, 16.21]. O

1.11 Corollary. [9, 1.1.9] I" is a ball and I™ is a sphere.

1.12 Example. [9, 1.1.10] [9, 1.1.11] D? x D1 is a ball, hence products of balls are
balls, and 9(D? x D7) = SP~1 x D7 U DP x S971 is a sphere:
DP x D1 is compact convex, and by exercise (1.1.1A) d(Ax B) = 0Ax BUA X 0B.

So by the result follows.

1.13 Remark. [9, 1.1.12] is wrong without convexity or compactness as-
sumption: For compactness this is obvious since D™ ic compact. That, for example,
a compact annulus is not a ball will follow from .
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1.20 1. BUILDING BLOCKS AND HOMEOMORPHY

1.14 Example. [9, 1.1.13] S" = D7 UD™, D} N D™ = S"~! x {0} = S"~!, where

Dt = {(x;t) € S* CR" xR : £t > 0} = D" are the southern and northern

hemispheres. The stereographic projection S™ \ {(0,...,0;1)} = R" is given by
1

(X,t)

x ¢

[EnY
|
—

1.15 Corollary. [9, 1.1.14] S™\ {*} is a cell.

1.16 Example. [9, 1.1.15.3]
For all & € S"~1:

D™\ {i} = R""! x [0,+00),
R 1 % [0, 400) 2 (S 1\ {&}) x (0,1] = D™\ {i},
(z,t) = &+ t(x — ).

1.17 Example. [9, 1.1.20] S™ 2 R" and D™ 2 R", since R™ is not compact.
None-homeomorphy of X = S* with I follows by counting components of X \ {*}.

1.18 Example. [9, 1.1.21] S* x St is called torus. It is embeddable into R* by
(z,y) = (z1,22;Y1,Y2) — ((R+7ry1)x,rye) with 0 < r < R. This image is described
by the equation {(z,y, 2) : (\/22 + y2 — R)? + 2? = r?}. Furthermore, S* x S 2 §2
by Jordan’s curve theorem, since (S x S1)\ (St x {1}) is connected.

1.19 Theorem (Invariance of a domain). [9, 1.1.16) R D X =Y C R", X
open in R™ =Y open in R™.

We will prove this hard theorem after .

1.20 Theorem (Invariance of dimension). [9, 1.1.17] m # n =R™ 2% R",
Sm % S", D™ % D",
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.26

Proof. Let m < n.

Suppose R™ 2 R™, then R™ C R" is open, but the image R™ = R™ x {0} C R" is
not, a contradiction to .

Sm S = RS\ {2z} 2S"\ {y} ZR" = m=n.

f:D"=D" = Dr =~ ffl(DO”) C D™ CR™ C R” and f’l(DO”) is not open, a

contradiction to . O

1.21 Theorem (Invariance of the boundary). [9, 1.1.18] f : D™ — D™ homeo-
morphism =f : (D", S"~1) — (D", 8"~1) homeomorphism of pairs.

Proof. Let & € D" with y = f(#) ¢ D" Then y € D" = U and 7HU) is
homeomorphic to U but not open, since x € f~1(U)N D", a contradiction to.
O

1.22 Definition. [9, 1.1.19] Let X be an n-ball and f : D™ — X a homeomorphism.
The BOUNDARY X of X ist defined as the image f(D™). This definition makes sense

by .

Quotient spaces

1.23 Definition. Quotient space. [9, 1.2.1] Cf. [2, 1.2.12]. Let ~ be an equiva-
lence relation on a topological space X. We denote the set of EQUIVALENCE CLASSES
[#]~ :={y € X : y ~ 2} by X/~. The QUOTIENT TOPOLOGY on X/~ is the final
topology with respect to the mapping 7 : X — X/~, & — [z]~ (i.e. the finest
toplogy for which this mapping is continuous, see [2, 1.2.11]).

1.24 Proposition. [9, 1.2.2] A subset B C X/~ is open/closed iff n=1(B) is
open/closed. The quotient mapping m is continuous and surjective. It is open/closed
iff for every open/closed A C X the saturated hull 7=1(w(A)) is open/closed.

For a proof see [2, 1.2.12].
The image of the closed subset {(z,y) : z-y = 1,2,y > 0} C R? under the first

projection pr; : R? — R is not closed!

1.25 Definition. [9, 1.2.9] A mapping f : X — Y is called QUOTIENT MAPPING
(or final), iff f is surjective continuous and satisfies one of the following equivalent
conditions:

1. The induced mapping X/~ — Y is a homeomorphism,
where x1 ~ 23 & f(z1) = f(x2).

2. B CY is open (closed) if f~1(B) is it.
3. A mapping g : Y — Z is continuous iff g o f is it.

(1=2) X — X/~ has this property.

(2=3) g~ 1 (W) open & (go )1 (W) = f~(g~'W) is open.

(3=1) X/~ — Y is continuous by (1=3) for YV := X/~ And ¥V — X/~ is
continuous by (3).

1.26 Example. [9, 1.2.3]
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1.30 1. BUILDING BLOCKS AND HOMEOMORPHY

1. I/~ = S where 0 ~ 1: The mapping t — 2™ [ — S factors to homeo-
morphism I/ ~— S

2. I?/~ = 8 x I, where (0,t) ~ (1,t) for all t.

- .

3. I?/~ = S x St where (¢,0) ~ (t,1) and ( for all ¢.

-
1.27 Proposition. Universal property of X/~. [9, 1.2.11] [9, 1.2.6] [9, 1.2.5]
Let f : X — Y be continuous. Then f is compatible with the equivalence relation
(i.e. x ~ 2’ = f(x) = f(a')) iff it factors to a continuous mapping X/~ — Y

over m: X — X/~. Note that f is compatible with the equivalence relation iff the
relation fon~' is a mapping. The factorization X/~ — Y is then given by fomr*

Proof. (z,y) € for ' & 3r € X : f(z) =y, m(x) = 2. Thus fon~! is a mapping,
i.e. y is uniquely determined by z iff n(z) = n(2') = f(z) = f(2'). O

1.28 Proposition. [9, 1.2.4] Functoriality of formation of quotients. Let f : X —Y
be continuous and compatible with equivalence relations ~x on X and ~y on Y.
Then there is a unique induced continuous mapping f : X/~x — Y /~y.

If f and f —L are compatible with the equivalence relations and is a homeomorphism,
then f is a homeomorphism.

For a proof see [2, 1.2.11,1.2.12].

1.29 Proposition. [9, 1.2.7] [9, 1.2.12] The restriction of a quotient-mapping to a
closed/open saturated set is a quotient-mapping.

Let f : X — Y be a quotient mapping, B CY open (or closed), A = f~1(B). Then
fla : A — B is a quotient mapping.

For example, the restriction of 7 : I — I/I to the open set [0,1) is not a quotient
mapping.

Proof. Let U C B with (f|4)"*(U) open. Then f~Y(U) = (f|4)~(U) is open and
hence U C Y is open. O

1.30 Corollary. [9, 1.2.8] A closed/open, Va € A,z € X,z ~a=>2x=a,p: X —
Y quotient-mapping =p|a : A — p(A) CY is an embedding.

[1.29]
Proof. = A = p~}(p(A)) = p|la : A — p(A) is a quotient mapping and
injective, hence a homeomorphism. O
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.34

1.31 Proposition. [9, 1.2.10] Continuous surjective closed/open mappings are ob-
viously quotient-mappings, but not conversely. Continuous surjective mappings from
a compact to a Th-space are quotient-mappings, since the image of closed subsets is

compact hence closed. f, g quotient mapping =go f quotient mapping, by | 1.25.3|.
go [ quotient mapping =g quotient mapping, by | 1.25.3|.

1.32 Proposition. Theorem of Whitehead. [9, 1.2.13] Let g be a quotient
mapping and X locally compact. Then X X g is quotient mapping.

For a counterexample for not locally compact X see [2, 1.2.12]:

Proof.
gV 1 fw
\ z
o)
(X0,20)
Y \% o— e
W o
ftw
gV (Xo0,Yo)
*—0
U X
U X

Let (79, 20) € W C X x Z with open f~1(W) C X xY, where f := Xxgforg:Y —
Z. We choose yo € g~ '(29) and a compact U € U(xg) with U x {yo} C f~H(W).
Since f~1(W) is saturated, Ux g~ (g(y)) C f~1(W) provided Ux{y} C f~1(W).In
particular, U x g7 1(20) C f~Y(W). Let V:i={z€ Z : Uxg !(2) C f~1(W)}. Then
(r0,20) € UXV C W and V is open, since g1 (V) :={y € Y : Ux {y} C f~L(W)}
is open (see [2, 2.1.11]). O

1.33 Corollary. [9, 1.2.14] f: X — X', g : Y — Y’ quotient mappings, X, Y’
locally compact = f X g quotient mapping.
Proof.
XYy
XXxY—=X'xY

lXN iX'xg
f ’

XY

XxY —X'xY'

Special cases of quotient mappings

1.34 Proposition. Collapse of subspace. [9, 1.3.1] [9, 1.3.3] A C X closed
=7m:(X,A) — (X/A,{A}) is a relative homeomorphism, where XA := X/~ with
the equivalence relation generated by Va,a' € A : a ~ o. The functorial property
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1.41 1. BUILDING BLOCKS AND HOMEOMORPHY

for mappings of pairs is:

(X, 4) —L  ~(v,B)

i i

(X/A,AJA) > (Y/B,B/B)

Proof. That 7: X\ A — X/A\ A/A is a homeomorphism follows from . The
functorial property follows from O

1.35 Example. [9, 1.3.4] X/0 = X, X/{x} = X. I/] = §', X/A = (X \ A)w,
provided X compact and A C X is closed. In fact, X/A is compact, X \ A is openly
embedded into X/A and X/A\ (X \ A) is the single point A € X/A.

1.36 Example. [9, 1.3.5] D"\ §"~! = D" =~ R" and hence by D /§n—l
(D™ \ S" 1) =2 (R") o, =2 S™. Or, explicitly,

%) — (sin(ﬂ(l - t))ﬁ,cos(ﬂ(l - t)))

N
)

=
oyl
R
el
s
S

=X
=

5

—
—

Wiz
\\

1.37 Example. [9, 1.3.6] X x I is called cylinder over X. And CX := (X xI)/(X x
{0}) is called the cone with base X. C(S") = D" via (z,t) — t.

1.38 Example. [9, 1.3.7] Let (X, z;) be pointed spaces. The 1-point union is
V X =\ (Xj,2)) = | X, /w0 3}
jed jed j

By the projection  : |_|j X; — \/j X is a closed mapping.

1.39 Proposition. [9, 1.3.8] X; embeds into \/; X; and \/; X; is union of the
images, which have pairwise as intersection the base point.

Proof. That the composition X; — [ |; X; — \/; X; is continuous and injective

is clear. That it is an embedding follows, since by the projection 7 is also a
closed mapping. O

1.40 Proposition. [9, 1.3.9] Universal and functorial property of the 1-point-union:
fi fi

(Xi, ) —— (Y, y) (Xi, w5) ——= (Vi 93)
| L
V) X, VX VLY,
Proof. This follows from and . O

1.41 Proposition. [9, 1.3.10] Embedding of X1 V-V X,, — X1 X ... x X,,.
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.43

‘ Xy xXoXXg—]

) A
\\
\\\
N
\\J/,
Proof. Let i; : X; — [[,_; Xx be given by z — (z1,...,2;-1,2,%j,...,T,), where
the z;, are the base-points of Xj. Then | |, ir : |, Xx — [[, X factors to the
claimed embedding, see exercise (1.7). O

1.42 Example. [9, 1.3.11] is wrong for infinite index sets: The open neigh-
borhoods of the base point in \/j X; are given by \/j U;, where Uj; is an open
neighborhood of the base point in X;. Hence \/ X, is not first countable, whereas
the product of countable many metrizable spaces X is first countable.

Also countable many circles in R? which intersect only in a single point have as
union in R? not their one-point union, since a neighborhood of the single point
contains almost all circles completely.

1.43 Definition. Gluing. [9, 1.3.12] f : X D A — Y with A C X closed.
Y Uy X :=Y UX/~, where a ~ f(a) for all a € A, is called Y glued with X via f

(or along f).
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1.46 1. BUILDING BLOCKS AND HOMEOMORPHY

X B{C)

f(A)

1.44 Proposition. [9, 1.3.13] [9, 1.3.14] f : X D A - Y with A C X closed.
mly 1Y =Y Uy X is a closed embedding. m: (X, A) — (Y Uy X, 7(Y)) is a relative
homeomorphism.

Proof. That 7|y : Y — Y Uy X is continuous and injective is clear. Now let B C Y
be closed. Then 7= (7(B)) = BU f~!(B) is closed and hence also 7(B).

That 7: X \ A — Y Uy X \ 'Y is a homeomorphism follows from . O

1.45 Proposition. [9, 1.3.15] Universal property of push-outs Y Uy X :

Proof. . O

1.46 Lemma. Let f; : X; D A; —» Y be given, X := X; U Xy, A:= A UA C X
and f:=filfo: X DA—=Y. ThenY Uy X = (Y Uy, X1) Uyp, Xo.

10 andreas.kriegl@univie.ac.at © 11. Janner 2012



1. BUILDING BLOCKS AND HOMEOMORPHY 1.48

Proof.
Ao
" \ f2
A ! Y
\ f1
Ay i
i1
0) [ i
X1 — Py Up Xy
/ O
v » A
X = Y Uf X
/ O \12 (@@
P2 BN T
X (Y Uy, X1) Up, X O

1.47 Example. [9, 1.3.16] f: X DA =Y = {x} =Y Uy X = X/A, since X/A
satisfies the universal property of the push-out.

[:XD{x} =Y =YUr X=XVY, by definition.

f:X2DA—Y constant =Y Uy X = X/A VY, since we can compose pullbacks:

1.48 Example. [9, 1.3.17] f : X D A — B C Y homeomorphism of closed subsets.
YU X =n(X)Un(Y) with m(X) =X, n(Y) =Y and n(X)N7(Y) = A= B.
This follows from since Y Uy X = X Uy—1 Y. Note however, that Y Uy X
depends not only on X D A and Y O B but also on the gluing map f: A — B as
the example X = I x I =Y and A= B =1 x I with id # f : (x,1) — (1 — 2,1),
(x,0) — (z,0) of a Mébius-strip versus a cylinder shows.
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1.57 1. BUILDING BLOCKS AND HOMEOMORPHY

1.49 Proposition. [9, 1.3.18]

X<~ A-Toy

:lF l’iFlA Glﬁ
f/

X/ < AI > Y/

Proof. By we obtain a uniquely determined continuous map GUF' : YU; X —
Y'Up X' with (GUF)ow|x = m|x o F and (GU F) om|ly = 7|y, o F. Since
G lof =G lofloFoF|;' =G 'oGofoF|;' = foF ' a we can similarly
G'UF1:Y'Up X' -Y Uy X.On X and Y (resp. X’ and Y”’) they are inverse
to each other, hence define a homeomorphism as required. O

1.50 Example. [9, 1.3.19]

(1) Z = XUY with X, Y closed. =Z = Y U;y X: The canonical mapping
Y U X — Z induces a continuous bijective mapping ¥ Uiyq X — Z, which is
closed and hence a homeomorphism, since Y LI X — Z is closed.

(2) Z=XUY with X, Y closed, A :== XNY, f: A — A extendable to a
homeomorphism of the pair (X, A) =Z =Y Uy X: Apply to

X~ A-Tos—>vy

NP

X A9 A Y

(3) D™ Uy D™ for all homeomorphisms f : S"~! — S"~1: We can extend f
radially to a homeomorphism f : D™ — D™ by f(z) = ||z| f(ﬁ) and can
now apply (2).

(4) Gluing two identical cylinders X x I along any homeomorphism f : X x
{0} — X x {0} yields again the cylinder X x I: Since f extends to a ho-

meomorphism X x I — X x I, (z,t) — (f(x),t) we may apply (2) to obtain
(X xDUp (X xI)=(XxI)Uqg (X xI)=Z X xI.

Manifolds

1.51 Definition. [9, 1.4.1] [9, 1.5.1] An m-dimensional MANIFOLD (possibly with
boundary) is a topological space X (which we will always require to be Hausdorff
and second countable), for which each of its points © € X has a neighborhood A
which is an n-ball, i.e. a homeomorphism ¢ : A = D™ (which we call CHART at
x) exists. A point z € X is called BOUNDARY POINT iff for some (and by
any) chart ¢ at  the point is mapped to ¢(z) € S™~!. The set of all boundary
points is called the BOUNDARY of X and denoted by X or X. A manifold is called
CLOSED if it is compact and has empty boundary. Two-dimensional manifolds are
called SURFACEs.

1.57 Examples. [9, 1.4.4] [9, 1.4.5]

1. 0-manifolds are discrete countable topological spaces.
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.55

2. The connected 1-manifolds are R, S, I and [0, +00).

3. Quadrics like hyperboloids (=2 R? LU R? or = S! x R), paraboloids (= R?),
and the cylinder S' x R are surfaces.

4. Let X be a surface without boundary and A C X be a discrete subset. Then
X \ A is also a surface without boundary.

5. D™ is a manifold with boundary S™~!, so D™ =~ R™ is a manifold without
boundary, and the halfspace R™~1 x [0, +00) is a manifold with boundary
R™~1 x {0}.

1.51a Lemma. Let U C X be open in an m-manifold X. Then U is an m-manifold
withU =XNU

Proof. Let x € U and ¢ : A —=— D™ be a chart at + € A. Then ¢(U) is an open
neighborhood of ¢(x) in D™ and hence contains a convex compact neighborhood

B which is an m-ball by [1.10] Consequently, ¢ : U D ¢~Y(B) = B C D™ is
the required chart at = for U. Obviously z € Ue o) e Bepk)es ! o
z e X. O

1.52 Proposition. [9,1.4.2] [9, 1.5.2] Let f : X — Y be a homeomorphism between
manifolds. Then f(X) =Y.

Proof. Let z € X and ¢ : A= D™ a chart at . Then po f~!: f(A) - D™ is a
chart of Y at f(x) and hence z € X & f(x) €Y. O

1.53 Proposition. [9, 1.4.3] [9, 1.5.3] Let X be an m-manifold and x € X. Then
there exists a neighborhood U of x in X with (U,U N X,x) = (D"t x I, D" x
{0},(0,0)), an homeomorphism of triples.

Proof. By assumption there exists a neighborhood A of z in X and a homeomor-
phism ¢ : A — D™ with ¢(z) € S™!. Choose an open neighborhood W C A
of z. Then W = X N'W and the manifold W is homeomorphic to @(W) € D™.
Obviously ¢(W) contains a neighborhood B of ¢(x) homeomorphic to D™=t x I,
where S™~! N B corresponds to D™~ ! x {0}. The set U := ¢~(B) is then the
required neighborhood. O

1.54 Corollary. [9, 1.5.4] The boundary X of a manifold is a manifold without
boundary.

Proof. By X is locally homeomorphic to D"~! x {0} and z € X corresponds
to (0,0) thus is not in the boundary of X. O

1.55 Proposition. [9, 1.5.7] Let M be an m-dimensional and N an n-dimensional
manifold. Then M x N is an m+n-dimensional manifold with boundary (M xN)" =
M x N Uy L M X N. For a manifold X without boundary (like St ) the cylinder
X x I is a manifold with boundary X x {0,1}.

This way we get examples of 3-manifolds: S? x R, S? x I, and S? x S*.

Proof. | 1.12] and | 1.50.1]. O
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1.62 1. BUILDING BLOCKS AND HOMEOMORPHY

1.59 Example. Mobius strip. [9, 1.4.6] The MOBIUS-STRIP X is defined as
I x I/ ~, where (z,0) = (1 —z,1) for all x. Its boundary is (I x I)/~ = S! and
hence X is not homeomorphic to the cylinder S* x I.

An embedding of X into R? is given by factoring
(p,7) = ((24 (2r — 1) cos mp) cos 2w, 2 + (2r — 1) cos mp) sin 2wy, (2r — 1) sin7y)
over the quotient.

The Mobius-strip is not orientable which we will make precise later.

1.60 Proposition. [9, 1.4.7] [9, 1.5.5] By cutting finitely many disjoint open holes
into a manifold one obtains a manifold whose boundary is the union of the boundary
of X and the boundaries of the holes. More precisely, let X Ige an m-manifold and
fi : D™ — X embeddings with pairwise disjoint images. Let D; := {fi(z) : |z| < %}
and S; == {f;(z) : |z| = £}. Then X \ U], D; is an m-manifold with boundary
XU, S

The manifold which results by cutting g open holes in the unit-disk D? will be
denoted Dg.

Proof. No point in {f;(z) : || < 1} is a boundary point of X, hence the result
follows. =

1.61 Proposition. [9, 1.4.8] [9, 1.5.6] Let F' and F' be two manifolds and R and
R’ components of the corresponding boundaries and g : R — R’ a homeomorphism.
Then F' Uy F is a manifold in which F and F' are embedded as closed subsets with
boundary (F\ R)U (F' \ R').

Proof. Let A2 D™ x I and A’ = D™ x I be neighborhoods of z € R and g(z) € R’
with FNA = D™ x {0} and F' N A" = D! x {0}. W.lLo.g. we may assume
that g(F N A) = F' N A’. The image of A’ U A in F’ Ug F' is given by gluing
D™= x Tu D™ ! x I along a homeomorphism D™~ ! x {0} — D™~ x {0} and
hence by is homeomorphic to D™~ x I where z corresponds to (0,0). [

1.62 Example. [9, 1.4.9] S* xS* can be obtained from two copies of S* x I that way.
The same is true for KLEIN’S BOTTLE but with different gluing homeomorphism.
b

b
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.66

1.63 Example. Gluing a handle. [9, 1.4.10] [9, 1.5.8.7] Let X be a surface in
which we cut two holes as in . The surface obtained from X by gluing a handle
is (X \ (D?2UD?) Uy (S* x I), where f: S*x I DS x 1= S8'US' C D?uU D>

More generally, one can glue handles S"~! x I to n-manifolds.

1.64 Example. Connected sum. [9, 1.4.11] [9, 1.5.8.8] The CONNECTED SUM of
two surfaces X; and X5 is given by cutting a whole into ebach of them %nd gluing
along boundaries of the respective holes. X14X» := (X; \ D?) Uy (X2 \ D?), where
f:D?*2 5t =SC D2

More generally, one can define analogously the connected sum of n-manifolds. This
however depends essentially on the gluing map.

1.65 Example. Doubling of a manifold with boundary. [9, 1.4.12] [9, 1.5.8.9]
The DOUBLING OF A MANIFOLD is given by gluing two copied along their boundaries
with the identity. 2X := X Uy X: where f =id: X — X.

1.66 Example. [9, 1.4.13] The compact oriented surfaces Fj (of genus g) without
boundary can be described as:

1. boundary of a brezel V, := Dg x I of genus g.
2. doubling 2D§.

3. connected sum of tori.

4. sphere with g handles.
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OO

1.67 Example. [9, 1.4.14]

by a

The compact oriented surface als
quotient of an 4g-polygon. By induc-
tion this surface is homeomorphic to

those given in .

\_:

a

1.68 Example. [9, 1.4.15] [9, 1.5.13] The PROJECTIVE PLANE P? is defined as
(R3\ {0})/~ with z ~ X\ -z fiir R> X # 0.

More generally, let for K € {R,C,H} the PROJECTIVE SPACE be defined by P :=
(K"*t1\ {0})/~, where  ~ Az for 0 # X\ € K. The quotient mapping K"\ {0} —
Pg is an open mapping, since the saturated hull of an open subset U is the open
double-cone with base U and without its apex.

1.69 Examples. [9, 1.4.17] [9, 1.4.18]
1. P2 = D?/~ where z ~ —z for all z € S'.

2. P* = D"/~ where x ~ —z for all x € S*~1:
Consider a hemisphere D7 C S™. Then the open quotient mapping S™ — P"
restricts to a quotient mapping (by ) on the compact set D’ with
associated equivalence relation x ~ —x on sn—1 C D?. Thus P" is an n-
manifold.

3. P? can be obtained by gluing a disk to a M&bius strip.
Consider the closed subsets A := {x € S? : 25 <0, |z3| < 1/2} and B = {x €
S3 . x3 > 1/2}. The open quotient mapping induces an homeomorphism on
the saturated subset B C D7, i.e. m(B) is a 2-Ball. A is mapped to a Mobius-
strip by and | 1.59 |. Since m(B)Un(A) = P? and n(B)Nw(A) = S* we

are done.
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1.71 Proposition. [9, 1.4.16] [9, 1.5.14] [9, 1.6.6] P} is a dn-dimensional connected
compact manifold, where d := dimg K. The mapping p : S~ — P%fl, x v [x] is
a quotient mapping. In particular, P} = S,

Proof. Charts K® — P2, (z1,...,2") — [(2!,... 2% 1,2tT . 2"))].
The restriction K"+! D §n+=1 _ pr jg 5 quotlent mapping since K1\ {0} —
Pk is an open mapping. For K = R it 1nduceb the equivalence relation x ~ —z. In

particular Py is compact.
For n = 1 we have Pk \ Uy = {[(0,1)]}, therefore P} =~ K, = S°. O

1.72 Example. [9, 1.4.19] The none-oriented compact surfaces N, (of genus g)
without boundary:

1. Connected sum of g projective planes.

2. Sphere with g Mobius strips glued to it.

Klein’s bottle as sum of two Mé&bius strips, see [4, 9.3].

)

1.73 Proposition. [9, 1.4.20] The none-orientable compact surfaces without boun-
dary as quotient of a 2g-polygon.

1.86 Theorem. [9, 1.9.1] Each connected closed surface is homeomorphic to one
of the surfaces S = Fy, S x S' = Fy,... or P2 = N;,No,....

For a sketch of proof, see [4, 9.4]
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= & =

@@ :

1.74 Example. [9, 1.5.9] Union of filled tori (D? x S1)Uiq (S x D?) = (D? x D?)" =
(D*) = S3 by . Other point of view: S3 = Di Uiq D3 and remove a filled
cylinder from D_ and glue that to D, to obtain two tori. With respect to the
stereographic projection the torus {(z1, 22) € S3 C C? : |z1| = 71, |22] = ro} with
r? + 13 = 1 corresponds to the torus With the z-axes as its axes and big radius
A:=1/ry > 1 and small radius a : 2 gee [4, 11.6,11.7].

1.75 Example. [9, 1.5.10] More generally, let f : S x S' — S x S! be given by
I (z,w) = (2%°, z°w?), where a,b,c,d € Z with ad — bc = +1.

1)

F,

Stx 8t ————= 651 x st

A meridian S* x {w} on the torus is mapped to a curve t + (€27 w) — (w® e27iet d e27ict)

which winds a-times around the axes and c-times around the core of S! x S < R3.

M (‘i Z) .= (D? x §Y) Uy (8" x D?).

In together with ’ 1.89‘ and ’ 1.83‘ we will indicate that M is often not ho-
meomorphic to S3.

1.76 Example. [9, 1.5.11] Cf. [ 1.61 | By a HEEGARD DECOMPOSITION of M one

understands a representation of M by gluing two handle bodies V; (see |1.66.1 |) of
the same genus g along their boundary.

1.77 Example. [9, 1.5.12] Cf. ’1.67‘ and ’ 1.73 ‘ For relative prime 1 < ¢ < p let
the LENS SPACE be L(1) := D3/~ where (¢,0,1) ~ (p+2ml,—0,1) for 6 > 0 with
respect to spherical coordinates, so the northern hemisphere is identified with the
southern one after rotation by 27T . The interior of D? is mapped homeomorphically
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.81

to a 3-cell in L(%) by . The image of points in the open hemispheres have
also such neighborhoods (formed by one half in the one part inside the northern
hemisphere and one inside the southern). Each p-points on the equator obtained by
recursively turning by 277% get identified. After squeezing D? a little in direction
of the axes we may view a neighborhood of a point on the equator as a cylinder
over a sector of a circle (a piece of cake) where the flat sides lie on the northern
and southern hemisphere. In the quotient p many of these pieces are glued together

along their flat sides thus obtaining again a 3-cell as neighborhood. We will come

to this description again in .

Group actions and orbit spaces

1.78 Definition. [9, 1.7.3] Group action of a group G on a topological space X
is a group-homomorphism G — Homeo(X) into the group of homeomorphisms
of X. The ORBIT SPACE is X/G := X/~ = {Gz : © € X}, where z ~ y :&
Jg € G : y = g - x. For this we may without loss of generality assume that G is a
subgroup of Homeo(X), since only its image in Homeo(X) is needed.

1.79 Examples. [9, 1.7.4]
1. S! acts on C by multiplication =C/S* 2 [0, +-0).

2. Z acts on R by translation (k,z) — k+ 2 =R/Z = S* R?/Z = S' x R.
ATTENTION: R/Z has two meanings.

3. SY acts on S™ by reflection (scalar multiplication) =S™/S% = P".

1.80 Definition. [9, 1.7.5] G is said to ACT FREELY on X, when no g # 1 has a
fixed-point on X, i.e. gx # x for all z and g # 1.

1.81 Theorem. [9, 1.7.6] Let G act strictly discontinuously on X, i.e. each x € X
has a neighborhood U with gU NU # O =g = id. In particular, this is the case,
when G is finite and acts freely on a Ty space X. Then X/G is a closed m-manifold
provided X 1is one.

Proof. 7 : X — X/G is open and U = 7(U) is the required neighborhood, since
Y x(W)) = Ugec W Free actions of finite groups on Tr-spaces are strictly
discontinuous, since for x € X and g # 1 we find disjoint neighborhoods U, of x
and Wy of gz. Then U := (), ,; Uy N g~ ' (W,) is the required neighborhood. O
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1.82 Example. [9, 1.7.7] Let 1 < p € N be relative prime to ¢i,...,qx € Z. Then
E,:={g € C: g’ =1} 2 7Z, acts freely on S?*~1 C C* by g+ (21,...,21)) —
(9% 21,...,9%z). The GENERAL LENS SPACE Logx_1(p;q1,-..,qx) == S*71/E, of
type (p;qi,-..,qk) is a closed manifold of dimension 2k — 1. Note that this space
depends only on ¢; mod p and not on g; itself, so we may assume 0 < g; < p.

In particular, L3(p;q,1) = L(%): We may parametrize S C C2? by the quotient
mapping f : D?xS1 — S3, (21, 22) — (21,/1 — |21]? 22) and the action of E3 = (g),
where g := >™/?_lifts to the action given by g - (21, 22) = (g% 21,9 22). Only the

points in {z1} x S! for z; € S! get identified by f. A representative subset of S®
for the action is given by {(z1,22) € S? : |arg(z2)| < 71 its preimage in D? x St

is homeomorphic to D? x I, and only points (z1,0) and (g?z1,1) are in the same
orbit. Thus the top D? x {1} and the bottom D? x {0} rotated by g? = ¢>™*% have
to be identified in the orbit space and also the generators {z;} x I for z; € S*. This
gives the description of L(%) in .

q
p

One has:

o L3(p;q1,q2) = L3(p; q2,q1) via the reflection C x C O $% — 83 C C x C,
(21, 22) = (22,21).

o L3(p;qq1,q9q92) = L3(p; g2, q1) for ¢ relative prime to p via the group isomor-
phism g +— g9.

o L3(p;—q1,q2) = L3(p;qi,q2) via (21,22) — (21,%2) and the group isomor-
phism g — ¢~ ! =7

(Zl7 2:2) (Zla 22)
| £
(9T 21, 9% 20) — (9T 21,9 22) (G121, 9% 2)

1.83 Theorem. [9, 1.9.5] L(1) = L(Z—:) S p=p and (g =+q¢ mod p orqq = £1
mod p).

Proof. (<) By
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o Li(p;q,1) = La(p; ¢, 1) for ¢ = £q mod p.
o Li(p;q,1) = La(p; ¢, 1) for q¢’ = £1 mod p, since L3(p;q,1) = L3(p:¢' ¢, ¢') =
Ls(p;+1,¢') = Ls(p; 1,¢') = Ls(p; ¢/, 1)

(=) is beyond the algebraic methods of this lecture course. O

1.84 Definition. [9, 1.7.1] A TOPOLOGICAL GROUP is a topological space together
with a group structure, s.t. 4 : G x G — G and inv : G — G are continuous.

1.85 Examples of topological groups. [9, 1.7.2]

1. R™ with addition.

2. §1 C C and S C H with multiplication, see [4, ].
3. G x H for topological groups G and H.
4

. The general linear group GL(n) := GL(n,R) := {A € L(R",R") : det(A) #
0} with composition, see [4, 14.1].

The special linear group SL(n) := {A € GL(n) : det(A) = 1}, see [4, 14.5].

5. The orthogonal group O(n) := {A € GL(n) : A' - A = id} and the (path-)
connected component SO(n) := {T' € O(n) : det(T') = 1} of the identity in
O(n). As topological space O(n) = SO(n) x S°. For all this see [4, 14.6].

7. GL(n,C) :={A € Lc(C™,C") : detc(A) # 0}, see [4, 14.14].

8. The unitary group U(n) := {4 € GL(n,C) : A* - A = id} with closed
subgroup SU(n) := {A € U(n) : detc(A) = 1}, see [4, 14.14]. As topological
space U(n) = SU(n) x S!, see [?, 1.27]

9. In particular SO(1) = SU(1) = {1}, SO(2) 2 U(1) = S*, SU(2) = {(2}) :
(28) = (e8) 7y = {(2 %) s > + |¢[2 = 1} = 53, SO(3) = P5. For the
last homorphism consider the surjective mapping f : [0, 7] x S? — SO(3)
given, by associating to an angle ¢ € [0,7] and an unit-vector z € S?
the rotation f(p,x) by the angle ¢ around the axes x. This mapping is
injective except for f(0,2) = f(0,2') and f(m,z) = f(7, —x) for all z,2’ €
52 Tt factors to a surjective mapping f : D3 — SO(3) over the surjective
multiplication u : [0, 7] x S? — D3, (p,x) — £ -2, which is injective except

s

o

for 1(0,2) = p(0,2’) for all z, 2’ € S2. Thus f is injective except for f(y) =
f(—y) for all y € S2. This is exactly the equivalence relation defining P? =
D3/ ~.

The problem of homeomorphy

Remark. For 3-manifolds one is far from a solution to the classification problem.
For n > 3 there can be no algorithm.

1.87 Theorem. [9, 1.9.2] Each closed orientable 3-manifold admits a Heegard-
decomposition.

Hence in order to solve the classification problem one has to investigate only the
homeomorphisms of closed oriented surfaces and determine which gluings give ho-
meomorphic manifolds.
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In the following example we study this for the homeomorphisms of the torus con-

sidered in .

B a b ;L a b\ .. (a b
1.88 Example. [9,1.9.3] Let M = M (c d) and M' = M <c’ d’> with <c d)

a by . .
and <c' d’> in SL(2,Z), see . For a, 3,7,6 € S° and m,n € Z consider the

homeomorphisms

F:D?>xS'" = D*x S, (2,w) — (z%0™,w?)
G:S8'xD? = S'x D% (z,w)— (27, 2"w’)
If

GaC a6 )

va=da, Ab=dm+Vp, na+dc=ca, nb+dd=cm+dp

i.e.

then (Glgixg1) o f = f o (Flgixgt) and thus M 2 M’ by [1.49].

Reduction:

d ¢ d
(adbe:fl) OZZBZ:")/ :175::71,771:—71:
a b\ o a b . B
=M (c d> ~ M . —d)’ i.e. wlo.g. ad —bc=1.

¢, B:=b,y:=1,0:=1,n:=0,m:=d
)g(D2UidD2)X51%'S2XSI.

)
|
—
Q
[
(o9
|
)

=a,B:=ad—be,v:=1,m:=b,n:=—c
b\ 10 ~
d) :M(O 1) = (D? x §1) Ujq (S* x D?) = S3, by [1.74].

(ad =bc=1): =a(d—d) =c(b—"V) since ad—bec=1and Im: b -V = ma,
d—d = me since ged(a,c) = 1.

a b\ . a b\
a.:ﬁ.:y.:d.:l,n.:OéM(c d):M(c d,)-.M(a,C).

(di=c—na): a:=0:=v:=§:=-1,m:=0=M(a,c) 2 M(a,), i.e. wlo.g.
0<c<a (Ifc=0=a=1,since ged(a,c) =1 =M(a,c) = S3).

Thus only the spaces M (a.c) with 0 < ¢ < a and ggT(a,c) = 1 remain.

1.89 Theorem (Heegard-decomposition via lens spaces). [9, 1.9.4] For re-
lative prime 1 < ¢ < a we have L(£) = M (a,c).

<
a

22 andreas.kriegl@univie.ac.at © 11. Janner 2012



1. BUILDING BLOCKS AND HOMEOMORPHY 1.91

Proof. We start with L(£) = D?/ ~ and drill a cylindrical hole into D? and glue its
top and bottom via ~ to obtain a filled torus, where collections of ¢ many generators
of the cylinder are glued to from a closed curve which winds c-times around the
core of the torus (i.e. the axes of the cylinder) and a-times around the axes of the
torus. The remaining D3 with hole is cut into a sectors, each homeomorphic to
a piece of a cake, which yield D? x I after gluing the flat sides (which correspond
to points on S?) and groups of @ many generators of the cylindrical hole are glued
to a circle S1 x {t}. After gluing the top and the by 277% rotated bottom disc we
obtain a second filled torus, where the groups of a many generators of the cylinder
form a meridian. In contrast the meridians of the cylindrical hole corresponds to a
curve which winds a times around the axes and ¢ times around the core. This is

exactly the gluing procedure described in for M (a,c). O

1.90 Definition. [9, 1.9.6] Two embeddings f,g : X — Y are called TOPOLOGICAL
EQUIVALENT, if there exists a homeomorphism h : Y — Y with ¢ = h o f. Each
two embeddings S* — R? are by Schénflies’s theorem (which is a strong version of
Jordan’s theorem) equivalent.

1.91 Definition. [9, 1.9.7] A KNOT is an embedding S* — R3 C 3.

Remark. To each knot we may associated the complement of a tubular neighbor-
hood in S2. This is a compact connected 3-manifold with a torus as boundary.

By a result of [1] a knot is up to equivalence uniquely determined by the homotopy
class of this manifold.

On the other hand, we may consider closed (orientable) surfaces in R?® of minimal
genus which have the knot as boundary.
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a

Gluing cells

1.92 Notation. [9, 1.6.1] f: D" 2 St — X. Consider X Uy D", p: D" U X —
XUfD" e :=pD"),i:=p|x : X — XUy D" =: X Ue".

By p: (D", 8" 1) — (X Ue™ X) is a relative homeomorphism and i : X —
X Ue” is a closed embedding.

For X T, also X Ue” is T5: Points in X can be separated in X by U; and the sets
UiU{tr:0 <t <1, f(x)e U} separate them in X Ue™. When both points are in
the open subset e,, this is obvious. Otherwise one lies in e,, and the other in X, so
a sphere in D™ separates them.
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Conversely we have:

1.93 Proposition. [9, 1.6.2] Let Z Ty, X C Z closed and F : (D™, 8" ') — (Z, X)
a relative homeomorphism. =X Uy D™ = Z, where f := F|gn-1, via (FUi)op~'.

Proof. We consider

Sn—l f:Flsnfl X
XUy D" j
V g
N
D" a Z

j: X — Z is closed and also F, since D™ is compact and Z is T. Thus g is closed
and obviously bijective and continuous, hence a homeomorphism. O

1.94 Theorem. [9, 1.6.3] Let f : S"1 — X be continuous and surjective and X
Ty = plpn : D™ — X Uy D™ is a quotient mapping.

Proof. p is surjective, since f is. Since D" is compact and X Uy D™ is T, p is a
quotient mapping. O

1.95 Examples. [9, 1.6.4]

4
(1) f: 5" ' {x}=X=XUu; D" =¥ Dn/S""1 = gn

(i
(2) f:S"! = X constant =X Uy D" = X Vv (D"/S"71) = X vSn

(3) f=id: 8" — §" 1= X =X Uy D" = D" by [1.94].
(4) f=incl: S" '« D" = X =X Uy D" = S" by | 1.50.2
(5) [9, 1.6.10] Let g,, : S* — S1, z +— 2™. Then S' U, D? = S'v S by [1.95.2,

S'U,, D* = D2 by|1.95.3], S*U,, D> = P2 by|1.69], S'U,, D* = S'U,_, D

by conjugation z — Z.

1.101 Theorem. [9, 1.6.9] [9, 1.6.11] Let i} : S* — \/;_, ', z — =" on the j"
summand S*, furthermore, By := {exp(22L) : k — 1 < t < k} an arc of length 2
and fi : By — S*, exp(2EL) i exp(2mi(t — k+1)). Finally, let [FAERREE igm s St —
\/" St the mapping which coincides on By, with zg‘: o fi, i.e. one runs first ny-times
along the ji-th summand S*, etc.

Forg>1 and f =iy -ig-iy " iy -+ - igg_y ing iy, qin, resp. fr=it-i---vi
we have \/*? S* Uy D2 2= F, resp. \/? S* Uy D2 = N,,.
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1.103 1. BUILDING BLOCKS AND HOMEOMORPHY

Proof. =X, := VS Uy D? 2 D?/~ where z ~ y for z,y € S! & f(z) =
f(y). This is precisely the relation from ’ 1.67 ‘, resp. ’ 1.73 ‘

O

1.97 Proposition. [9, 1.6.5] [9, 1.6.7] [9, 1.6.8] We have an embedding P"~1 — P"
via K® 2 K" x {0} C K", The mapping

F:KrD D Pr (2. . . 2" — [(a, ..., 2" 1 —|z|)]
defines a relative homeomorphism F : (D", Sn—1) — (Pﬁ,Pﬁ_l). Thus, by ,
PE = Pﬂz_l UF| gin 1 D, Hence we have decompositions into disjoint cells:

Pr=eluelu---ue”, PRz=cfuc?u---Ue?, and Ph=eluetu-.-uel”

Proof. The charts K* = U, 1, = Pg \ P!, (2',...,2") = [(2,...,2",1)] were
constructed in the proof of [1.71]. The mapping D \ §%~1 — K", given by
x— ( ﬁ, e fxum_u)’ is a homeomorphism as in , and thus the composite

F' is a relative homeomorphism as well. Now use ’ 1.93 ‘ and ’ 1.94 ‘ O

1.102 Definition. Gluing several cells. [9, 1.6.12] For continuous mappings
fi: D" D S" 1t — X for j € J let

X Ui U D":=X Ul—lje] fi I_l D"
JjeJ jEJ

1.103 Example. [9, 1.6.13]
(2) X Ugf.po) (D™ LD™) = (X Uy, D™) Uy, D", by [1.46]
1.

(3) fi=id: 8"t — 8"t =8 Yy, oy (DPLUD™) = (SPTUuem)Ue”
Druer = S™

(1) fi: 8"t = {5} =X Uy, Ujey D™ 2V, S™ By A: (DS —
(S™,{*}) is a relative homeomorphism and hence also | |; A = J x A : (J x
D" Jx 8" 1) — (Jx 8™ Jx{x}). By the induced map (J x D™)/(J x
S = (J x SM)/(J x {¥}) = \/; 8™ is a quotient mapping, since J is

locally compact as discrete space. Obviously this mapping is bijective, hence
a homeomorphism.

R &
w

Jx 871 C—s J x D" —= (J x D")/(J x §"~ 1) ==, D"/, S"
i [1.36] i]1.32\ l
I x {5} = J x 5" ——= (J x ") /(] x {#}) =—==V, S"
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Inductive limits

1.104 Definition. [9, 1.8.1] Let X be a set and A; C X topological spaces with
X = U, ey A4j and the trace topology on A; N Ay induced from A; and from Ay
should be identical and the intersection closed. The final topology on X induces on
A; the given topology, moreover A; — X is a closed embedding: Let B be closed
in A;, then BN Ay = BN (A; N Ayg) is closed the toplogy of A; and hence also in
that of Ay, so B is closed in the final topology on X. Conversely, let B C A; be
closed in the final topology, then B = BN A; = injj_l(B) is closed in A;.

The canonical mapping p := Uj inj; : |_|j A; — X is by definition of the final
topology a quotient mapping (it is clearly onto and B C X is closed, iff injj_l(B) =

B capAj; is closed in A;) and thus we have the corresponding universal property:
A mapping f: X — Y is continuous, iff f|4; : A; — Y is continuous for all j.

1.105 Proposition. [9, 1.8.3] [9, 1.8.4] Let A be a closed (locally) finite covering
of X. Then X carries the final topology with respect to A.

Proof. See [2, 1.2.14.3]: Let B C X be such that BN A C A is closed. In order to
show that B C X is closed it suffices to prove that (Jzep B = Upeg B for locally
finite families B(:= {BN A : A € A}). (2) is obvious. (C) Let x € Ugcp B and
U an open neighborhood of z with By := {B € B: BN U # 0} being finite. Then

z ¢ Upep\s, B and since
ze|JB=|JBU |J B
BeB BeBy BeB\By

we haVEl'em:UBGBOEQ Upes B- -

1.107 Definition. [9, 1.8.5] Let A,, be an increasing sequence of topological spaces,
where each A, is a closed subspace in A, ;1. Then J,, .y A, with the final topology
is called (INDUCTIVE) LIMIT lim A, of the sequence (Ap)n.

1.108 Examples. [9, 1.8.6] [9, 1.8.7]

0. R*>® = h_H)ln R"™, the space of finite sequences. Let x € R* with &, > 0.
Then {y € R : |y, — z,| < &,Vn} is an open neighborhood of z in R*.
Conversely, let U C R*> be an open set containing x. Then there exists an
g1 > 0 with Ky := {y1 : |y1 — 21| < e1} C UNRL Since K; € R! C R?
is compact, there exists by [2, 2.1.11] an g5 > 0 with Ky := {(y1,42) : 11 €
K1, |ya — 22| < g2} € U N R2. Inductively we obtain &, with {y € R> :
lye — xx| < exVk} =, Kn € U. Thus the sets from above form a basis of
the topology. The sets |J,{y € R" : |y — x| < ,} do not, since for e, \, 0
they contain none of the neighborhoods from above, since (%, cee %", 0,...)

is not contained therein for e, < %1.

1. 5% :=lim S™ is the set of unit vectors in R*.

2. P> = hLQn P" is the space of lines through 0 in R*°.

3. O(c0) :==lim O(n), where GL(n) — GL(n+1) via A — (§ 7).
4. 50(c0) :=lim SO(n)

5. U(oo) :=lim U(n)
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6. SU(c0) :=lim SU(n)
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1. BUILDING BLOCKS AND HOMEOMORPHY 2.4

2. Homotopy

2.1 Definition. [9, 2.1.1] A HOMOTOPY is a mapping h : I — C(X,Y), which is
continuous as mapping h:IxX — Y. Note that this implies, that h : I — C(X,Y)
is continuous for the compact open topology (a version of the topology of uniform
convergence for general topological spaces instead of uniform spaces Y, a subbasis
for this topology is given by the sets Nk y := {f € C(X,Y) : f(K) C U} with
arbitrary compact K C X and open U C Y') but not conversely.

Two mappings h; : X — Y for j € {0, 1} are called HOMOTOPIC (we write hg ~ h1)
if there exists a homotopy h : I — C(X,Y) with h(j) = h; for j € {0,1}, ie. a
continuous mapping H : I x X — Y with and H(j,z) = h;(z) for all z € X and
je{0,1}.

{0,1) x x 2y

o

I xX

2.2 Lemma. [9, 2.1.2] To be homotopic is an equivalence relation on C(X,Y).

2.3 Definition. [9, 2.1.5] The HOMOTOPY CLASS [f] of a mapping g € C(X,Y) is
[f]:={g € C(X,Y) : g is homotopic to f}. Let [X,Y]:={[f]: f € C(X,Y)}.

2.4 Lemma. [9, 2.1.3] Homotopy is compatible with the composition.

For f: X' 5 Xandg:Y — Y let f*: C(X,Y) - C(X',Y) be defined by
f*(k) =ko fand g, : C(X,Y) — C(X,Y’) be defined by g.(k) := g o k. Finally,
let C(f,g) :=f*ogi=gsof*:C(X,Y)—CX",)Y'), k—gokof.

C(X,Y) =o', Y)

g« l ) J{g*
N

C(X,Y’)?C(X’,Y')

Proof. Let h : I — C(X,Y) be a homotopy and f : X' — X, g : Y — Y’
be continuous. Then C(f,g)oh := f*ogioh : I — C(X',Y’) is a homotopy
gohgo f~gohyof, since (C(f,g)oh)"=goho(fxI)is continuous. O
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2.7 2. HomoToPY

2.5 Definition. [9, 2.1.4] A mapping f : X — Y is called 0-HOMOTOPIC iff it is
homotopic to a constant mapping.
A space X is called CONTRACTIBLE, iff idx is 0-homotopic.

2.6 Remarks. [9, 2.1.6]

(0) Any two constant mappings into Y are homotopic iff Y is path-connected:
In fact a path y : I — Y induces a homotopy t — const,,.

(1) [{*},Y] is in bijection to the path-components of Y : Homotopy = Path.

(2) Star-shaped subsets A C R™ are contractible by scalar-multiplication. In par-
ticular, this is true for A = R"™ and for conver subsets A C R™.

(4) For a contractible space X there need not exist a homotopy h which keeps
xo fixed, see the infinite comb |2.40.9 |.

L

Contractible spaces are path-connected.

(5) A composition of a 0-homotopic mapping with any mapping is 0-homotopic:
24

(6) If Y is contractible then any two mappings f; : X — Y are homotopic, i.e.
[X,Y] = {x}:[2.4] and [2.2]

(7) Any continuous none-surjective mapping f : X — S™ is 0-homotopic: S™ \
{x} 2 R" by , now use | 2 | and @

(8) If X is contractible and Y is path-connected then again any two mappings

fj : X =Y are homotopic, i.e. [X,Y]|={x}:|5]|and .

(9) Any mapping [ : R™ — Y is 0-homotopic: and the arguments in .

2.7 Definition. [9, 2.1.7] [9, 2.1.8] [9, 2.1.10] (1) A HOMOTOPY RELATIVE A C X
is a homotopy h : I — C(X,Y) with incl*oh : I — C(X,Y) — C(A,Y) constant.
Two mappings h; : X — Y are called homotopic relative A C X, iff there exists
a homotopy h : I — C(X,Y) relative A with boundary values h(j) = h; for

je{0,1}.

(2) A HOMOTOPY OF PAIRS (X, A) and (Y, B) is a homotopy h : I — C(X,Y") with
h(I)(A) C B Two mappings h; : (X, A) — (Y, B) of pairs are called HOMOTOPIC,
iff there exists a homotopy (of pairs) h : I — C(X,Y) with h(I)(A) € B and
h(j) = h; for j € {0,1}. We denote with [ho] also this homotopy class and with
[(X, A), (Y, B)] the set of all these classes.

(3) A homotopy of pairs with A = {x0} and B = {yo} is called BASE-POINT
PRESERVING HOMOTOPY. We have f ~ g: (X,{zo}) — (Y,{yo}) iff f ~ g relative

{zo}.
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2.10 Example. [9, 2.1.9] Since [ is contractible we have [I, ] = {0}.
But (T, 1), (T, 1)) = {{id), [t 1 ], [t — 0], [t — 1]}

2.11 Lemma. [9, 2.1.11] Let p : X' — X be a quotient mapping and let h : I —
C(X,Y) be a mapping for which p*oh: I — C(X',Y) is a homotopy. Then h is a
homotopy.

Proof. Note that for quotient-mappings p the induced injective mapping p* is in
general not an embedding (we may not find compact inverse images). However

p/*o\h =ho (I x p) and I X p is a quotient-mapping by . O

2.12 Corollary. [9, 2.1.12]

(1) Let p: X' — X be a quotient mapping, h : I — C(X',Y) be a homotopy
and hyop™! : X — Y be a well-defined mapping for all t. Then this defines
a homotopy I — C(X,Y) as well: This is just a reformulation of .

(3) Let f : X D A —Y be a gluing map and h : I — C(X,Z) and k : I —
C(Y, Z) be homotopies with incl® oh = f* o k. Then they induce a homotopy
I —C(Y U X, Z): Apply [ 1] top: Y UX - Y Us X.

(2) Let h : I — C(X,Y) be a homotopy compatible with equivalence relations
~on X and onY, i.e. x ~ &' =h(t,x) ~ h(t,z’). Then h factors to a
homotopy I — C(X/~,Y/~): Apply to (gy)«oh: I — C(X,Y/~).

(4) Each homotopy h : I — C((X, A), (Y, B)) of pairs induces a homotopy I —
C(X/A,Y/B):|2].
(5) Homotopies b/ : I — C((Xj, ), (Y;,4Y)) induce a homotopy V; hi i I —
C((\/] Xj? ‘To)a (V] ijﬁ yO))
2.13 Example. [9, 2.1.13]

(1) Let hy : (X,I) — (X,I) be given by hi(z,s) := (x,ts). This induces a
contraction of CX := (X x I)/(X x {0}).

(2) The contraction of D" = CS"~! given by is not compatible with the
equivalence relation describing D" /S"~! 22 S™ hence induces no contraction
of S™. We will see in and , that S™ is not contractible at all.

Homotopy classes for mappings of the circle

2.14 Definition. [9, 2.2.1] We consider the (periodic) quotient mapping (and group
homomorphism) p: R — S, t +— exp(2mit) as well as its restriction p|; : I — S*.

Each mapping ¢ : I — R factors to a well defined mapping @ := popop~! : §1 — §1
iff n:=p(1) —¢(0) € Z.

]*LF>R

Conversely:
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2.15 Lemma. [9, 2.2.2] Let f : St — S* be continuous, then there exists a unique
continuous ¢ : (R,0) — (R,0) with f = f(1) - .

(R,0) -7 > (R,0)

"
Jy

(St 1)—— (S, 1)

Proof. Replace f by f(1)~! - f, i.e. wlo.g. f(1) = 1. Let h := fop. Then h
is periodic, uniformly continuous and h(0) = 1. So chose § > 0 with [t — | < §

=|h(t) — h(t')| < 2 and hence :((tt,)) # —1. Let t; := j&. The mapping t — e is a
homeomorphism (—m,7) — S\ {—1} let arg : ST\ {-1} — (==, 7) C R denote its

inverse. Then for ¢t; <t <t;4q let

1 h(ty) h(t)
o(t) = 7 (arg h(io) + .- 4 arg h(tj)> ,

which gives the desired lifting.

This lifting is unique, since the difference of two such liftings has image in the
discrete subset p~1(1) C R, and hence is constant (=0). O

2.16 Definition. [9, 2.2.3] Let f : S* — S* be continuous and ¢ as in [ 2.15], then
deg f := ¢(1) € Z is called MAPPING DEGREE of f.

2.17 Theorem. [9, 2.2.4] deg induces an isomorphism [S', S| =2 Z of semigroups.
In more detail:

(1) The mapping gn : z — 2™ from has degree n.

(2) Two mappings are homotopic iff they have the same degree.
(3) deg(f1 o f2) = deg(f1) - deg(f2).

Proof. | 1 | follows since ¢(t) = n - t.

Let f be a homotopy I — C(S*,S'). Then, by , there exists a lifting
o : I — C(R,R) with p(¢4(2)) = fi(1)~1 - fi(p(2)). This ¢ is a homotopy, since we
can use for each h; the same ¢ in the proof of . In particular (1) € p~1(1) = Z
and hence is constant. So deg(fo) = wo(1) = p1(1) = deg(f1).

Conversely, we define ¢ : I — C(R,R) by ¢; := (1 — t)po + te1. Then this induces
a homotopy f: I — C(S*, St), since (1) = deg(fy) = deg(f1) € Z.

Let n := deg(f1) and m := deg(f2). Obviously, g, © gm = gnm- By and
f1 ~ gn and fa ~ g, hence fio fo ~ gn0gm = gnm and thus deg(fio0 f2) =nm. O
2.18 Remarks. [9, 2.2.5]
(1) deg(id) = 1:id = g1; f ~ 0 =deg(f) = 0: f ~ go; deg(g—1 : 2+—Z) = —1 by
2.17]

(3) f homeomorphism =deg(f) € {£1}, since deg(f) is invertible in Z.

(4) incl : ST < C\ {0} is not 0-homotopic, since idg: is not: deg(id) = 1 and
. We can use [S™, X] to detect holes in X.
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(5) The two inclusions of S1 — S x S are not homotopic: pr; oinc; = id,
pry oincy ~ 0.

2.19 Lemma. [9, 2.2.6] St is not contractible.

Proof. deg(id) = 1. O

2.20 Definition. [9, 2.3.1] A subspace A C X is called RETRACT iff there exists
anr: X — A with r|4 =ida.

Being a retract is a transitive relation. Retracts in Hausdorff spaces are closed
A={ze X :r(z)=1})

2.21 Lemma. [9, 2.3.2]

(1) A subspace A C X is a retract of X iff every function f : A — Y can be
extended to f : X — Y.

(2) Let A C X be closed. Then a function f: A —Y can be extended to X iff
Y is a retract of Y Uy X.

Proof. We prove that id4 can be extended iff any f: A — Y can be extended. The
extensions f of f: A — Y correspond to retractions r = idy Uf of Y C Y Uy X:

ALA A—>Y\
TVV'V {\ \\\
\\ i
. \i
N X/ X —=YUr X, \Y
. \
o f
\)V// fi\y

2.22 Lemma. [9, 2.2.7] There is no retraction of D? to S' — D?.

Proof. Otherwise, let » : D> — S! be a retraction to ¢ : S! < D?. Then id =

rot~1ro0=0,a contradiction to |2.17.1|. L]

2.23 Lemma. Brouwer’s fixed point theorem. [9, 2.2.8] Every continuous
mapping f : D> — D? has a fized point.

Proof.

Assume f(z) # x and let r(z) the unique
intersection point of the ray from f(z) to
2 with S'. Then r is a retraction, a con-

tradiction to . u o

2.24 Lemma. Fundamental theorem of algebra. [9, 2.2.9] Fvery not-constant
polynomial has a root.
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Proof. Let p(r) = ag + -+ + a,_12" " + 2" be a polynomial without root and
n>1,s:=lag|+ -+ |ap_1]+1>1and z € S'. Then

[p(s2) = (2)"| < lao| + slas| + -+ + 8" an_1]
<" Hlaol + -+ lan_1]) < ™ =|(s2)".
Hence 0 ¢ p(sz), (sz)™. Thus z — s" 2", ST — C\{0} is homotopic to z — p(sz) and
consequently 0-homotopic. Hence 0 ~ g, : z — 2", a contradiction to . O

2.25 Definition.

[9, 2.2.10]

The DEGREE of f : S! — R?

with respect to 29 ¢ f(S1) is ©

the degree of x +— I;Eziizgl and

will be denoted by U(f, 29) the .
TURNING (WINDING) NUMBER

of f around zg.

2.26 Lemma. [9, 2.2.11] If zo and 21 are in the same component of C\ f(S*) then
U(f,20) = U(f,21)-

Proof. Let t — z; be a path in C\ f(S!). Then t — (z — |}£E§§:§Z\) is a homotopy

and hence U(f, z0) = U(f, 21). O

2.27 Lemma. [9, 2.2.12] There is exactly one unbounded component of C\ f(S!)
and for z in this component we have U(f,z) = 0.

Proof. For 2’ outside a sufficiently large disk containing f(S') (this is connected
and contained in the (unique) unbounded component) the mapping

tf(x) —a
e ( ~ (@) w'|)
f(z)—a'

is a homotopy showing that x — [F@)=a] is 0-homotopic and hence U(f,z’)

=0
and U(f, ) is zero on the unbounded component. O

By Jordan’s curve theorem there are exactly two components for an embedding
f: 81 — C. And one has U(f, z) € {1} for z in the bounded component.

2.30 Theorem. [9, 2.3.3] A mapping f : X — Y is 0-homotopic iff there exists an
extension f: CX — Y with flx = f

Proof. We prove that homotopies h : X x I — Y with constant g correspond to
extensions hy : CX — Y of hy:

X x{l}=——X
/

NG

RGN
X x {0} const v U
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2.28 Theorem of Borsuk and Ulam. [9, 2.2.13] For every continuous mapping
f:5% — R? there is a z € S? with f(z) = f(—2).

Proof. Suppose f(z) # f(—z). Consider f; : S? — S!, z — % and

fo:D?* — SY w— fi(x,\/1—|z|2). Then g := fa|s1 ~ 0 via fo. Since f; is odd,
so is g. Let ¢ be the lift of g(1)~!g and hence ¢(1) = deg(g). For all ¢ we have
glexp(2mi(t + 1))) = g(— exp(2mit)) = —g(exp(2mit)) and hence

exp(2riplt + 1)) = 9(1) " glexp(2ri(t + 5))) = ~g(1)~ glexp(2rit))

= —exp(2mip(t)) = exp(2mi(p(t) + 5))

Hence k := ¢(t + 3) — ¢(t) — 3+ € Z and independent on t. For ¢t = 0 we get
e(3)=k+ 1 and for t = 1 we get deg(g) = ¢(1) =p(3)+ 2 +k=2k+1+#0,a

contradiction. O

2.29 Ham-Sandwich-Theorem. [9, 2.2.14] Let Ay, Ay, As be bounded measurable
subsets of R%. Then there is a plane which cuts Ay, A1 and Ay in exactly equal parts.

Proof. We denote the halfspaces with H, 4 := {z € R : (z,a) < d} and the
volume of the trace of A; on this halfspace with p;(a,d) := p(A4; N Hy,q). Then
pj: S? x R — R is a continuous function with u;(—a, —d) + p;(a,d) = u(A;). Let
d, be the middle point of the closed interval I, := {d : po(a,d) = u(4p)/2}. For d
in this set we have pg(a,d) = @ = pp(—a,—d) and hence d_, = —d,.
Moreover, a — d, is continuous: let d_ := minl, and d; := max/,. Then
tolao,d) < u(Ap)/2 for d < d_ and by continuity of pg there exists a § > 0 such
that po(a,d— —e) < u(Ap)/2 for all |a — ag| < § and analogously pug(a,dy +¢) >
1(Ap)/2 for all |a — ap| < 6. Thus I, C [d- —e,d+ + €. In case d_ = dt we get
|de — dg,| < €. Otherwise d — p(ag,d) = pu(Ag)/2 is constant on [d_,d] and thus
(Ao N (Haa, \ Haq_)) = 0. Thus we may assume that 6 > 0 is so small, that
pula,d) = u(Ap)/2 for all |a — ap| < 6 and all d_ + ¢ < d < dy — e. Then again
|do — dgy| < e.

Now let f : S? — R? be given by f(a) := (p1(a,d,), p2(a,d,)). By there
exists a point b € S? with f(b) = f(—b). Since d_, = —d, we have that f(—b) is
the volume of A; and Ay on the complement of H, 4, . O

2.31 Definition. [9, 2.3.4] A pair (X, A) is said to have the general HOMOTOPY
EXTENSION PROPERTY (HEP) (equiv. is a COFIBRATION) iff A is closed in X and
we have

A
iHS(:l
AxT—— X x1I [ h H
X 10
or, equivalently,
AC X This is dual to the'notlon' of A <<77 X
FIBRATION (mappings with N u "
° 0
hl L J/HO the homotopy lifting pro- o
~ perty): Y xI<—Y

C(I,Y)TO)Y
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2.32 Theorem. [9, 2.3.5] (X, A) has HEP < X x {0} UA X I is a retract of X x I.

Proof.
With L:= X x{0}JUA XTI C X x I we A

have: —

(X, A) has HEP; | / /
<= any f: L — Y extends to X x [;

L C X x I is a retract. O] X

2.33 Remarks. [9, 2.3.6]

(1) The pair (D™, S™~1) has the HEP: Radial project from the axis at some
point above the cylinder is a retraction.

(2) If (X, A) has HEP then (Y Uy X,Y) has HEP for any f : A— Y :

f h

A y (1, 2)
I
X%YU]CXT)Z

(3) IfY is obtained from X by gluing cells, then (Y, X) has HEP: < , .

(4) The pair (No, {o0}) does not have HEP.
Otherwise, for x # oo the map ¢ — r(x, t),
I — L, maps 0 — (z,0) = r({z} xI) C
LN({z} xI) = {(z,0)}, but r(z, 1) is near « 432 1
r(00,1) = (00, 1) for x near oco.

2.34 Remark. [9, 2.3.7] Let (X, A) has HEP.
(1) If f~g: A—Y and f extends to X then so does g: By Definition of HEP.

(2) If f : X — Y is 0-homotopic on A, then there exists a mapping g homotopic
to f, which is constant on A: Consider the homotopy on A x I and f on
X x {0}.

(3) If A= {xo} and Y is path-connected, then every mapping X — 'Y is homo-

topic to a base-point preserving one: Consider f on X x {0} and a path w
on {xo} x I between f(xq) and yo.

(4) There exists a continuous u : X — I with A = u=1(0): Define u(z) :=
sup{t — pry(r(z,t)) : t € I}. Then u: X — I is continuous and u(z) =0 <
t < pro(r(z,t)) = pro(r(z,t)) >t > 0 for ¢ > 0, thus r(x,t) € A x I for
t > 0 and hence also (z,0) = r(z,0) € Ax I, ie x € A.

(5) For closed subsets A of metric spaces Y there exists a functionu:Y — I as
in : Define u(y) := d(y, A) = inf{d(y,a) : a € A}.

2.35 Theorem. [9, 2.3.8] If (X, A) has HEP, then so has (X x I, X x [UA x I).
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2.39

Proof.

We use to show that X x I x I has L :=
X xIx{0}U(X xTUAXT)xI as retract. For this
we consider planes F through the axis X x(1/2,2).
For planes intersecting the bottom X x I x {0} we
take the retraction r of the intersection F N (X x
I'xI)= X xI (via horizontal projection) onto the
intersection ENL = X x {0}UA x I. For the other
planes meeting the sides we take the retraction r
of the intersection EN(X x I xI) 2 X x[0,t] (via
vertical projection) onto the intersection EN L =
X x {0} N A x [0,¢]. For this we have to use that
the retraction r : (x,t) — (r1(x,t), r2(x,t)) given
by can be chosen such that ro(z,t) < t by
replaceing ra(x,t) by min{t, ra(x,t)}.

Homotopy equivalences

2.36 Definition. [9, 2.4.1] [9, 2.4.2] [9, 2.4.3]

(1) A HOMOTOPY EQUIVALENCE is a mapping having up to homotopy an inverse.

It is enough to assume a homotopy left inverse [ and a homotopy right inverse
r, ie. [l[Jo[f] = [id] and [f]o[r] = [id], since then [f]o I} = [id]o [f]o[l] = [f]e
flo[fle[r] = [flelid]o[r] = [f]e[r] = [id]. Two spaces are called HOMOTOPY
EQUIVALENT (and we write ~) iff there exists a homotopy equivalence.

A continuous mapping between pairs is called HOMOTOPY EQUIVALENCE OF
PAIRS, iff there is a mapping of pairs in the opposite direction which is inverse
up to homotopy of pairs.

A subspace A C X is called DEFORMATION RETRACT (DR) iff there is a
homotopy h; : X — X with hyp = idx and h; : X — A C X being a
retraction to A — X.

The subspace A C X is called STRICT DEFORMATION RETRACT (SDR) iff,

in addition to , hy is a homotopy rel. A and there exists a continuous
u:X — I with A =u"1(0).

A subspace A C X is called NEIGHBORHOOD DEFORMATION RETRACT (NDR)
iff there exists a continuous u : X — I with A = «~1(0) and a homotopy
hy : X — X relative A with hg = idx and hy(z) € A for u(z) < 1.

Note that the SDRs are exactly the NDRs for which v can be choosen with
u(z) < 1 for all z € X (replace u by 7).

2.39 Theorem. (9, 2.4.4] For (X, A) with HEP the following is equivalent:

(1) A — X is a homotopy-equivalence;
(2) Aisa DR of X;
(3) Aisa SDR of X.

Proof. (3=-2) is obvious.
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(2=1) is always true. In fact let h; be a deformation from idx to a retraction
hy: X — A C X. Then hy is a homotopy inverse to ¢ : A < X, since hy ot =idy
and L0h1 Zhl Nho :idx.

(1=2) Let g be a homotopy inverse to ¢t : A < X. Since got ~ ids and g o

extends to g : X — A we conclude from | 2.34.1 | that id4 : A — A has an extension
r: X — AC X, ie. aretraction. Moreover, idxy ~tog=rorog~roidyx =r.

(2=3) Let hy : X — X be a deformation from hg = idx to a retraction hy = 7 :
X —>ACXandlet H;: W :=X xIUA x I — X be given by

hsi(r(z)) fir s =1 (the back side)

het(x) elsewhere, i.e. for x € A or s =0 (front) or even t =1 (top).

Hi(z,s) = {

Because of r(z) = x for x € A the definition coincides on the intersection. Since
the expression for H; works on X x I and (X x I, W) has HEP by we can
extend Hy to X x I by |2.34.1|. This is the required deformation idx ~ r rel. A.

Since (X, A) has HEP we have A = 4=1(0) for a u: X — I by|2.34.4|. O

2.40 Remarks. [9, 2.4.5]

(1) X is contractible iff it is homotopy-equivalent to a point: In fact, X is con-
tractible < idx ~ const, < {*} C X is a DR & {x} ~ X.

(2) Ewvery set which is star-shaped with respect to some point, has this point as
SDR. Furthermore, S"~! C R™ \ {0} is SDR: The radial homotopy from

is the strict deformation.

(3) Composition of (S)DRs are (S)DRs:

Wt ) hl(2t,x) for t <
,T) =
h2(h'(1,x),2t —1) fort >

N N

and v := max{uy,uz o hi}.

(4) If{y} is an (S)DR of Y then so is X x {y} of X XY and of XVY C X xY:
Use hy(z,y) := (z,hi(y)) and u(z,y) = u(y).

(5a) If(X,A)is an NDR and (Y, B) is an NDR (SDR), then (X xY, X x BUAXY)
is an NDR (SDR): Let

(ht(:c), by (y)) for u(z) < u(y)
hi(z,y) = (h )

st (@), hu(y)) - for u(e) 2 u(y)

and u(z,y) = min{u(z),u(y)}.

(6) The complement of a k-dimensional affine subspace of R™ has an S" %71 as
SDR: R™\ R¥ = R¥ x (R""%\ {0}) ~ {0} x §" %1 by [2],[4]and [3].

(5) X x {0} is an SDR of X x I and the apex X x {0} € C(X) is an SDR of

CX: <:7 and .

(7) The following spaces have S* as DR: X x St for every contractible X and
the Mdbius strip: By | 1|and using I x {0} C I x [—1, 1] for the M&bius strip.

(8) Ewery handle-body of genus g has S*V ---V S as SDR.
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(9) The infinite comb (see ) has (400,1) as DR but not as SDR.

2.41 Proposition. [9, 2.4.6] If A is an NDR (SDR) in X and f : A — Y s
continuous, then'Y is an NDR (SDR) inY Uy X.

Proof.

A—T oy IxA— vy

1 T ] | e

X —YUr X Y IxX —=Ix(YU;X) Y

X\ ‘\l \ A'l
X YurX X YUy X

Let w: Y Uy X — I be given by u(y) := 0 for y € Y and u([z]) := u(z) for z € X.

2.42 Corollary. [9, 2.4.7] If Y is built from X by gluing simultaneously cells, then
Y is a SDR in' Y \ P, where P is given by picking in every cell a single point.

Proof. Use ’ 2.40.2 ‘ and ’ 2.41 ‘ O

2.43 Example. [9, 2.4.8] The pointed compact surfaces have S1V---Vv S as SDR.

Proof. By | 1.101 | they are S' V.-V ST Uy (D?\ {*}). Now use . O

2.44 Theorem. [9, 2.4.9] For a pair (X,A) and L := X x {0} UA XTI C X x [

the following statements are equivalent:
(1) (X, A) is NDR;

(2) (X x1,L) is SDR;

(3) L is a retract of X x I;
(4) (X, A) has HEP.

Proof.

(1=2) By [2.40.5a ], since (X, A) is NDR and (I, {0}) is SDR.
(2=-3) Take r := h;.

(34) is [2.32].
(

3=1) Let r = (r1,7r2) be a retraction of L — X x I. Define u(x) := sup{t —
ro(x,t) 1 t € I} and hy(x) :=ri(z,t). Then A = u~1(0) as in | 2.34.4 | Furthermore,
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ho(x) = r1(x,0) = z, he(a) = ri(a,t) = a for all a € A, and u(z) <1 = ro(x,1) >
0= hi(z) =ri(z,1) € A. O

2.44a Dependencies for closed subspaces A — X.

SDR
/ \ [2.44]
DR NDR <——= HEP
Retr. A~X A=u"Y0)

2.44b Counter-Examples.
! Prop. [LC E [{(c0,1)} CE[ {00} CNo [STC D? [{0} C [, ]

SDR — — - — -
NDR=HEP - - - + -
DR - + - - +

Retract + + - +
A~X + + - - +
A=u'0) || + + + + —

Here
o (Naowoo) = ({1 :0 £ n € N} U{0},0)
o E:= N, xITUJ[0,+00] x {0} is the infinite comb,
e and L := {oco} x TU0,+00] x {0] C E.

2.45 Definition. [9, 2.4.10] The MAPPING CYLINDER My of a mapping f : X — Y
is given by Y Uy (X X I), where f is considered as mapping X x {1} 2 X — Y.

We have the diagram
f

X—Y

My

where f = roi and 7 is a closed embedding
with HEP and Y — My a SDR (along the
generators X X I) with retraction r (by
[2.40.5 | and [ 2.41 ).

To see the HEP, construct a retraction
My xI — My x{0}UX x I by projecting
radially in the plane {z}xIxI from {x} x

{1} x {2} and use [ 2.32].

2.46 Corollary. [9, 2.4.12] Two spaces are homotopy equivalent iff there exists a
third one which contains both as SDRs.

Proof. (=) Use the mapping cylinder as third space. Since f is a homotopy equi-
valence, so is ¢ : X — My by and by the HEP it is a SDR by .
(<) Use that SDRs are always homotopy equivalences. O

40 andreas.kriegl@univie.ac.at © 11. Janner 2012



2. HomoToOPY 2.49

2.47 Proposition. [9, 2.4.13] Assume (X, A) has HEP and f; : X D A =Y are
homotopic. Then Y Uy, X and Y Uy, X are homotopy equivalent rel. Y.

Proof. Consider the homotopy f : A x I — Y and the space Z :=Y Uy (X x I).
We show that Y Uy, X are SDRs of Z and hence are homotopy equivalent by :

Y

YUij

X\ e

L YUf XXI)

SDR

X x1I

Where we use that the composite of two push-outs is a push-out, and if the compo-
site of push-out and a commuting square is a push-out then so is the second square,

of. [1.47]. 0

2.48 Example. [9, 2.4.14] The dunce hat D, i.e. a triangle with sides a, a, a™*
identified, is contractible: By ’ 1.101 ‘, ’1.94‘ and ’2.47‘ we have D = S' Uy D? ~
St Uid D? =~ D2,

2.49 Proposition. [9, 2.4.15] Let A be contractible and let (X, A) have the HEP.
Then the projection X — X /A is a homotopy equivalence.
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Proof. Consider

V£ \

Then R given by factoring F} is the desired homotopy inverse to X — X /A, since
FO =id and Fl(A) = {*} O
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3. Simplicial Complexes
Basic concepts

3.1 Remark (Points in general position). [9, 3.1.1] A finite set of points
Zo, - .., %q in R™ is said to be IN GENERAL POSITION if one of the following equivalent
conditions is satisfied:

1. The affine subspace {>, \iz; : >, A; = 1} generated by the z; has dimension
q;

2. No strict subset of {zo, ..., x,} generates the same affine subspace;

3. The vectors x; — xg for ¢ > 0 are linear independent;

4. The representation ) . A\;x; with >~ X\; = 1 is unique.

3.2 Definition (Simplex). [9, 3.1.2] A SIMPLEX of dimension ¢ (or short: a ¢-
simplex) is the set

o= <$0,...,l’q> = {Z)\lﬂiz : Z)\l = 1,VZ A > O}
for points {zo, ..., x4} in general position. Its closure in R™ is the set
0= {Z)\le : Z)\Z =1Vi: )\ > 0}
i i

The points z; are then called the VERTICES of o. Remark that as extremal points
of & they are uniquely determined. The set ¢ := & \ ¢ is called boundary of o.

X2

o

<Xg> <Xo,X>

X
X %o ! <Xo,X1,%2>

3.3 Lemma. [9, 3.1.3] Let o be a g-simplex. Then (5,6) = (D4,8971).
Proof. Use for the affine subspace generated by o. O

3.4 Definition (Faces). [9, 3.1.4] Let o and 7 be simplices in R™. Then 7 is called
FACE of o (7 < o) iff the vertices of 7 form a subset of those of o.
3.5 Remark. [9, 3.1.5]

(1) Every g-simplex has 2971 many faces: In fact this is the number of subsets
of {zg,...,zq}
(2) The relation of being a face is transitive.

(3) The closure of a simplex o is the disjoint union of all its faces & = (J, ., 7
Remove all summands \;x; in ZZ A;x; for which \; = 0.

3.6 Definition (Simplicial Complex). [9, 3.1.6] A SIMPLICIAL COMPLEX K is a
finite set of simplices in some R™ with the following properties:
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l.oeK,7<o=7€K.
2. 0,TteK,0#7=0nN1=0.

The 0-simplices {zo} (or their elements x() are called VERTICES and the 1-simplices
are called EDGES of K. The number max{dimo : ¢ € K} is called DIMENSION of
K.

3.7 Definition (Triangulation). [9, 3.1.7] For a simplicial complex K the sub-
space |K| := J,ck 0 is called the UNDERLYING TOPOLOGICAL SPACE. Every space
which is the underlying space of a simplicial complex is called POLYHEDRA. A cor-
responding simplicial complex is called a TRIANGULATION of the space.

3.8 Remark. [9, 3.1.8] By we have |K| = |J,cx 0, and N7 is a either empty
or the closure of a common face. Every polyhedra is compact and metrizable.
3.9 Remarks. [9, 3.1.9]

1. Regular polyhedra are triangulations of a 2-sphere.

2. There is a triangulation of the Mobius strip by 5 triangles.

2 5

3. There is a (minimal) triangulation of the projective plane by 10 triangles.

4. One can show, that every compact surface, every compact 3-dimensional
manifold and every compact differentiable manifold has a triangulation.

5. It is not known whether every compact manifold has a triangulation.

6. Every ball (and every sphere) has a triangulation given by an n-Simplex
with all its faces.

7. A countable union of circles tangent at some point is not a polyhedra, since
it consists of infinite many 1-simplices.

3.11 Definition (Carrier Simplex). [9, 3.1.10] For every x € |K| exists a unique
simplex ¢ € K with x € o. It is called the CARRIER SIMPLEX of x and denoted
carr g ().
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3.12 Lemma. [9, 3.1.11] Every point © € |K| has a unique representation x =
Do Nz, with Y5 A =1 and A; > 0 and vertices {x;} of K. The x; are the vertices
of the carrier simplex carrg (x) of x.

Conversely, any point x = Y Nix;, with Y, \i = 1 and X\; > 0 and x; generating
a simplex 0 € K, belongs to |K|. O

3.13 Definition. [9, 3.1.12] A SUBCOMPLEX is a subset L C K, that is itself a
simplicial complex. This is exactly the case if 7 < 0 € L = 7 € L since (2) is
obvious.

3.14 Lemma. [9, 3.1.13] A subset L C K is a subcomplex iff |L| is closed in |K]|.

Proof. (=) since |L| is compact by .

(<:)T§06L:>T§6§|L\:TEL.USGand. O

3.15 Definition (Components of a Complex). [9, 3.1.14] Two simplices o and
7 are called CONNECTIBLE in K iff there are simplices oy = o,...,0, = 7 with
7N dj+1 # 0. The equivalence classes with respect to being connectible are called
the COMPONENTS of K. If there is only one component then K is called connected.

3.16 Lemma. [9, 3.1.15] The components of K are subcomplexes and their under-
lying spaces are the path-components (connected components) of |K|.

Proof. Since 7 is a closed convex subset of some R™, it is path connected and
hence the underlying subspace of a component is (path-)connected. Conversely, if
two simplices o and 7 belong to the same component of the underlying space, then
there is a curve ¢ connecting o with 7. This curve meets finitely many simplices
0p = 0,...,0ny = T and we may assume that it meets o; before o; for i < j.
By induction we show that all &; belong to the same component of K. In fact if
00,051 does so, then let ¢o := min{t € [0,1] : c(t) € 77}. Then c(t) € U;, 05
for t < tg and hence c(tg) € UKJ. o; N 7;. Thus &; is connected with &, for some
7 <. O

3.17 Definition (Simplicial Mapping). [9, 3.1.16] A mapping ¢ : K — L
between simplicial complexes is called SIMPLICIAL MAPPING iff
1. ¢ maps vertices to vertices (and we write p({z}) =: {¢o(x)});

2. And if o is generated by vertices xo, ..., x4 then ¢(o) is generated by the
vertices (), . .., p(zq), L.e. ©({zo,...,zq)) = (©(x0), ..., p(zq)).

Attention: It is not assumed, that the ¢(x;) are pairwise distinct.
3.18 Lemma. [9, 3.1.17]
1. A simplicial mapping is uniquely determined by its action on the vertices.
2. Ifo <7 €K then (o) < ¢(1) € L.

3. dim(po) < dimo.

Proof. This follows immediately, since p((zo,...,zk)) = {p(z:;) : 0<i <Ek}). O
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3.19 Definition (Underlying continuous Map). [9, 3.1.18] Let ¢ : K — L be
simplicial. Then

|| (Z )\ixi) = Z)\igo(a:i) for z; € K, Z/\i =1land \; >0

defines by a continuous map from |K| — |L| (which is affine on every closed
simplex 7).

3.20 Remark. [9, 3.1.19] There are only finitely many simplicial mappings from
K to L. For every simplicial map ¢ the map |p| is not dimension increasing.

3.21 Lemma. [9, 3.1.21]

1. A map ¢ : K — L is an simplicial isomorphism (i.e. has an inverse, which
is simplicial) iff it is simplicial and bijective.

2. For every simplicial isomorphism ¢ the mapping |¢| is a homeomorphism.

Proof. (, <) We have to show that the inverse of a bijective simplicial mapping
is simplicial.

Let £ = {z} be a vertex of L and ¢(c) = . We have to show that ¢ is a 0-simplex.
Let zo,...,x, be the vertices of 0. By the ¢(zg),...,p(r,) generate the
simplex £ = ¢(o) and hence have to be equal to the vertex z of €. Since ¢ is injective
g=0and o = {x0}.

Now let 7 = ¢(0) be a simplex in L with vertices yo, ..., yq. Let zg,...,x, be the
vertices of o. Since ¢ is simplicial and injective the images ¢(zo),. .., ¢(z,) are
distinct and generate the simplex ¢(o) by hence are exactly the vertices
Yos---,Yq of 7. Thus p = ¢ and w.l.o.g. ¢(z;) =y, for all j. So o is generated by
the =1 (y;) = z;. O

Simplicial approximation

3.22 Definition (Simplicial Approximation). [9, 3.2.4] Let K and L be two
simplicial complexes, f : |K| — |L| be continuous. Then a simplicial mapping
¢ : K — L is called SIMPLICIAL APPROXIMATION for f iff for all z € |K| we have
lol(x) € carrp(f(z)), ie. f(x) € 0 € L = |p|(z) € 6. This can be expressed shortly
by Vo € L : |¢|(f~1(0)) C &. In particular, for every € |K| there is then a simplex
o € L (namely o := carry(f(x))) with f(z), |¢|(z) € 7. Note that |¢|(7) = (o).

3.23 Lemma. [9, 3.2.5] Let ¢ be a simplicial approximation of f, then |p| ~ f.

Proof. Connect |¢|(z) to f(x) by the segment in carry, f(x) O

3.24 Example. [9, 3.2.6]

1. Let X :=|62|. Then X = S'. If ¢ : K — K is simplicial, then either ¢ is
bijective or not surjective, so it has degree in {£1,0} by ‘ 2.18.3 ‘ and ‘ 2.6.7 ‘
Thus every continuous map f : X — X with |deg(f)| > 1 has no simplicial
approximation.
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2. For f : ¢~ 4t(1 —t) from [0,1] — [0, 1] there is no simplicial approximation
v : K — K = {(0),(1),(0,1)}: In fact, carr(j) = {j} for j € {0,1} and
carr(3) = (0,1) hence any such ¢ must satisfy ¢(0) = ¢(1) = 0 and hence

)

lel(3) =0 ¢ {1}.

In order to get simplicial approximations we have to refine the triangulation of |K|.
This can be done with the following barycentric refinement.

3.25 Definition (Barycentric Refinement). [9, 3.2.1] The BARYCENTER & of a
g-simplex o with vertices x; is given by

q+1le

For every simplicial complex K the BARYCENTRIC REFINEMENT K’ is given by all
simplices having as vertices the barycenter of strictly increasing sequences of faces
of a simplex in K i.e.

K' :={{(60,...,64) 100 <--- <0, €K}

3.26 Theorem. [9, 3.2.2] For every simplicial complex K the barycentric refi-
nement K' is a simplicial complex of the same dimension d and the same un-
derlying space but with max{d(c’) : ¢/ € K'} < d_‘f_l max{d(o) : ¢ € K}. Here
d(o) :=sup{|z — y| : z,y € o} denotes the diameter of o.

Proof. If oy < -+ < 04, then the barycenter &y,...,54 all lie in 6, and are in
general position: In fact, let o; = (xo, ..., x,,) with i — n,; strictly increasing and
x—Z)\az Z/\ _'_1233] ZxJZ/\ w1ch/\—1

n,>]
=i
Then
Zﬂa ZZ in +1—ZZ i H—ZA =1
i >J n; >j

Since the z; are in general position the y; are uniquely determined and thus also
the \; = (n; +1) (Mn - i< )‘i’ﬁ)'

We show now by induction on ¢ := dim(o) that for o € K theset {0’ € K’ : ¢’ C o}
is a disjoint partition of : For (¢ = 0) this is obvious. For (¢ > 0) and « € o\{5} the
line through 6 and z meets ¢ in some point y,. By induction hypothesis 37" € K’ :
Yy € 7. Thus gy, is a positive convex combination of 7 Tos- s 75 with 7o < -+ < 75.
Hence z is a positive convex combination of 7y,...,7;,0

andreas.kriegl@univie.ac.at © 11. Janner 2012 47



3.30 3. SIMPLICIAL COMPLEXES

Finally, let 2/, 7’ be two vertices of some ¢’ € K’, i.e. 2’ = Til (xo+ -+ x,) and
y = S}rl(aco—&—--~+a?5) with r < s < ¢ < d for some simplex 0 = (o, ...,2z,) € K.
Then

1 .
|z —y'| < T Z |z; —y'| < max{|z; —y| : i}
i

1 s
lzi —y'| < mZWz — x| < md(g) < ——=d(o). O
J#i

3.27 Corollary. [9, 3.2.3] For every simplicial complex K and every e > 0 there
is an iterated barycentric refinement K9 with d(o) < e for all 0 € K9,

q
Proof. (ﬁ‘ll) — 0 for ¢ — oo. O

3.28 Definition. Star of a Vertex. [9, 3.2.8] Let { = {x} be a vertex of K. Then
the STAR of £ in K is defined as

ste(©) = | o= {velK|:a e},

{<oekK

ileyestg(§) ©INo:{<oandy€o e &= {zr} <carrg(y) & = € carrg (y).

3.29 Lemma. [9, 3.2.9] The family of stars of vertices of K form an open covering
of |K|. For every open covering there is a refinement by the stars of some iterated
barycentric refinement K9 of K.

Proof. For vertices { = {z} of K let K, := {0 € K : z is not vertex of ¢}. Then
K, is a subcomplex and hence stk () = | K|\ |K.| is open.

If o € K and z is a vertex of o then obviously o C stx({x}) and hence the stars
form a covering.

By the Lebesgue-covering lemma (see [2, 3.3.3] or [3, 5.1.5]), there is an 6 > 0
such that every set of diameter less then ¢ is contained in some U € U. Choose
by a barycentric refinement K9, such that d(o) < g for all o € K@, For
every y € strw ({x}) we have d(y,z) < max{d(c) : ¢} hence d(stxw ({z})) <
2 max{d(o) : 0} < ¢, and thus the stars form a refinement of U. O

3.30 Corollary. Simplicial Approximation. [9, 3.2.7] For every continuous map
f:|K| — |L| there a simplicial approzimation ¢ : K9 — L of f for some iterated
barycentric refinement K9,

Proof. Let ¢ be chosen so large, that by the stars of K@ form a refine-
ment of the open covering {f~!(stp(n)) : n = {y} € L}. For sake of simplicity
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we write K instead of K(9. Thus for every vertex £ € K we may choose a vertex
w(€) € L with f(stx(§)) C stp(p(§)). For ¢ € K with vertices xo,...,z, de-
fine (o) to be the simplex generated by the ¢(x;). We have to show that this
simplex belongs to L. Let x € o be any point in 0. Since o C (), stx({z:})
we get f(z) € f(o) C F(ist({z:) C N fstae({zd)) © Nsstr(pl{aid).
Thus f(z) € stp(e({z:})), i-e. p({x;}) < carrp(f(z)) =: 7 € L, for all i. Hence
lol(z) € p(o) == (p(z0),...,p(xp)) < T € L and ¢ is a simplicial approximation of
7. O

3.31 Corollary. [9, 3.2.10] Let X and Y be polyhedra. Then [X,Y] is countable.

3.32 Remark. [9, 3.2.11]

We obtain a simplicial approximation x : K/ — K of id : |[K’| — |K| by choosing
for every vertex ¢ € K’ a vertex x(&) of 0. Let &y, ...,d, be the vertices of some
simplex ¢’ € K’ with 0g < --- < 0, and hence ¢’ C ,,. Then the x(&;) are vertices
of 0; < 0, and hence they generate a face of o, € K. Thus x extends to a simplicial
map.

Let € ¢’. Then |x|(z) € x(¢') C 7, = carrg(x), hence x is a simplicial approxi-
mation of id.

Let o be any q-simplex of K. Then there exists a unique simplexr o' C o which is
mapped to o and all other o' C o are mapped to true faces of o.

Proof. We use induction on ¢. For ¢ = 0 this
is obvious, since x is the identity. If ¢ > 0 and
2 := x(6) let 7 be the face of o opposite to z. By
induction hypothesis there is a unique 7/ C 7 of
K’ which is mapped to 7. But then the simplex
o’ generated by 7' and & is the unique simplex
mapped to o: In fact, any simplex contained in
o with vertices &y, ..., that is mapped via x
to o has to satisfy 0g < --- < 0. < 0. Hence r <
dim(o), and consequently r = dim(o) and o = 0.
Since x(6) = = we have that x(6o),...,x(Gr-1) o
generate 7 and thus 7/ is the simplex with vertices
GQy-veyOp1- O T

X=x(0)

Freeing by deformations

3.33 Proposition. [9, 3.3.2] Let K be a simplicial complex and n > dim K. Then
every f 1 |K| — S™ is 0-homotopic. In particular, this is true for K = ¢*+1 with
n>k=dmkK.

Proof. By there exists a simplicial approximation ¢ of f : |K| — |6"T1| for
some iterated barycentric subdivision. Then |p| : |K| — |6 "] cannot be surjective
(since n > dim K) and hence f ~ |¢| is 0-homotopic since 6" +1\ {x} is contractible.

3.34 Theorem. Freeing of a point. [9, 3.3.3] Let (K,L) be a simplicial pair
and e™ be an n-cell with n > dim K. Then every fo : (|K|,|L|) — (€™, e™\ {0}) is
homotopic relative |L| to a mapping f1 : |K| — ™\ {0}.
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Proof. We first show this result for (|K|,|L|) = (D*, S*¥~1). By we have
e" \ {0} ~ S"~1. Hence fo|gr—1 : S¥71 — e\ {0} is O-homotopic by . By
this homotopy gives an extension f; : D¥ = C(S*~1) — e\ {0}. Consider
a mapping h : (D* x I)" — €™ which is this extension on the top, and is fy on the
bottom and on S*¥~! x {t} for all ¢ € I. Since e is contractible this mapping h is

0-homotopic by and hence extends to C((D* x I)') = D* x I by . This

extension is the desired homotopy.

For the general case we proceed by induction on the number of cells in K \ L.
For K = L the homotopy is constant fo. So let K D L and take 0 € K \ L of
maximal dimension. Then M := K \ {o} D L is a simplicial complex. Obviously
|[M|UG =|K| and |[M|N& = ¢. Consider the diagram

/|(f;|\

|M‘ 1)>6 <(2)-

I

By induction hypothesis we have the required homotopy (1) relative |L| on |M]|.
Since (&,6) has HEP by , we may extend its restriction (1°) to & to a
homotopy (2) on ¢ with initial value fo. The union of these two homotopies (1) and
(2) gives a homotopy h; rel. |L| indicated by arrow (3) which satisfies ho = fp and
hi(|M]) C e™\{0}. By the special case treated above, there is a homotopy g; relative
o with go = hils : (7,0) — (e",e"\{0}) and g1(5) € €"\{0}. Let f1 := h1fjarUg.
Then fi(|K|) C e™\ {0} and fo =ho ~ h1 = hiljpUgo ~ hiljarUgr = fi relative
|L]. O

3.35 Theorem. Freeing of a cell. [9, 3.3.4] Let Z be obtained from gluing an
n-cell €™ to a space Y and k < n. Then every f : (D*, S*~1) — (Z,Y) is homotopic
relative S*=1 to a mapping f, : D* — Y.

DX f

Proof. We consider a triangulation K of D* such that S*~! corresponds to a
subcomplex L. For 0 € e” C Z we consider the subcomplexes

KO;Z{06K3f(5)QZ\{O}}:{UGKzﬁgffl(Z\{()})}QLand
Ky ::{UEKif(?T)Qe”}:{aeK:&gf*l(en)}

By passing to a appropriate iteration (again denoted K) of barycentric subdivisions,
we may assume that K = Ky U K; by .
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Now consider the diagram

S /Z

i ; oy ~ 7 \en
/ VVN} / \)
y s D e\op {0}

K] Y\f o,

Sk-1 | Ko | K|
e \ 7

|L| | Ko N K|

By there exists a mapping (1) homotopic to f||x,| relative |K; N Ko|. Gluing
the homotopy with the f| x,| gives a homotopy relative |Ky| to a mapping (2).
Composing with the retraction r (homotopic to id relative Y') from gives the
desired mapping f; : D¥ — Y homotopic to f relative |L|. Remark that the triangle
on top, as those above (1) and (2) commute only up to homotopy. O
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4. CW-Spaces

Basics

4.1 Definition. [9, 4.1.3] A CW-CcOMPLEX is a Hausdorff space X together with
a partition X into cells e, such that the following properties hold:

(C1) For every n-cell e € X there exists a continuous so-called CHARACTERISTIC
MAP x¢ : D" — X, which restricts to a homeomorphism from D™ onto e
and which maps S”~! into the n — l-skeleton X"~ ! of X, which is defined
to be the union of all cells of dimension less than n in A'.

(C2) The closure ¢ of every cell meets only finitely many cells.
(W) X carries the final topology with respect to € for all cells e € X.

A CW-SPACE is a Hausdorff-space X, which admits a CW-complex X (which is
called CW-DECOMPOSITION of X).

Remark that if X' is finite (X is then called finite CW-complex), then the conditions
(C2) and (W) are automatically satisfied.

If X = X" # X" ! then the CW-complex is said to be of dimension n. If X # X"
for all n, then it is said to be of infinite dimension.

Remark that, since the image x(D™) of the n-ball under a characteristic map is
compact, itocoincides Withoé and x : D™ — € is a quotient mapping. So é := €\ e =
X(D™)\ x(D") C x(D™\ D*) = x(5" 1) and conversely x(S"~!) C x(D") C & and
x(S™ 1) € Xn71 C X \ e, thus ¢ = x(S™™!) and y is a relative homeomorphism
(D™, 8" 1) — (&, ¢é).

ﬁn o Dn - Sgn—1

1

C )é

4.2 Example. [9, 4.1.4] For every simplicial complex K the underlying space |K|
is a finite CW-complex, the cells being the simplices of K and the characteristic
maps the inclusions € C | K]|.

The sphere S™ is a CW-complex with one 0-cell € and one n-cell ", in particular
the boundary é = €\ e of an n-cell, needn’t be a sphere in contrast to the situation
for simplicial complexes.

The one point union of spheres is a CW-space with one 0-cell and for each sphere
a cell of the same dimension.

51V 82 can be made in a different way into a CW-complex by taking a point €° € S*
different from the base point. Then S' = % Ue! and S' v % = e® Ue! Ue?. But
the boundary é2 of the two-cell is not a union of cells.

The compact surfaces of genus g are all CW-complexes with one 0-cell and one
2-cell and 2g 1-cells (in the orientable case) and g 1-cells (in the non-orientable

case), see .

The projective spaces P are CW-complexes with one cell of each dimension from

0 to n, see .
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4.3 Definition. [9, 4.1.5] For a subset ) of a CW-decomposition X" of a space X
the underlying space Y := [J{e : e € Y} is called CW-SUBSPACE and Y is called
CW-SUBCOMPLEX, iff Y is a CW-decomposition of Y with the trace topology. In
this situation (X,Y) is called CW-PAIR.

Let us first characterize finite CW-subcomplexes:

4.4 Lemma. Let Y be a finite subset of a CW-decomposition X of a space X. Then
Y forms a CW-subcomplez iff Y :=J{e: e € Y} is closed. Cf. .

Proof. (=) If Y is a CW-subcomplex, then for every cell e € ), there is a charac-
teristic map x : D™ —» €¥. Hence " is compact and thus coincides with the closure
of e in X, so the finite union Y = |J{e: e € Y} is closed.

(<) Since Y is closed the characteristic maps for e € Y C X have values in Y
and hence are also characteristic maps with respect to ). The other properties are
obvious. O

4.5 Lemma. [9, 4.1.9] Every compact subset of a CW-complex is contained in some
finite subcomplex. In particular a CW-complex is compact iff it is finite.

Proof. Let X be a CW-complex. We first show by induction on the dimension
of X that the closure € of every cell is contained in a finite subcomplex. Assume
this is true for all cells of dimension less than n and let e be an n-cell. By (C2)
the boundary é meets only finitely many cells, each of dimension less than n. By
induction hypotheses each of these cells is contained in some finite subcomplex X;.
Then union of these complexes is again a complex, by . If we add e itself to
this complex, we get the desired finite complex.

Let now K be compact. For every e € X with e N K # () choose a point z. in the
intersection. Every subset A C K := {z. : eN K # 0} C K is closed, since it meets
any € only in finitely many points by (C2). Hence Kj is a discrete compact subset,
and hence finite, i.e. K meets only finitely many cells. Since every € is contained
in a finite subcomplex, we have that K is contained in the finite union of these
subcomplexes.

The last statement of the lemma is now obvious. O

4.6 Corollary. Every CW-complex carries the final topology with respect to its
finite subcomplexes and also with respect to its skeletons.

Proof. Since the closure € of every cell e is contained in a finite subcomplex by
and every finite subcomplex is contained in some skeleton X", these families
are confinal to {€ : e € X'}. Furthermore, the inclusion of each of its spaces into
X is continuous (for the final topology on X induced by the & by property (W)).
Hence these families induce the same topology. (Let F; and F3 be two families of
mappings into a space X, and assume F3 is confinal to Fi, i.e. for every f; € Fy
there is some fo € F» and a map h such that f; = fy o h. Let X; denote the
space X with the final topology induced by F;. Then the identity from X; — Xo
is continuous, since for every f; € F; we can write idof; = fo o h) O

Now we are able to extend to infinite subcomplexes.

4.7 Proposition. Let X a CW-decomposition of X and let Y be a subset of X and
Y :={e: e € Y}. Then the following statements are equivalent:
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1. Y is a CW-decomposition of Y with the trace topology;
2. Y is closed in X ;

3. For every celle € Y we have e C Y.

Proof. (2=-3) is obvious.

(1=3) follows, since the closure &Y

in Y is compact and hence equals é := &~.

For the converse directions we show first:

(3) = If ACY has closed trace on & := gX for each e € Y, then A is closed in X.
By it suffices to show that the trace on every finite CW-subcomplex Xy C X is
closed. Since there are only finitely many cells e; in XyN)Y and for these &; C XgNY

by and (3), we get

XoNA=X,NYNA= (Uél> OA:U(éiOAL
which is closed.
(3=2) by taking A =Y in the previous claim.

(3=-1) The previous claim shows the condition (W) for ). The other conditions for

being a CW-complex are obvious since e¥ = &Y. 0O

4.8 Corollary. [9, 4.1.6] Intersections and unions of CW-complexes are CW-
complexes. Connected components and topological disjoint unions of CW-complexes
are CW-complexes. If € C X is family of n-cells, then X"~ UJ & is a CW-complex.
Fach n-cell e is open in X".

Proof. For intersections this follows from (1<2) in . For unions this follows
from (1 < 3) in|4.7] That X"~ 'U|J& is a CW-complex follows also from (1 < 3)
in . Since X"\ e = X" 1 U|J{e1 # e : €1 an n-cell in X"} is a CW-complex,
it is closed by and hence e is open in X™.

The statement on components and topological sums follows, since € is connected

and by (1=3). O

Constructions of CW-spaces

4.9 Proposition. [9, 4.2.9] Let X and Y be two CW-complexes. Then X xY with
cellse x f fore e X and f € Y satisfies all properties of a CW-complex, with the
possible exception of (W). If X orY is in addition locally compact, then X XY is
a CW-complex.

Proof. Take the product of the characteristic maps in order to obtain a characte-
ristic map for the product cell.

In order to get the property (W) we have to show that the map | |, ,ex f—XxY
is a quotient map. Since it can be rewritten as

|_|é><|_|f—>|_|é><Y—>X><Y
e f e

this follows from using compactness of € and locally compactness of Y. [
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4.10 Proposition. Let (X, A) be a CW-pair. Then AU X" is obtained from AU
XY by gluing all n-cells in X™ \ A via the characteristic mappings.

Proof. Let £ be the set of all n-cells of X \ A and let characteristic mappings x© :
D™ — e for every e € £ be chosen. Let x := | |.ce X 1 |loce D™ — Upec® € X"
and f := X|l_|e gn—1. We have to show that the rectangle in

gn—1 s pn

Y

I_le on—1C o LIe D" -

is a push-out. So let ¢g"~ ' : AUX""! — Z and ¢° : D™ — Z be given, such that
g" 1 ox®gn-1 = g°gn1. Then g : AU X" — Z given by g|aux»—1 = ¢" ! and
gle = g° o (x° En)_l is the unique mapping making everything commutative. It
is continuous, since on € it equals ¢g" ! if e C AU X" ! and composed with the

quotient-mapping x¢ : D™ — € it equals g¢ for the remaining e. [
Now we give an inductive description of CW-spaces.

4.11 Theorem. [9, 4.2.2] A space X is a CW-complez iff there are spaces X",
with X9 discrete, X™ is formed from X"~ ' by gluing n-cells and X is the limit of
the X™ with respect to the natural inclusions X™ — X"+1,

Proof. (=) We take X™ to be the n-skeleton. Then X carries the final topology
with respect to the closed subspaces X™ and XV is discrete by . Taking A := ()

in we get that X™ can be obtained from X"~! by gluing all the n-cells via
their corresponding characteristic maps restricted to the boundary spheres.

(<) We first show by induction that X™ is a CW-complex, with n — 1-skeleton
X" 1 and the cells which have been glued to X™ ! as n-cells.
For X being a discrete space this is obvious. Since
X" is obtained from X"~! by gluing n-cells we have ] 8" ' C—], D"

e e
that X" is Hausdorff by and is as set the dis-
joint union of the closed subspace X"~ !, which is a f l P J/
CW-complex by induction hypothesis, and the homeo— -1 xn
morphic image |J, e of | | D™\ ||, S" ' =], Dr.
As characteristic mappings for the n-cells e we may use p|pn, since it induces a
homeomorphism D" — e and it maps S"1 to f(S"!) € X"~ ! which is com-
pact and hence contained in a finite subcomplex of X"~ 1. The condition (W) fol-
lows, since X™ carries by construction the final topology with respect to X! and
p: || D™ — X™, and | | D™ carries the final topology with respect to the inclusion
of the summands D™ C | |, D".

The inductive limit X := hm X™ now obviously satisfies all axioms of a CW-
complex only Hausdorﬁness is to be checked. So let x ,y be different points in X.
We they lie in some X™ and we find open disjoint neighborhoods U™ and V"™
in X™. We construct open disjoint neighborhoods U* and V* in X* with &k > n

andreas.kriegl@univie.ac.at © 11. Janner 2012 55



4.14 4. CW-SPACES

inductively. In fact, take U* := U’“’lLJp(r’l(Uk’l)), where r : | | DF\{0} — | | X*

is the retraction from . Then U* is the image of the open and saturated
set UL U r~Y(U*1) € Xk~1| | D* and hence open, and U¥ N X*~1 = Uk-L.
Proceeding the same way with V¥ gives the required disjoint open sets U := | JU*
and V :=[JV*. O

Example. In general gluing a CW-pair to a CW-space does not give a CW-space.
Consider for example a surjective map f : S — S2. Then the boundary é = S? of
e := (D?)° is not contained in any 1-dimensional CW-complex.

So we define

4.12 Definition. [9, 4.2.4] A continuous map f : X — Y between CW-complexes
is called CELLULAR iff it maps X™ into Y™ for all n.

4.13 Lemma. Let f : X D A — Y be given and let Y C Y and X' C X
be two closed subspaces, such that f(ANX') CY'. Then the canonical mapping
Y'Up X' =Y Uy X is a closed embedding, where f':= f|A" with A’ := AN X'.

Proof.

Consider the commutative diagram: The dashed arrow ¢ exists by the
4’ C X/ push-out property of the upper left

square.
P’ Since YUp X' =Y U(X'\ 4A') as
5 AC X sets, we get that ¢ is the inclusion
YUX'\NA)CYU(X\XNA) =
I Y U (X \ A) and hence injective.
Now let B C Y’ Uy X’ be closed
P Y'Up X! = f )
Y e ? ie. B = By U B,y with By C Y’
\ closed and By C X'\ A’ such that

-1 n—1 :
A p~H(B) = BoU(f")~1(By) is closed
Y ¢ YUr X iy X,

In order to show that «(B) = BiUBy CY' U (X'\A') CY U(X\ A) is closed we
only have to show that By U f~1(By) is closed in X, which follows from

By U (By) = By U ()7 (B U (B) = (B2U(F)71(B) U~ (By),

since Bo U (f")71(B1) € X' C X is closed and f~'(B;) C A C X is closed. O

4.14 Theorem. [9, 4.2.5] Let (X, A) be a CW-pair and f : A — Y a cellular
mapping into a CW-complex Y. Then (Y Uy X,Y) is a CW-pair with the cells of
Y and of X \ A as cells.

Proof. We consider the spaces Z" := Y" Uy, X", where f, := f|an. Note that
A" = AN X™ By the Z™ form an increasing sequence of closed subspaces
of the Hausdorff space Z := Y Uy X. Obviously Z° is discrete and Z carries the
final topology induced by all Z™. So by it remains to show that Z™ can be
obtained from Z"~! by gluing all n-cells of Y and of X™\ A™. For this we consider
the following commutative diagram:
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By the following

spaces are push-outs of
the arrows leading into
them: Y™, X" Z™ and
Aruy XL,
We have to show
that Z" is  the
push-out of the in-
clusion Z"1 — Z»
and the wunion of
the two  mappings
W UD™ - Y™ — Z" and

AN Uup" — X" — 2™,
2 \3‘ So let mappings on all
xn-1 (—>Anan71 |G >A)(n the D™ and on Z"~!
into a space W be gi-

\ T \ ven whose composites
Lgn—1¢ Lp" with the arrows from

S"~1 into these spaces
are the same.

usn—l (@ > | |D"

Then (1), (2), (3), and (4) exist uniquely by the push-out property of the corre-
sponding domains Y, A" U X"~1 X" and Z". The map (4) is then the required
unique mapping from Z" — W. O

4.15 Corollary. [9, 4.2.6] Let (X, A) be a CW-pair with A # (. Then X/A is a
CW-space with A as one 0-cell and the image of all cells in X \ A.

Proof. X/A = {x} Uy X by , where f : A — {*} is constant, Now apply

[d11) 0

4.16 Corollary. [9, 4.2.8] Let X be a CW-complex. Then X"/X""1 is a join of
spheres of dimension n, for each n-cell one.

Proof. By X" /X" is a CW-space consisting of one 0-cell and all the n-
cells of X. The characteristic mappings for the n-cells into the 0-cell have to be

constant and hence X"/X"~1 2 \/_S™ by |1.103.1 |. O

4.17 Corollary. [9, 4.2.7] Let X; be CW-spaces with base-point x; € X?. Then the
join \/; X; is a CW-space.

Proof. \/, X; = (; X;)/{x; : i} is a CW-space by and . O

Homotopy properties

4.19 Theorem. [9, 4.3.2] For every CW-subspace A of a CW-space X we can find a
continuous function u: X — I s.t. A=u"1(0) and A — U(A) :=u"1({t:t < 1})
is a SDR. These neighborhoods can be chosen coherently, i.e. UANB) =U(A)N
U(B). In particular, A — X is an NDR.

Proof. Let X~! := (). By AU X" is obtained by glueing the n-cells in
X\Ato AUuX"! By AUX" s an SDR in AU X"\ |],{0.}. Let the
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corresponding homotopy be denoted by h} and the (radial) retraction by r™ := h7.
Note that 7™ o h* = r".

We first define a function u : X — [0, 1] by recursive extension as follows: u| g x-1 =
0 and let u, := u|auxn be given by uy,|auxn-1 = un—1 and
. 1—||x||<1—un,1 X ) fir 0 # 2 € D"
unla(x“(x)) = O () .
1 fiir 0 =0, € D™

Then u,, is a well-defined continuous map with (u,)~1(0) = A and by the
same holds for w.

Let UA) i={x € X tu(z) <1} and U" :=U(A)N(AUX") ={z € AUX":
un(z) < 1}. Note that the homotopy hy on AUX™\| | {0} restricts to a homotopy

on U™, since with every point & € U™ the whole path {h}(z) : t € I} belongs to
un.

By induction on n we construct now homotopies H;* : U™ — U™, by

id for t < n%rp
H} = ¢h forn%rlgtgéwheres:: n(t(n+1)—1) € [0,1],

H tor® fort> 1

Then H is well-defined and H}*|yn—1 = H;' ', since H ' = id for t < 1 and
| anxn-1 = id. The union H; := |J, cyy H" is the required deformation relative
A and satisfies also H; o Hy = H;p since r"|yn—1 = id and hence H} o Hf* =
Hy lormoHp = HY ' or™ = HY.

In oder to show that A < X is an NDR we consider a new homotopy & (x) :=
ht max(O,min(l,Z—Su(x)))(x)' Then

- {:c for z € Aoru(z) > 2
<

h =

() hi(z) fort=1and u(z) < 3
Thus A extends by id to a homotopy of X and with @(x) := min{1, 3u(z)} we get
the NDR property. O

4.20 Corollary. [9, 4.3.3] Every point = in a CW-complex X has an open neigh-
borhood, of which it is a SDR.

Proof. Let first e be an n-cell. Let A := X". By restricting the homotopy H; from
to r~1(e) (possible, since r o H; = r), where r := H; : U(A) — A denotes the
retraction, we obtain that e is the SDR of a neighborhood. Since every point in a
cell e is a SDR of the cell, we obtain the required result by transitivity . O

4.21 Theorem. Cellular Approximation. |9, 4.3.4] For every continuous map-
ping fo : X — Y between CW-complexes there exists a homotopic cellular mapping.
If fola is cellular for some CW -subspace A, then the homotopy can be chosen to be
relative A.

Proof. Again we recursively extend the constant homotopy on A to a homotopy
h} : AUX™ — Y with hf being cellular. For the induction step we use for each n-cell
e € X \ A a characteristic mapping x : D™ — e. By induction hypothesis we get a
mapping @o : (D" x0)U(S" 1xT) — Y given by foox on the bottom and h' 'ox on
the mantle D" x I with A} tox : §"~1 — X"~ — Y"~1 C V" Since this domain is
aretract in D™ x I by ‘ 2.33.1 ‘ and ‘ 2.32 ‘We can extend it to a mapping ¢g on D™ x I.
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The image ¢o(D™ x {1}) is compact and hence contained in a finite CW-complex.
Let e™, ..., e™ be the cells of this complex of dimensions n, > --- > ny > n. Then
@olprxqiy : (D™ x {1}, 8" x{1}) — (Y"Ue™ U---Ue™,Y™) is well defined. Ap-
plying now r-times we can deform og|pn {1} successively relative St x {1}

so, that its image avoids e U ---Ue™. Let ¢; be the corresponding homotopy.
We can extend ¢; via (g to a continuous mapping on the

boundary (D™ x I)’, which is homotopic to @o|(pnxr)- S™1 C—— = p»
relative D™ x {0} U S"~! x I via ¢;. The pair (D™ x & 7
I,(D" x I)) = (D" S") is a CW-pair and hence has
the HEP by and g lives on D™ x I, so ¢, can be X Y X
extended to D™ x I as well by . Now ¢, factors / . h\\l‘:,_

hy™ tle

over the quotient mapping x to a homotopy h?|s. The
union of the h}|. gives the required h}. O €c €

4.22 Corollary. [9, 4.3.5] Let fo, f1 : X — Y be homotopic and cellular. Then
there exists a homotopy H : X x I — Y such that Hy(X™) C Y™+ for all n.

Note that the inclusions of the endpoints in I are homotopic and cellular, but every
homotopy has to map that point into the 1-skeleton.

Proof. Consider the CW-pair (X x I, X xI) and the given homotopy f : X xI — Y.
Since by assumption its boundary value f|y, ; is cellular,by we can find
another mapping H : X x I — Y, which is cellular and homotopic to f relative

X x I. Thus H is the required homotopy, since for 0 < ¢t < 1 and every n-cell e” of
X the image H(e™ x {t}) is contained in H(e™ x e!) C YT O
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5. Fundamental Group

Basic properties of the fundamental group

5.1 Definition. [9, 5.1.1] A path is a continuous mapping v : I — X. The CON-
CATENATION ug - u; of two paths ug and w; is defined by

uo(2t) for t <
up(2t —1) fort >

(uo - u1)(t) := {

N[ D=

It is continuous provided ug(1) = u;(0). The INVERSE PATH u~! : I — X is given
by u=t(t) = u(l —t).

Note that concatenation is not associative and the constant path is not a neutral
element. The corresponding identities hold only up to reparametrizations.

5.2 Lemma. Reparametrization. [9,5.1.5] Letu: [ — X be apath and f : I — 1
be the identity on I. Then u ~wo f rel. I.

Proof. A homotopy is given by h(t,s) := u(ts + (1 —t) f(s)), see . O

5.3 Lemma. [9, 5.1.6]

1. Let u, v and w be paths with u(1) = v(0) and v(1) = w(0), then (u-v) - w ~
w-(v-w) rel. I.

2. Let u be path with x := u(0), y := u(1) then const, -u ~ u ~ u - const, rel.
I.

3. Let u be a path with z := u(0) and y := u(1). Then u-u~' ~ const, and
u™t - u ~ const, rel. I.

Proof. In (1) and (2) we only have to reparametrize. In (3) we consider the homo-

topy, which has constant value on each circle with center (%7 0). O
1 1 1
X0
1/2 u(0)
uct)
4 /_\
0 0 0 m
0 1 3 1 0 1 1 o u 1 u 1
2 4 2 2

5.4 Definition. [9, 5.1.7] Let (X, zo) be a pointed space. Then the FUNDAMENTAL
GROUP (or FIRST HOMOTOPY GROUP) is defined by

7r1(X7$0) = [(17])7 (vao)] = [(517{1})7 (X7 {xo})],

where multiplication is given by [u] - [w] := [u - w], the neutral element is 1., :=
[const,,] and the inverse to [u] is [u~!]. Both are well-defined by .
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5.5 Lemma. [9, 5.1.8] Let u: I — X be a path from xq to x;.
Then conjy,) : w1 (X, z0) — m1(X, x1) is a group isomorphism, where conjy,; : [v] —

[u= V][] == [u=t v - ul.

5.6 Lemma. [9, 5.1.10] Let h : I? — I? be like follows:

©00) o 1.1
(7, 8) = (4 5) fort < 5.5 € {0,1}
(t,0) — (2t,0) fort < 3
(t,0) — (1,2t — 1) fort > 3
(t, 1) — (0,2t) fort < 3
00 - » (t,1)— (2t —1,1) fort >3

and a piecewise affine homeomorphism on the interior, e.g.
) (1—2t)(0,0)+2t(s(0,1)+(1—s)(170)> fort <1/2
t,s) =

(2 - 2t) (s(o, 1)+ (1 s)(1, 0)) F(2t—1)1,1) fort>1/2

For continuous f : (I?) — X and u;(s) := f(s,j) resp. v;(t) := f(j,t) its values
on the 4 edges the following statements are equivalent

1. There exists a continuous extension of f to I?;

2. f is 0-homotopic;

3. There exists a continuous extension of f o h to I?;
4

.Uy V1 ~vg-uy rel. 1.

Proof.

(1 & 2) was shown in . (I2) h (I2)
(3 4) foh: (I?) — X is the boundary data

for the homotopy required in (4). ,l 1
(1=3) Take foh:= foh. 2 M

(3=1) Since f o h is constant on h~1(s,t) for all
(s,t) € (I?)", it factors over the quotient mapping
h to a continuous extension f : I? — X.

5.7 Corollary. Let X be a topological group (monoid) then m(X,1) is abelian,
where 1 denotes the neutral element.

Proof. Consider the map (t, s) — u(t) - v(s). O
5.8 Proposition. [9, 5.1.12] Let V : w1 (X, z0) = [(S1, 1), (X, 20)] — [S!, X] be the
mapping forgetting the base-points. Then

1. [u] is in the image of V iff u(1) can be connected by a path with xg.

2. V' is surjective iff X is path connected.

3. V(a) = V(B) iff there exists a v € m1(X,x0) with B=~"1-a 7.

4. V is injective iff m (X, xq) is abelian.

5. The ‘kernel’ V~='([consty,,]) of V is trivial.
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Warning: Since V is not a group-homomorphism, does not contradict .

Proof. (1) [u] is in the image of V if u is homotopic to a base point preserving
closed path. The homotopy at the base-point gives a path connecting u(1) with xg.
Conversely any path v from ¢(1) to g can be used to give a homotopy between u
and the base point preserving path v=!-u-v, cf. 7 since (S, 1) has HEP by

[119)

(1=-2) is obvious.

3) Let a = [u] and 8 = [v]. Then V(a) = V(8) iff u is homotopic to v.

(=) Let h be such a homotopy and w(t) := h(t,1). Then by (1=4) we have
w-v~u-wrel. I,ie v-f=a-vand hence f =~"1 -~ for v := [w].

() Let B=~"1-a-yand v = [w]. Then -3 = -+ and hence w - u ~ v - w rel.
I. Then by (1<=4) we have u ~ v, i.e. V(a) =V(f).

(3=4)

(=) Let a,y € m(X) and B :=~~!-a-v. By (3) we have V(a) = V() and since
V' is assumed to be injective we get a = (3, i.e. y-a=a-7.

(<) Conversely, if V(a) = V(3), then by (3) there exists a v with 3 =~"1-a -~
and v~ ! -a-v = a, provided o and y commute.

(3=5) Let V(a) = [consty,] = V(consty,). By (3) there exists a v with a =

7! [eomsty, | -y =7y =1 O

5.9 Corollary. [9, 5.1.13] Let X be path connected. Then the following statements
are equivalent:
1. m(X,x0) 21 for some (any) xo € X, i.e. every u: S — X is 0-homotopic
rel. I by ;
2. [S1, X] = {0}, i.e. every u: S* — X is O0-homotopic;
3. Any two paths which agree on the endpoints are homotopic rel. I.

A path connected space satisfying these equivalent conditions is called SIMPLY CONNEC-
TED.

Proof. (1=2) since V : 7!(X, z9) — [S', X] is onto by .
(2=3) From (2=4) with v; := const,; follows u - const,, ~ const,, -v rel. I

and hence u ~ v rel. T by .

(3=-1) is obvious, since u ~ consty, O
Corollary. Let X be contractible, then X is simply connected.

Proof. By we get that [S?, X] = {0} provided X is contractible. O

5.10 Example. [9, 5.1.9] Let X be a CW-complex without 1-cells, e.g. X = S™ for
n > 1. Then 71(X,x) = {1} for all zo € X°.

In fact every u : (I,1) — (X, z¢) is by homotopic rel. T to a cellular mapping
v, ie. v(I) € X' = X, hence v is constant.

Note that such an X is path connected iff it has exactly one 0-cell.
(=) Let zp and x; be two O-cells and u be a path between them. By u is
homotopic to a cellular and hence constant path rel. I, since X has no 1-cells. Thus
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Tro = 1.
(<) Since cells are path-connected each point in X™ can be connected with some
point in X"~ ! and by induction with the unique point in X°.

5.11 Definition. [9, 5.1.15] Every f : (X,z9) — (Y,y0) induces a group homo-
morphism 7 (f) : 71 (X, 20) — 71(Y, yo) given by 71 (f)[u] := [f o u]. Just use that
u~v=>foun~ fovand fo(u-v)=(fou)-(fow) to get well-definedness and
the homomorphic-property.

5.12 Corollary. [9, 5.1.16] 71 is a functor from the category of pointed topological
spaces to that of groups, i.e. it preserves identities and commutativity of diagrams.

Proof. trivial O

5.13 Proposition. [9, 5.1.18] m is homotopy invariant.

More precisely: If f ~ g rel. xog then wi(f) = m(g). If f ~ g then m(g) =
conj,] o1 (f), where u is the path given by the homotopy at xzg. If f : X - Y is a
homotopy equivalence then w1 (f) : m1(X, zo) — m1(Y, f(x0)) is an isomorphism.

Proof. If f ~ g rel. zo and [v] € 71 (X, 20) then fowv ~ gowrel. I, i.e. 71 (f)[v] =
m1(9)[v].

If h is a free homotopy from f to g, then w(t) := h(t, zo) defines a path from f(z) to
g(xo)-. And applying (1=4) to (s,t) — h(t,v(s)) we get (fov) - w~w-(gov)
rel. I, and hence [fov] - [w] = [(fov) w] = [w-(gowv)] = [w]-[gov], Le.
mi(g)v] = [gov] = [w] ™t [fov] - [w] = [w] ' - mi(f)[v] - [w] = (comjp,) o1 (f))([v]).

Let now f: X — Y be a homotopy equivalence with homotopy inverse g : ¥ — X.
Then up to conjugation 71 (f) and m(g) are inverse to each other. O

The fundamental group of the circle

5.15 Proposition. [9, 5.2.2] The composition degoV : m1(S*,1) — [S1, 8] — Z
is a group isomorphism.

Proof. By we have that deg is a bijection. By V is surjective since S!
is path-connected. By and it is also injective since S! is a topological
group.

Remains to show that the composite is a group-homomorphism: Recall that deg([u])
is given by evaluating a lifting u : (S1,1) — (S, 1) to a curve @ : R — R with
@(0) = 0 and exp(2mit(t)) = u(exp(27it)) at 1. Given u,v € m (S, 1) with lifts @
and 0, then the lift of u - v is given by

a(2t) for t <
t—
a(l)+o(2t—1) fort>

N N

O

5.16 Corollary. [9, 5.2.4] 7(X,x¢) = Z for every space X which contains S* as
DR. In particular this is true for C\ {0}, the Mobius strip, a full torus and the
complement of a line in R3.
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Constructions from group theory

5.17 Definition. [9, 5.3.1] We will denote with 1 the NEUTRAL ELEMENT in a
given group.

A SUBGROUP of a group G is a subset H C G, which is with the restricted group
operations itself a group, i.e. hy,he € H =h1hy € H, hl_l €H 1€H.

The SUBGROUP (X)gq generated by a subset X C G is defined to be the smallest
subgroup of GG containing X, i.e.

(X)sc:=(H: X CH<G}= {x? gtz € X g € {il}}.

Given an equivalence relation ~ on G we can form the quotient set G/~ and have
the natural mapping 7 : G — G/~. In order that G/~ carries a group structure,
for which 7 is a homomorphism, i.e. 7(z-y) = m(z) - 7(y), we need precisely that ~
is & CONGRUENCE RELATION, i.e. ] ~ Ty, Y1 ~ Y2 =]+ ~ Ty ', T1 - Y1 ~ To ~ Yo.

Then H := {x : x ~ e} = 7 1(e) is a NORMAL SUBGROUP (we write H < G), i.e.
is a subgroup such that g € G, h € H =g~ 'hg € H. And conversely, for normal
subgroups H <G we have that x ~ z-h for all x € G and h € H defines a congruence
relation ~ and G/H := G/ ~= {gH : g € G}. This shows, that normal subgroups
are exactly the kernels of group homomorphisms. Every surjective group morphism
p: G — Gy is up to an isomorphism G — G/ ker p.

The NORMAL SUBGROUP (X)n¢ generated by a subset X C G is defined to be the

smallest normal subgroup of G containing X, i.e.

(X)ve:=([{H: X CH<G}= {gflylgl e gn Yngn s g5 € GLyj € <X>sc}-

5.18 Definition. Let G; be groups. Then the PRODUCT [], G; of is defined to be
the solution of the following universal problem:

pr;

G;

Hi Gi

X (f l)z 7
T

H

A concrete realization of [], G; is the cartesian product with the component-wise
group operations.

5.19 Definition. Let G; be groups. Then the COPRODUCT (FREE PRODUCT) [], G;
of is defined to be the solution of the following universal problem:

Hi Gi

X (fri)i:,
e

H

inj;

G;

Remark. [9, 5.3.3] A concrete realization of [ [, G; is constructed as follows. Take
the set X of all finite sequences of elements of the disjoint union | |, G;. With
concatenation of sequences X becomes a monoid, where the empty sequence is
the neutral element. Every G; is injectively mapped into X by mapping g to the
sequence with the single entry g. However this injection is not multiplicative and X
is not a group. So we consider the congruence relation generated by (g, h) ~ (gh) if
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g, h belong to the same group and (1;) ~ @} for the neutral element 1; of any group
G;. Then X/~ is a group and the composite G; — X — X/~ is the required group
homomorphism and this object satisfies the universal property of the coproduct.

In every equivalence class of X/~ we find a unique representative of the form
(915, 9n), with g; € G;; \ {1} and i; # i;41. Since (g1, ..., gn) is just the product
of the images of g; € G; we may write this also as g; - - - - - n-

5.20 Definition. [9, 5.7.8] Let H, G1, G2 be groups and f; : H — G; group
homomorphisms. Then the PusH-oUT G ][, G2 of (f1,f2) is a solution of the
following universal problem:

fa

G

It can be constructed as follows:

G ]I}[G2 = (G1 [] G2)/N, where N := <f1(h) (k)" i he H>N

T
and where g; is given by composing the inclusion G; — G1 [[ G2 with the natural

quotient mapping G [[ G2 — (G1 ][ G2)/N.

5.21 Definition. [9, 5.6.3] Let G be a group. Then the ABELIZATION G of G is
an Abelian group being solution of the following universal problem:

s

S
p

where A is an arbitrary Abelian group.

abG

A realization of %°G is given by G/G’, where the COMMUTATOR SUBGROUP G’
denotes the normalizer generated by all COMMUTATORS [g, h] := ghg~'h~!. Remark
that G' = {[g1, h1] - -+ - - [gn, hn) : g5, hj € G}

Remark. From general categorical results we conclude that the product (and more
general limits) in the category of Abelian groups is the product (limit) formed in
that of all groups. And abelization of a coproduct (more generally a colimit) is
just the coproduct (colimit) of the abelizations formed in the category of Abelian
groups.

5.22 Definition. [9, 5.3.7] Let G; be abelian groups. Then the COPRODUCT (DI-
RECT SUM) ], G; of is defined to be the solution of the following universal pro-

blem:
inj;

Gi —>abHiGi

y\ (fi)’i; e
;,' !

H
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where H is an arbitrary Abelian group.

Remark. A concrete realization of ][, G; is given by those elements of [], Gi,
for which almost all coordinates are equal to the neutral element.

5.23 Definition. [9, 5.5.3] Let X be a set. Then the FREE GROUP F(X) is the
universal solution to

X F(X)

A !

H

where the arrows starting at X are just mappings and f is a group homomorphism.

Remark. [9, 5.5.2] One has F(X) = F(| |,cx{z}) = [1,ex F({z}) by a general
categorical argument, and F({*}) = Z, as is easily seen.

5.24 Definition. Let X be a set. Then the FREE ABELIAN GROUP “F(X) is the

universal solution to
X ————— PF(X)

Lo
A

where the arrows starting at X are just mappings and f is a group homomorphism.

Remark. By a general categorical argument we have *°(F(X)) = *®F(X). And
WF(X) 2], F({z}) =2 *1], Z, which are just the finite sequences in Z~.
5.25 Definition. [9, 5.6.1] Given a set X and a subset R C F(X) we define

(X : Ry :=F(X)/(R)NT

to be the GROUP WITH GENERATORS X AND DEFINING RELATIONS R. If (X : R) =
G, then (X : R) is called REPRESENTATION of the group G.

5.26 Examples. One has F(X) := (X : 0) and Z,, := (x : 2™).
More generally, [[;(X; : R;) = (X, : U, R;).
Moreover (X : R) = (X : RU{[x,y] : 7,y € X})
5.27 Remark. [9, 5.8.1] Obviously we have:
1. (X:R)y= (X : RU{r'}) for ' € (R)nT.
2. (X :R)=(XU{a}: RU{atw}) for a ¢ X and w € F(X).

These operations are called Tietze operations.

5.28 Theorem. [9, 5.8.2] Two finite representations (X : R) and (Y : S) describe
isomorphic groups iff there is a finite sequence of Tietze operations converting one
description into the other.

For a proof see [9].
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Remark. The word problem for finitely presented groups is the problem to deter-
mine whether two elements w,w’ € F(X) define the same element of (X : R), or
equivalently whether w™lw’ € (R) N7 .

The isomorphy problem is to determine whether two finite group representations
describe isomorphic groups.

It has been shown that both problems have no algorithmic solution.

Group descriptions of CW-spaces

5.29 Proposition. [9, 5.2.6] For pointed spaces (X;,x;) we have the following
isomorphism m ([[; Xi, (x:):) = T, m1 (X5, 2).

Proof. Obvious, since [(Y,y), (I, Xi, (z:):)] = [LI(Y,y), (Xi, )], by composition
with the coordinate projections, and since the multiplication of paths in [[, X; is
given component-wise. O

5.30 Proposition. [9, 5.1.21] Let X be a path component of X and let xg € Xy.
Then the inclusion of Xo C X induces an isomorphism w1 (Xo,xo) = 71 (X, o).

Proof. Since S* and S' x I is path connected, the paths and the homotopies have
values in Xj. O]

5.31 Proposition. Let X, be subspaces of X such that every compact set is con-
tained in some X,. And for any two of these subspaces there is a third one con-
taining both. Let xg € X for all a. Then 71(X, xo) is the INDUCTIVE LIMIT of all
1 (Xa, 1'0) .

Proof. Let G be any group and f, : m1(X,) — G be group-homomorphisms, such
that for every inclusion i : X, C Xg we have fg omi(i) = fo. We have to find
a unique group-homomorphism f : 71(X) — G, which satisfies f o w1 (i) = f, for
all inclusions 7 : X, — X. Since every closed curve w in X is contained in some
Xa, we have to define f([w]x) := fo([w]x,). We only have to show that f is well-
defined: So let [w1]x = [we]x for curves w; in X,, and wy € X,,. The image of
the homotopy w; ~ ws is contained in some X, which we may assume to contain
Xaoy and Xo,. Thus fo, ([wi]x,,) = fa(lwi]x,) = fa([w2lx.) = fao([w2]x,,). O

5.33 Theorem von Seifert und van Kampen. [9, 5.3.11]
Let X be covered by two open path connected subsets Uy and Uy such that Uy N Us
is path connected and let xg € Uy NUs. Then

w1 (U1 N Us, xp) L>7T1(U27»T0)

lz’i jfi
-1

7T1(U1,9€0)L>7T1(X7390)

is a push-out, where all arrows are induced by the corresponding inclusions.

Proof. Let G := m1(Uj, o) fiir j € {1,2}, Go := 71 (Uy N Uz, z0), G := 7 (U U

Us,z0) = m(X,z0) and G := (G1[[G2)/N with g; : G; — G the push-out,
where N is the normal subgroup generated by {il([u]) - i2([u])~! : [u] € Go}. By
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the universal property of the push-out there exists a unique group-homomorphism
¢ : G — G and we only have to show that it is bijective.

Surjectivity: Let [w] € m1(X). By the Lebesgue-covering lemma applied to [0, 1] we
may take n sufficiently large such that for each 0 < i < n we have w(t;, t;+1] C U,
for some ¢; € {1,2} and ¢; := £. Let w; be the restriction of w to [t;,;41] and let
v; be a path from z¢ to w(t;) in U, NU,,_,. We may take vg and v,, to be constant
To. Let u; := v; - w; - v;ll. Then w; is a closed path in U, and w ~ ug ... up_1 in
X rel. I. Let g; :== 9=, ([u]v.,) € G.

U,
w, W) w,
wW(t3) w(ty)
Wy Wo
Hence
[wlx = [uolx - - - [un—1]x = j2([uolu,) - - - - 4" ([un—lv., )

=¢(91) - p(gn1) = (g1 - gn-1) € 9(G).

Injectivity: Let 2 € G = (G1[[G2)/N with ¢(2) = 1 = [const,,] € G. Then
we find closed paths u; in U, for certain e; € {1,2} with z = g., ([w]v, ) - ... -
e, ([un]u,, ). Since

[consta,]x = () = (g1 (1)) - ge, ([ua]) )
= ¢(ge, (1)) - (9, ([un]) = [ua]x - [unlx = [ur - unlx
there is a homotopy H : I x I — X relative I between uy - . .. - u, and const,,. We

partition I x I into squares @, such that H(Q) C U, for certain e € {1,2}. We
may assume that the resulting partition on the bottom edge I x {0} 2 [ is finer than
0< % < % < ... < = =1. For every vertex k of this partition we choose a curve
vy, connecting xo with H (k). If H(k) € U; then we may assume that v,(I) C U;. If
H(k) = xg, we may assume that vy is constant. For every edge ¢ of such a square
Q we define the curve closed curve u. := vq() - (H oc) - vc_(}) through z¢. Since u,.
is contained in some U; we may consider [uc]y, and its image ¢ := g;([uc]u,) € G.
This is well defined, since if u, is contained in Uy N Uz then [uc|y, nu, is mapped to
[ucJu, € G; for i € {1,2} and further on to the same element ¢ in the push-out G.

Let now @ be such a square with edges d, r, u, [. Then d-r ~ - u rel. u
I'in Q, hence ug - uy ~ ug - uy rel. I in Ue,, i.e. [ug] - [uy] = [w] - [u] in ZT T
G., and thus d - 7 = ge, ([ta]) - 9o ([Ur]) = geo ([wi] - [un]) =1 in G. J

—_—
Multiplying in G all these equations resulting from one row, gives that the pro-

duct corresponding to the top line equals in G that corresponding to the bot-
tom line, since the inner vertical parts cancel, and those at the boundary are
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1. Since the top row represents 1, we get that the same is true for the bot-
tom one. But u; is homotopic in U, rel. I to the concatenation of the corre-
sponding u. in the bottom row, i.e. [u]u., = [[.ciizt i]xqoy[uclu., in Ge,. Thus

2 =11 gei([wilv.,) = Tlecpo,yx oy 9o (luclv., ) = [lce =1 G. -

5.34 Corollary. [9, 5.3.9] [9, 5.3.12] Let X = Uy UUs be as in | 5.33].
1. If Uy N Uy is simply connected, then 1 (U; UUs) = m1(Uy) Uy (U2).
2. If Uy and Uy are simply connected, then Uy U Uy is simply connected.

3. If Uy is simply connected, then incl, : m(Uy) — m(X) in the push-out
square is an epimorphism and its kernel is generated by the image of incl, :
7T1(U1 n U2) — 7T1(U1).

4. If Uy and Uy NUs are simply connected, then w1 (Uy) = w1 (Uy U Us).

Proof.
In this situation N = {1} and hence G; [[ G2 is the push-out.
Here G1 [[ G2 = {1} [I{1} = {1} and hence also the push-out.

In this situation G1 [[ G2 = G1[[{1} = G; and N is the normal subgroup
generated by the image of Gy in Gj.

Here we have N = {1} and hence the push-out is isomorphic to Gy. O

5.35 Theorem. |9, 5.4.8] Let a CW-complex X be the union of two connected
CW-subcomplexes A and B. Let xg € ANB and AN B be connected. Then w1 maps
the push-out square to a push-out.

Proof. By we may choose open neighborhoods U(A), U(B) and U(ANB) =
U(A) NU(B) which contain A, B and AN B as DRs. Then application of

and of gives the result.

U(A)NU(B)C U(A)
AN B/ W A/
|
U(B)C X
- /
B/ AUB O

5.36 Proposition. [9, 5.4.9] Let A and B be (connected) CW-complexes. Then
7T1(A \Y B,Z’O) = 7T1(A) Hﬁl(B)

Proof. Since AN B in AV B is {z¢} and hence simply connected this follows from

and [5.34}. 0

5.37 Example. We have 71 (S'V St) 22 Z ][] Z. However, for spaces being not CW-
spaces in general m (A V B) # 71 (A) [[71(B): Take for example for A and B the
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subset of R? formed by infinite many circles tangent at the base point. The closed
curve which passed through all those circles alternatingly can not be expressed as
finite product of words in 71 (A) and 71(B).

5.38 Proposition. [9, 5.5.9] Let X; be a CW-complex with base-point z; € X]Q.
Then m(V X;) = [; m1(X;). In particular we have m1(V; SH =11,z = FJ),
where the free generators of 7T1(\/j S1) are just the inclusions inj; : St — ¥ St

Proof. This follows from by induction and by , since every compact
subset is by contained in a finite subcomplex of the CW-complex of \/ jes Xj

given by . O

5.39 Corollary. [9, 5.4.1] [9, 5.4.2] Let Y be path connected with yo € Y and f :
S™=1 Y be continuous. Then the inclusion Y C Y Uyge™ induces an isomorphism
m(Y,y0) = m (Y Uge™, yo) if n > 3 and an epimorphism if n = 2. In the later case
the kernel is the normal subgroup generated by [v][f][v™!], where v is a path from
yo to f(1). So

m(Y Uge") = mi(Y)/{conjj, s Nr

One could say that by gluing € to Y the element [f] € 71(Y) gets killed.

Proof. We take U :=Y Uy (™ \ {0}) and V :=e™.

Unve

v
N N Then V and UNV =e™\ {0} ~
/ 1 S"~1 are simply connected for

gn—1 {x} ;g n =3, by [5.10]. Thus the inclu-

sion U C Y Uy e" induces an iso-
l morphism by . Since Y is
¥ 1 C vuy aDRofU by the inclusi-
N on of Y — U induces an isomor-
/ / phism by .
y C Y Uy e

Now for n = 2. Again V is simply connected, but UNV ~ S* and hence 71 (UNV, yo)
is the infinite cyclic group generated by the image of a circle of radius say 1/2. This
path is homotopic to [v][f][v™!] in Y Uy €2, hence everything follows by . O
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5.40 Example. [9, 5.4.4] We have (S U, €2) 2 Z,,.

In particular, 71 (P?) = m1(S! U,2 €2) 2 Zs.

This can be easily visualized: The top semi-circle a in
D? has as o2 the full circle, which is contractible to 0.
Equally, P? is obtained by glueing a 2-cell to the boun-
dary of a Mobius strip and the generator o € mq (P?) is
just the middle line on the Mobius strip. Its square is
homotopic to the boundary of the Mobius strip which is
contractible in the disk.

5.42 Corollary. [9, 5.4.3] [9, 5.4.6] Let X be a CW-complez and zo € X°. Then
X? — X induces an isomorphism 71(X?, z0) = m1(X,10) and X* — X an epimor-
phism w1 (X1, 20) — m1(X, x0) with the normal subgroup generated by conj o] (X6 51]
as kernel, where ve is a path joining o and x¢(1) in' Y and e runs through all 1-cells
in the connected component of xg in X.

Proof. If X is a finite CW-complex then this follows from by induction.

By any compact subset of X is contained in a finite subcomplex X, hence
m1 (X, x0) is the inductive limit of the m(Xg,z() for the finite subcomplexes X

containing xgy by , hence the result hold in general. O
5.43 Example. [9, 5.4.7] Since P" = P2Ue3U- - -Ue™ we have 71 (P") = 71 (P?) = Z,.

5.32 Definition. [9, 5.5.11] A CW-complex X with X = X! is called a GRAPH.
A graph is called TREE if it is simply connected.

5.44 Lemma. [9, 5.5.12] A connected graph is a tree iff it is contractible.

Proof. (=) Let X° be the O-skeleton of a tree X. And let g € X° be fixed. Every
x € X° can be connected by a path with x, which gives a homotopy X° — X. By
it can be extended to a homotopy h; : X — X with hg = idx and h;(X°) =
{z0}. Let e C X be a l-cell with characteristic map x. : I = D' — X. Then
[h1 0 xe] € m1 (X, z0) = {1}, hence there is a homotopy h¢ : (I, 1) — (X, {zo}) with
hé = hy o xe and h§(I) = {zo}. Let kf : X Ue — X be defined by kf(X?) = {0}
and kf = h¢ o x, ! on e. Taking the union of all k¢ gives a homotopy k; : X' — X
between h; and a constant map. O

5.45 Lemma. [9, 5.5.13] Fvery connected graph X contains a mazimal tree. Any
maximal tree in X contains all vertices of X.
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Proof. Let M be the set of trees of X ordered by inclusion. Since the union of any
linear ordered subset of M is a tree (use ), we get by Zorns lemma a maximal
tree Y C X.

Let Y be a maximal tree and

suppose that there is some xy € W(lo)
XO\Y% Let w: 1 — X be a e
path connecting xy and Y. Let
t1 be minimal in w=!(Y) (hence w
w(tl) S YO) and ty < t; be w(ty)
maximal in w™1(X%\ Y?). Then
w([to, t1]) is the closure of a 1-cell
e and Y Ueé is a larger tree, since
Y is a SDR of Y U e by deforma-
tion along w|, 4,1 O

5.47 Corollary. [9, 5.5.17] Every connected CW-space is homotopy equivalent to
a CW-complex with just one 0-cell.

Proof. By we have that X — X/Y with a maximal tree Y as constructed
in is a homotopy equivalence since Y is contractible by and (X'Y)

has the HEP by [4.19]. O

5.46 Proposition. [9, 5.5.14] Let X be a connected graph and g € X°. LetY C X
be a maximal tree. For every 0-cell x choose a path v, in'Y connecting xq with x.
And for every 1-cell e C X \'Y with characteristic mapping x¢ : [ = D' — X' let
s(€) = [vye (o)) [X][vye(1)) 7t € (X, x0). Then

s: F({e:eis 1-cell in X'\ Y}) == 71 (X, x0),
i.e. (X, x0) is the free group generated by {s(e) : e is 1-cell in X'\ Y}.

Proof. The quotient mapping p : X! — X!/Y is a homotopy-equivalence onto a
CW-space with just one 0O-cell Y. By X1y =\/_S* where e runs through

the 1-cells in X!\ Y, see also . Thus (X, 70) = m(X1/Y,y0) = F({e :
e is 1-cell in X!\ Y}) by . The inverse of this isomorphism is given by e —
[Vye(0) - X© -v;el(l)] = s(e). O

5.48 Corollary. [9, 5.5.16] Let X be a connected graph with dy vertices and dy
edges. Then m(X) is a free group of 1 — dgy + dy generators.

Proof. By induction we show that for all 1 < n < dy there are trees Y,, C X
with n vertices and n — 1 edges: Let Y;, for n < dy be given and choose a point
2o € X\ Y, and a path w connecting zo with Y,,. Then proceed as in the proof

of to find an edge w([to,t1]) connecting a vertex outside Y,, with one in Y.
Now Y41 = Y, Uw([to, t1]) is the required tree with one more vertex and one more
edge.

By the result follows, since there are d; — (dgp — 1) many 1-cells not in Yy,. O

5.49 Theorem. [9, 5.6.4] Let X be a CW-complex with mazimal tree Y. Let ge-
nerators s(et) be constructed for every el € X'\ Y as in . For every 2-cell
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e € X? define r(e?) := [u- xe2|s1 -u™t] € m (X!, 20), where u is a path from xo to
Xe2(1) in X1 and x.2 : D®> — €2 a characteristic mapping. Then

m (X, zg) = <{s(el) relis 1-cellin X'\ Y'} : {r(e®) :e® € X2}>.

Proof. By the mapping 1 (X1, 20) — 71 (X2, 20) = 71 (X, 20) induced by
X' — X? — X is surjective and its kernel is the normal subgroup generated by
r(€?) = [u- xez|sr -uTl] € m(X1) =2 F({s(e!) : e is 1-cell in X1\ Y1}). O

5.50 Remark. [9, 5.6.5] For every group G = (S : R) there is a 2-dimensional
CW-complex X denoted CW(S : R) with m(X) = G.

Proof. Let X! :=\/gS'. Every r € R C F(S) = m(X") is the homotopy class
of a curve mapping f, : S' — X'. Thus glue a 2-cell to X' via this mapping. Le.
X=CW(S:R):=X! U U er e?), where f:=| | cp fr. O

Note that this construction depends on the choice of f, € [r]. However different
choices give rise to homotopy equivalent spaces by .

5.51 Proposition. [9, 5.8.6] Every connected CW-complex of dimension less or
equal to 2 is homotopy equivalent to CW (S : R) for some representation (S : R) of
its fundamental group.

Proof. Choose a maximal tree Y C X!. Then by the proof of we have that
X is homotopy equivalent to X/Y", which has as 1-skeleton \/¢ S L. For every 2-cell
e we choose a characteristic map x°. Thus X/Y = (VgS") Uy ye, U D* By
2.34.3 | we can deform x¢|s1 to a base point preserving map f¢: S! — X!. Hence

by X/Y is homotopy equivalent to CW (S : {f¢: e}). O

Remark. Note that this does not solve the isomorphy problem for 2-dimensional
CW-complexes, since although two such spaces X and X’ with isomorphic funda-
mental group are homotopy equivalent to CW (S, R) and CW (S, R’) for represen-
tations (S : R) = (S’ : R') of the homotopy group, the space CW (S : R) and
CW (S" : R’) need not be homotopy equivalent, e.g. 71(S?) = {1} = 71({*}) but
S? is not homotopy equivalent to a point {*} by ‘ 9.1 ‘ and ‘ 2.40.1 ‘

The following lemma shows exactly how the homotopy type might change while
passing to other representations of the same group.

5.52 Lemma. [9, 5.8.7) We have CW (S : RU{r}) ~ CW(S : R)V 5% forr €
(RynT\ R and CW(SU{s}: RU{s tw}) ~CW(S: R) for s ¢ S and w € F(X).

This shows that CW ((S : R)) := CW (S : R) would not be well-defined.

Proof. If X = CW(S : R) and Y = CW(S : RU {r}) with r € (R)ng. Then
Y = X Uye?, where f: S' — \/g S = X! C X issuch that [f] =r € m (Vg S') =
F(S). Since r € (R)ng, we have that [flx =1 € m(X) = m(VgS")/(R)nes
hence f ~0in X. Thus Y = X Use? ~ X Upe? = X V 52 by.

X =CW(S:R)andY = CW(SU{s}: RU{s 'w}). Then Y = (X VS!) Uy €?,
where f = o~ !-w for the inclusion o : ST — X vV S and w = [w] € m (X) = F(S).
Thus Y = X Uf| g D? and since St C D? is a SDR we have that X is also a SDR

inY, by [2.41] O
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5.53 Example. [9, 5.7.1]
The fundamental group of the orientable compact surface of genus g > 0 is

<a17/817" '7ag7/89 : [ahﬁl} Teet [ag7ﬁg]>'

That of the non-orientable compact surface of genus g > 1 is

(ozl,...,ozg:oz%u..-aﬁ).

Proof. By | 1.101 | these surfaces are obtained by gluing one 2-cell e to a join \/ S*

of 2g, respectively g, many S' and the gluing map is given by i1 - iy ~z'1_1 oi2_1 S

and i%-. . .- ig, so the homotopy class of the characteristic mapping x¢|g1 is [a1, 51]-
.. lag, Byl and of - ... - a2, respectively. O

5.54 Corollary. [9, 5.7.2] None of the spaces in are homotopy equivalent.

Proof. The abelization of the fundamental groups are Z?9 and Z9~! & Z,. In fact
ab<a17ﬂ17"'aaga6g: [alvﬁl] """ [agvﬂgbz
= <a1»ﬂla R agaﬂg : [alaﬂl] e [agaﬁg]a [aiaaj}a [ﬂivﬂj]v [aia/BjD

5.27.1

<a1aﬁ17 e 7agaﬁg . [ai7aj]7 [ﬁ’uﬁj]a [aiaﬁjb
= ab<a17ﬁ17 e ,ag7ﬁg : ®>

:abf(alaﬁlv"wafpﬁg) :ZZg
and
Plag, . agad aﬁ)
:ab<a1, ) Qg (ap----- Oég)2>

7.,

="(ay,...,ag_1 : 0) I (o : %))
=72"'9Z, O

L2
1y, Q1,0 Q%)

Geometric interpretations are the following:
52 is simply connected by hence m; has no generator and no relation.

S1 x St is a torus. By the generators o and 3 of m; are given by S x {1}
and {1} x S', which are a meridian and an equator in the 3-dimensional picture.
This can be also seen by gluing the 4 edges of a square as aB3a~'3~!. The relation
af = Pa is seen geometrically by taking as homotopy the closed curves given by
running through some arc on the equator, then the meridian at that position and
then the rest of the equator.

The oriented surface of genus g is obtained by cutting 2¢ holes into the sphere and
gluing g cylinders to these holes. Let xy be one point on the sphere not contained
in the holes. As generators a; we may take curves through z( along some generator
{z} x I of the cylinder and as f3; loops around one boundary component S x {0}
of the cylinder. Then o;8;0; 1 describes the loop around the other component and
aiﬁiai_lﬁi_l is a loop around both holes. The product of all these loops is a loop

with all holes lying on one side and hence homotopic to a point, cf. | 2.40.8
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We have discussed the generator o and the relation a? ~ 1 on P2 in [ 5.40 |.

The non-orientable surface of genus g is obtained from a sphere by cutting g holes
and gluing g Mobius-strips. The generators «; are just conjugates of the middle
lines on the Mobius strips. Their squares are homotopic to the boundary circles.
And hence the product of all & is homotopic to a loop around all holes, which is
in turn homotopic to a point.

This shows that beside the sphere, the torus and the projective plane these funda-
mental groups are not abelian.
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6. Coverings

We take up the method leading to the calculation m1(S') = Z in . Basic
ingredient was the lifting property of the mapping t — exp(27it), R — S, see
. Its main property can be stated abstractly as follows:

6.1 Definition. Coverings. [9, 6.1.1] A COVERING MAP p : Y — X is a surjec-
tive continuous map, such that every £ € X has an open neighborhood U C X
for which p|,-1(p) : p~1(U) — U is up to an homeomorphism just the projection
pr:| ], U — U for some set J # 0, i.e.
The images of the summands U
in p71(U) C Y are called the
~—p ' U)~—,U R U LEAVES and U is called a TRIVIA-
LISING NEIGHBORHOOD. The in-
»l, k‘ / verse images of points under p are
X<~—U called FIBERS, X is called BASE,
and Y TOTAL SPACE.

Y

Remark. Let G be any group acting on Y. In we considered the orbit space
Y/G :=Y/~, where y ~ ¢y’ :& Jg € G: y = g -y with the quotient topology and
the corresponding quotient mapping 7 : ¥ — Y/G. Let us assume that this is a
covering, i.e. for every y € Y there has to exist an open neighborhood U C Y/G
such that 7=1(U) is a disjoint union of open subsets U homeomorphic via 7 to
U.So U = 7(U) and 7~ Y(U) = 7T_1(7T(U)) = G(U). Thus we would like that
g(U) Ng' (U ) =P forall g#g.1In we called a group action satisfying this
condition ACT STRICTLY DISCONTINUOUS, i.e. every y € Y has a neighborhood V'
such that g(V)NV =0 for all g # e.

6.15 Lemma. Let G be a group acting strictly discontinuous on Y. Then the quo-
tient mapping q : Y — Y /G is a covering map.

Proof. Since G acts strictly discontinuous we find for each y € Y a neighborhood
V with g- VNV #£0 = g=1 Thus qlyv : V — ¢(V) =: U is bijective and
¢ (U)=G -V = Llyec gV is open in Y and hence U is open in Y/G. O

6.2 Example.
L. Let Y := {(sin(27t), cos(2nt),t) : t e R} 2 R and p =pr; , : ¥ — S' C R?.
Then p is a covering map. Use for St = R/Z.

2. The map z — 2" : §' — S' is an n-fold covering map. Use for
St =S8Y)7,.

3. The map S™ — P" is a two-fold covering map. Use for P" = S" /7,
see | 1.68 | and [ 1.71 |

4. Let p; : Y1 — X; and ps : Yo — X5 be two covering maps, then so is
p1 X P2 Y] X Yo — X1 x Xo. Examples: R? — ST x ', RZ —» R x S! and
Rx St — St x 81,

5. There is a twofold covering map from I x S! to the Mobius strip. Use
for the action of Zy on [—1,1] x St given by (¢, p) — (—t, o +7), see exercise
(1.15).
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6. The torus is a two fold covering of Klein’s bottle. Use for the action
of Zy on St x St given by (p,1) — (—p,1 + ), see exercise (1.17.3).

7. Z, acts transitively on S2k=1 and the orbit space is the lens space (see ),
so we get a covering S?*~' — L(p;qu,...,q).

6.3 Lemma. [9, 6.1.3] Let p: Y — X be a covering. Then
1. The fibers are discrete in Y.
2. BEvery open subset of a trivialising set is trivialising.
3. Let AC X. Then plp-1(a) :p~Y(A) — A is a covering map.
4

. If BCY is connected and p(B) C U for some trivialising set U, then B is
contained in some leaf.

5. The mapping p is a surjective open local homeomorphism and hence a quo-
tient mapping.

Proof. () Points in the fiber are separated by the leaves.
() and () Take the restriction of the diagram above.

() B is covered by the leaves. Since each leaf is open, so is the trace on B. Since
B is connected only one leaf may hit B, thus B is contained in this leaf.

() Obviously the projection is a local homeomorphism. Hence it is open and a
quotient mapping. O]

Lemma. Let X and Y # 0 be path connected, locally path connected and Hausdorff
and'Y compact. Then every local homeomorphism f:Y — X is a covering.

Proof. Since f is a local homeomorphism, the fibers f~!(z) are discrete and closed
and hence finite since Y is compact.

Let us show next that f is surjective. In fact the image is open in X, since f is a
local homeomorphism. It is closed, since Y is compact and X is Hausdorff. Since
X is assumed to be (path-)connected and Y # () it has to be all of X.

Let # € X. Choose pairwise disjoint neighborhoods V,, for each y € f~!(z) which
are mapped homeomorphically onto corresponding neighborhood of xz. By taking
the inverse images of the (finite) intersection U := (0, ¢ -1(,) f(Vy) in the V} we
may assume that the image is the same neighborhood U for all y € f~1(x). Hence
U is trivializing with leaves V;, and thus p: Y — X is a covering. [

Example.
Not every surjective local homeomorphism is a covering map.

Take for example an open interval I C R of length more than 27. \
Then the restriction I — S* of the covering from is not a

covering.
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6.10 Definition. Homomorphisms of coverings.

Let p : Y - X' and p: Y — X be two coverings with Yy

the same total space Y. A HOMOMORPHISM f of these » P
coverings is a map f : X’ — X such that the diagram to / \
the right commutates. X’ X

Note that such an f exists, iff p factors over p’, i.e. the fibers of p’ are contained in
fibers of p. If such an f exists it is uniquely determined since p’ is onto. So we get
a category CovY (a quasi-ordering) of all coverings with total space Y.

Conversely, let p’ : Y/ - X and p : ¥ - X be two v

coverings with the same base space X. A HOMOMORPHISM

f of these coverings is a fiber respecting map f:Y’' — Y, \ /
P

i.e. the diagram on the right commutates.

We denote the set of all homomorphisms from p’ : Y/ — X top : Y — X by
Homx (p', p). So we get a category Covy of all coverings with base space X.

Remark that a homomorphism f is nothing else but a lift of p’ : Y’ — X along
p:Y — X. The automorphisms f, i.e. invertible homomorphisms p — p, are also
called COVERING TRANSFORMATIONS or DECKTRANSFORMATIONS, and we write
Aut(p) for the group formed by them.

Remark. Unique lifts along covering maps exist locally.

Let p: (Y,y0) — (X, z0) be a covering and ¢ : (Z, z9) — (X, x¢). Take a trivialising

neighborhood U of zy and let U be the leaf of p over U which contains yo. Then

(pl5) : U — U is a homeomorphism and hence (p|g) tog: Z2¢g Y (U) - UCY

is a continuous local lift of g.

Let g be any continuous (local)

lift of g with g(z0) = yo. Then
W:=g'0)Cg ') =

- g g HU) is a neighborhood of 2o

W =g '(U) Y and g( )CU hence g = po g

o) 1mp11es p|U)_ og = (p|U)—
p|U og=gon W, ie. locally the

X lift of g is unique.

6.4 Lemma. Uniqueness of lifts. [9, 6.2.4]

Letp:Y — X be a covering map and g : Z — X be continuous, where Z is connec-
ted. Then any two lifts of g, which coincide in one point are equal. In particular, if
g s constant so are its lifts.

Proof. Let g', g? be two lifts of g. Then the set of points {z € Z : g'(2) = ¢°(2)}
is clopen. In fact if U7 is the leaf over U containing of ¢7(z), then g/ = (p|yi)~tog
on the neighborhood (g*)~*(U*) N (¢?)~1(U?) of 2. Hence g' = g2 locally around z
i g (2) = 62(2). o
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6.22 Lemma.

Let X locally path connected and 7z 9 vy
letq:Z —Y andp:Y — X be given. \ /
Then the following statements hold: ped g

0. If p and p o q are coverings and Y is (path-)connected, then q is onto.
1. If p and p o q are coverings and q is onto, then q is a covering.

2. If p and q are coverings and X is locally simply-connected, then po q is a
covering.

3. If ¢ and p o q are coverings, then p is a covering.

Proof. (@) We claim that the image of ¢ is clopen in Y and hence coincides with
the connected space Y. For this we consider all leaves V' over path-connected open
subsets U C X, which are trivializing for p and g o p. It suffices to show that if such
a leaf V meets the image q(W) of a leaf W over U for p o ¢ then it is contained in
q(W). So let wy € W be such that ¢(wy) € V. Since V has to be path-connected as
well, we may connect g(wp) with any v € V by a curve ¢ in V. The curve poc has a
lift ¢ = (pog|lw )~ 'opoc starting at wy € (poq) ! (p(c(0))) with values in W. By the
uniqueness of local lifts g o ¢ coincides with ¢ and hence v = ¢(1) = ¢(é(1)) € ¢(W).

() Take a path connected set U C X being trivialising for p o ¢ and p. Every
leaf W of p o g over U is mapped by ¢ into some leaf V' of p over U: In fact, since
the leafs are homeomorphic to U, they are path-connected as well, hence ¢(W) is
completely contained in a leaf V' of p over U = (po ¢)(W) by . Thus ¢~ 1(V)
is the topological disjoint union of all leafs W of p o q over U, which meet ¢~ *(U).
Moreover, qlw = (plv)~" o plv o glw = (plv)~" o (p o @)lw is a homeomorphism
Wx=U=2V.

() Let p and ¢ be coverings, with X locally simply connected. Then the leafs V;
of p over a simply connected neighborhood U are again simply connected, hence
are trivialising neighborhoods of ¢ as will be shown in . Hence (poq)~1(U) =
g (1 (U) = ¢ " (U; Vi) = Uy ' (Vy) and ¢~ (V;) = L, Vj. Thus (poq)ly, =
plv, o q|‘~,j is a homeomorphism f/] = V; 2 U for every leaf f/J over V;. Hence poq
is a covering as well.

() Let p o q and ¢ be coverings. We claim that p is a covering. Let U be path-
connected and trivialising for p o ¢ and U a leaf of p o ¢ over U. Since ¢ is an open
mapping, V := q(U’) is open in Y. Since (p o q)|7 is an embedding the same is
true for ¢q|5. Thus ¢|; is a homeomorphism U = V and consequently also plv =
(poq)|golgly)~t:V — U — U. We claim that ¢(U) is a path-component of p~1(U)
and hence these sets form a disjoint partition of p~1(U): Let zy € U be choosen
and let ¢ be a continuous curve in p~1(U) from ¢(z9) to some point y € p~1(U).
By we have a lift ¢ := ((poq)|5)~" o (poc) into U of poc with initial value
zo. Then ¢ and g o ¢ are two lifts of p o ¢ with initial value g(zo) hence coincide and
thus ¢(é(1)) = ¢(1) = y. O

6.18a The category Covl . .

We try to get a description of the category CovY of coverings with fixed total
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space Y. For every group G acting strictly discontinuous on Y (and w.l.o.g. we may
assume that G C Homeo(Y')) we get a covering 7 : Y — Y/G by .

Can we recover G from the covering 7: Y — Y/G?

Yes: If Y is path connected and locally path connected then Aut(m) = G:
Obviously, G C Aut(nw). Conversely, let & € Aut(n), i.e. 7(y) = 7(®(y)) for all
y € Y. Choose yg € Y, then there is some gy € G with gg - yo = ®(yo) since G acts
transitively on the fibers of 7. Since the two mappings ® and gy cover the identity
(i.e. are lifts of 7 along 7) and coincide on yo they are equal by .

Note, that if G’ < G is a subgroup then 7 : Y — Y/G factors over 7' : Y — Y/G’
to a unique mapping f : Y/G' — Y/G, i.e. a homomorphism 7’ — 7. So we get
a functor Actgis.(Y) — CovY from the partially ordered set (hence category)
Actgirais. (Y) of subgroups of Homeo(Y') for which the action on Y is strictly dis-
continuous.

Is this functor DENSE, i.e. is every covering mapping p : Y — X up to isomorphy
in the image of this functor? For this we have to find a subgroup G < Homeo(Y)
for which the action on Y is strictly continuous and such that p = (7: Y — Y/G).
The natural candidate is G := Aut(p).

Obviously the action of Aut(p) on Y is strictly discontinuous, since for g in Aut(p)
we have that g(U) N U # () implies that there exists some y € U with g(y) € U.
From p(g(y)) = p(y) and since p|; : U — U is injective we conclude that g(y) = v,

but then g = id by .

Since every g € Aut(p) is fiber preserving, we have that p is constant on the Aut(p)-
orbits and hence p factors to a quotient mapping Y/ Aut(p) — X, by [6.22.3 |

This mapping is injective (and hence an isomorphism) iff every two points in the
same fiber of p are in the same orbit under Aut(p), i.e. iff Aut(p) acts transitive
on the fibers of p (such coverings p are called NORMAL). Note that for a group G
acting strictly discontinuous on Y the covering 7 : Y — Y/G is obviously normal.
Let CovfOrIIl denotes the category of normal coverings with total space Y. Then we
have:

6.18 Theorem. [9, 6.5.3] For path-connected and locally path connected Y we have
an equivalence of categories

CovY

norm

~ ACtstr.dis. (Y)a

i.e. there exists a functor in the opposite direction and the compositions of these
two are up to natural isomorphisms the identity.

Proof. The functor Act,. gis.(Y) — CovY,,.. is given by Homeo(Y) > G — (r :
Y - Y/G) and if G’ < G then 7 : Y — Y/G factors over 7’ : Y — Y/G' to a
unique mapping f : Y/G' — Y/G, i.e. a homomorphism 7’ — .

Conversely, every homomorphism f : 7’ — 7 has to be the unique factorization of
m:Y — Y/G and it induces an inclusion Aut(7’) C Aut(rw), since & € Aut(n’) =
7od=0"=m0d=Ffor o®=forn' =m,ie &€ Aut(m). Thus the functor is
full and faithfull.
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It is a general categorical result, that a full and faithful functor which is up to
isomorphisms surjective on objects is an equivalence. In fact an inverse is given by
selecting for every object in the range category an inverse image up to an isomor-
phism and by the full and faithfulness this can be extended to a functor.

We have shown above that the functor is dense, hence it gives the desired equiva-
lence of categories. O

We now try to desribe the category Covx of coverings with base X in algebraic
terms. Since the homomorphisms p’ — p are lifts of p’ along p we have to study
liftings along coverings in more detail.

6.5 Theorem. Lifting of curves. [9, 6.2.2] [9, 6.2.5] Let p: Y — X be a covering.
Every path w : I — X has a unique lift Y% with Yw(0) = y for given y € p~(w(0)).
Paths homotopic relative their initial value have homotopic lifts.

In particular we have an action of w1 (X, zo) on p~*(zg) given by [u] : y — Ya(1),
i.e. the end-point of the lift of u, which starts bei y.

The total space Y is path connected iff X is path connected and this action is
transitive, i.e. for all y1,y2 € p~1(x0) there exists a g € ™1 (X, x0) with y1 - g = Yo
(equivalently: there exists a yo € p~L(xo) with yo - (X, 20) = p~(z0))-

Proof. By we have to show existence of a lift. By considering a path w as a
homotopy being constant in the second factor, it is enough to show that homotopies
h:Ix I — X can be lifted.

For this choose a partition of I? into squares @; ;, such that h(Q; ;) is contained
in a trivialising neighborhood U; ; of X. Now construct inductively a lift i' along
\U; Qi,1, by taking the leaf Um over the trivialising neighborhood of @;; which
contains the image under h of the right bottom corner of Qi—1,1 and hence also of the

right side edge of Q;_1,1 (by ) Then }NL|Q1.’1 can be defined as (plv, ,) " 'ohlq, ;-
Now proceed by induction in the same way to obtain lifts hi for all stripes |, Qi,;-
By induction we can show that the lifts agree on the horizontal lines: In fact the
image of h on a horizontal edge is contained in the intersection of the trivialising
sets containing the image of the square above and below. And since the lifts k7 and
hi=1 are contained in the respective leaves, and thus in the leaf over the intersection,
they have to be equal. We call the unique homotopy wh.

Now suppose h is a homotopy rel. I between two paths wy and wy from zg to z;
and let yo € p~!(xo). The homotopy “°h has as boundary values lifts @y and
with @y (0) = yo. Since s — yUﬁ(O, s) is a lift of the constant path zg, it has to be
constant, hence w1 (0) = yo. So these are the unique lifts of w; with initial value yq.
Since s — h(1,s) is a lift of the constant path 1, it is constant, i.e. hisa homotopy

rel. 1.

The lifting property gives us a mapping (X, o) to the mappings of p~!(zg) by
setting [u](y) := Ya(l). This is well defined, since curves u homotopic relative I
have lifts Y& homotopic relative I and hence have the same end point.

Composition law: The lift of You -~w is Y04 - Y19, where y; := Yo@(1).

Moreover we have [u - v](y) = Yu-v(l) = (Ya - ¥0)(1) = Yo9(1) = [wl(y1) =
[v]([u](y)), where y; = Y4(1) = [u](y). Hence, we consider this mapping as a right
action, i.e. we write y - [u] for [u](y). Then we have y - ([u] - [v]) = (y - [u]) - [v]. Thus
[u] acts on p~1(xg) as bijection.
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In particular, [u] acts on p~!(z¢) as bijection.

Now the statement on path-connectedness:

If Y is path connected then so is the surjective continuous image X. Furthermore
a curve v connecting y1,y2 € p~!(zo) has a closed curve u := po v as image and
v ="Y14, 80 y - [u] = ya, i.e. the action is transitive.

Conversely let y; € Y be arbitrary. Since X is path connected we have a curve u
connecting p(y;) with xg. Its lift Y14 connects y; with y := ¥1a(1) € p~(xg). Since
m1(X, z0) acts transitive on p~!(zg) there is a [u'] € 71 (X, zo) with y - [u'] = yo,
i.e. the curve Y4’ connects y with yg. O

6.6 Corollary. [9, 6.3.5] Let X be path-connected. Then the fibers of any covering
p:Y — X can be mapped bijectively onto one another by lifting a curve connecting
the foot points.

Proof. Let Fy := p~!(x0), F1 := p~!(z1) and let u be a path from x to x; then
y +— Y0(1) defines a mapping Fy — F; and y — Yu~1(1) a mapping F; — Fp and
these mappings are inverse to each other, since the lift of the curve u - u=! ~ 0 is
0-homotopic rel. I and hence closed. O

6.20a Corollary. Let X be simply connected and p : Y — X be a path connected
covering. Then p is a homeomorphism. In particular every simply connected open
subset on the base space of a covering is a trivialising neighborhood.

Proof. Since 71 (X, x¢) = {1} acts transitively on the fiber p~1(zg) by , the
fiber has to be single pointed, hence p is injective and thus a homeomorphism. [

6.7 General lifting theorem. [9, 6.2.6] Let Z be path connected and locally path
connected. Let p:' Y — X be a covering and g : Z — X continuous. Let xg € X,
Yo € Y and zg € Z be base points and all maps base point preserving. Then g has
a base point preserving lift g iff im(m (g)) C im(m(p)).

Proof. (=) If g = po g then im(7(g)) = im(m1 (p) o m1(g)) C im(m1(p)).

(<) Let z € Z be arbitrary. Since Z is path-connected we may choose a path w
from 2z to z and take the lift Y0g ow and define §(z) := ¥0gow(1).

First we have to show that this definition is independent from the choice of w. So
let w; be two paths from zg to z. Then go (wo - wy ') = (gowp) - (gowy)~tis a
closed path through xg, hence by assumption there exists a closed path v through
Yo with pov ~ (gowp)- (gow;)~" rel. I and hence (powv) - (gow;) ~ (gowp) rel. I.
Thus "g owg(1) = " ((pov) - (gowr))~(1) = (Wpov-Wgow)(1) = g 0wy (1).

Remains to show that § is continuous. Let z € Z be fixed and let U be a small
leaf over a trivialising neighborhood U of ¢(z) containing g(z). Let W be a path-
connected neighborhood of z with g(W) C U and let w be a path from zy to
z. Then for every 2z’ € W we can choose a path w, in W from z to z’. Hence
G(z") =% (go (w-wy))~(1) = (*gow- 9@ gow,)(1) = 9 gow,. (1). But since
g o w,/ is contained in the trivialising neighborhood U and U is the leaf over U

containing the lift §(z), we have that 9*)gow, = (plg) ™" © g o w,s, and hence
G(z") = ((plg)~* o g)(z') and thus is continuous. O

Thus it is important to determine the image of 71(p) : m1 (Y, y0) — m1(X, zo).
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6.8 Proposition. [9, 6.3.1] Let p : (Y,y0) — (X,x0) be a covering. Then the
induced map w1 (p) : m1(Y,y0) — m1(X, 20) is injective and its image is formed by
those [w] € m1(X,x0) for which for (some) any representative w the lift Yo is
closed, i.e. by those g € m (X, xg) =: G which act trivial on yo, i.e. yo-g = yo. This
is the so called ISOTROPY SUBGROUP G, of G' at yo with respect to the action of
G on p~(zo).

m1(p) : m1(Y,90) = m1(X, 20)y,-

Proof. Injectivity: Let [v] € m1(Y,yo) be such that 1 = [pov], i.e. pov ~ consty,,.
By we may lift the homotopy. Since the lift of const,, is just const,, we have
[v] = 1.

If some u has a closed lift v, then 71 (p)[v] = [p o v] = [u], hence [u] € im(m(p)).
Conversely let [u] € imm(p). Then there exists a closed curve v through yo with
[pow] =mi(p)[v] = [u], hence u ~ pow rel. I, and so Y& ~ ¥pcv = v rel. I, thus
Yoq; is closed as well. O

In view of we study now abstractly given transitive (right) actions of a group
G on sets (i.e. discrete spaces) F.

6.9 Lemma. Transitive actions. Let G act transitively on F (and F’) from the
right. A G-EQUIVARIANT MAPPING or G-HOMOMORPHISM ¢ is a mapping ¢ : F —
F', which satisfies o(y - g) = o(y) - g. We write Homg(F, F’) for the set of all
G-homomorphisms F — F' and G :={g € G : y-g =y} for the isotropy subgroup
ofy e F. Then

1. We have Gy., = g7 'Gg.

2. {Gy :y € F} is a conjugacy class of subgroups of G, i.e. an equivalence class
of subgroups of H with respect to the relation of being conjugate.

3. Let H be a subgroup of G. Then the set G/H := {Hg : g € G} of right
classes carries a unique (transitive) right G-module structure, such that the
canonical projection w: G — G/H, g — Hg is G-equivariant.

5. Fory € F the mapping G — F given by g — y-g factors to a G-isomorphism
G/G, = F.

6. For p € Homg(F, F') we have Gy C G,y). Conversely if yo € F and
y1 € F' satisfy Gy, C Gy,, then there is a unique ¢ € Homeg(F, F') with
e(yo) = y1-

9. F2q F' & {Gy:ye F} ={Gy :y € F'} & {Gy,:ye F}N{Gy : y €
F'} #£0.

Note, that we refrain from writing the quotient G/H correctly as H\G.

Proof. () We have Gy, = g 'Gyg,since h € Gy.y & y-gh=y-g < y-(ghg™') =
y, i.e. ghg™! € G,.

() Since G acts transitively, {Gy : y € F} = {g7'Gyg = Gyoy : g € G} is a
conjugacy class by ()

() The only possible action on G/H such that 7 is G-equivariant is given by

Hg-g =n(9)-¢ :=7(g9-g) =n(99’) = Hgg'. That the so defined action makes
sense, follows from Hgy = Hgo =(H¢1) -9 = Hg1g = Hgog = (Hge) - g.
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() Consider evy : G — y-G given by g — y-g. This mapping has image y-G = F,
since G acts transitively. Furthermore ¢’ and ¢ have the same image y-¢' = y - g iff
g9~ ' € Gy, so ev, factors to a G-isomorphism G/G, — F.

(6) We have G,y = {g:y-g =y} C{g:0W) 9=20U-9) =)} = Guy.
Conversely let Gy, € G, and y € F'. Since G acts transitively there exists a g € G
with y = yo - g. Define p(y) = ¢(yo - 9) := ©(yo) - ¢ = y1 - g- This definition makes
sense, since yo - ¢’ = yo - g implies ¢'g* € G, C Gy, and hence y; - ¢’ =y - g. By
construction ¢ is G-equivariant.

(@) (1=2) Let ¢ : ' — F' be a G-equivariant isomorphism. Then G, € G, €
Go-1(p(y)) = Gy by ()

(1«<3) By assumption there are y € F and ' € F’ with G, = G,/ hence F =g
GG, =G/Gy =g F' by [5]. O

6.9a The category Subgr(G).
We use for associateing to each subgroup H < G the transitive action of G
on G/H. In order to extend this to a full and faithfull functor, we have to define
the morphisms H — H' appropriately:
Let ¢ € Homg(G/H,G/H') and yo := H € G/H. By  is uniquely deter-
mined by y; := ¢(yo) =: H'g € G/H' with H = G, C G, = g~ 'H'g by .
So we define

Hom(H,H') :={g:9H C H'g}/H’,
where H' acts on {g : ¢H C H'g} by multiplication from the left, since gH C H'g
and b/ € H' implies g H Ch'H' g=H'W g=H'NIg.
Then the set Subgr(G) of subgroups H < G and H" g’ o H'g := H" ¢'g as composi-
tion of these morphisms forms a category:
The composition H"¢g' o H'g := H"¢'g is well-defined, since gH C H'g and ¢'H’ C
H//g/ = g/gH g g/H/g g H//g/g and Since H//(h//g/)(h/g) — H//g/h/g — Hllh/lg/g —
H//g/g for ﬁ// = g/h/(g/)—l c gIH/(g/)—l g H//.
The identity on H is given by H = H 1.

Theorem. We have an equivalence Acty-(G) ~ Subgr(G) of categories.

Proof. The functor Subgr(G) — Act,(G) is given on morphisms by:
Hom(H,H')> H'go — (H g — H' gog) € Homg(G/H,G/H").

This is well-defined, since H g = Hg = ¢03(g09) ™" = 9099 ‘95 "' € goHgy' C H’

= H'gog = H' gog and since H' (h'g9)g = H' gog for W' € H'.

Functorality: H + idg,g and the composition H" gy 0 H'gy := H"g2g1 is mapped

to Hgw— H' g1g— H" g2g19.

The functor is faithfull: Vg : Hg — H'gog = H'gog = H'go = H'Go € Hom(H, H').

The functor is full by what we have shown above.
The functor is dense by . O

6.9b Corollary. [9, 6.3.3] Let G act transitively on F' from the right. With Autg(F)
we denote the group of all G-equivariant isomorphisms F' — F. For a subgroup H
of G one denotes with Normg(H) := {g € G : H = g~ 'Hg}, the smallest subgroup
of G, which contains H as normal subgroup. Then

Autg(F) = Normg(Gy, )/ Gy,
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Proof. By we have Homg(F, F') =2 Hom(H,H') := {g : gH C H'g}/H',
where H := G, and H' := G, are isotropy subgroups of G for the action on F' and
F'. Moreover, H'g € Hom(H, H') is an isomorphism < 3H¢' € Hom(H', H) with
H=H¢goH'g=Hg'gand H = HgoHqg' = H' g9 & 3¢ € G with ¢H' C H¢',
gg € H,and g¢ € H & 3¢ € G with H C g'H'g C (¢'9)"'Hg'g = H,
gH CHg,gdge H,and g € H < H=g 'H'g (and ¢’ := g7 1)

Thus Autg(F) = Aut(H) = Normg(H)/H by . O

6.9d Corollary. We have a bijection between isomorphy classes of transitive right
actions of G and conjugacy classes of subgroups of G.

Proof. By the proof of we have that H'g € Hom(H, H') is an isomorphism,
iff H =g 'H'g,i.e. H and H' belong to the same conjugacy class. Now the result
follows from [ 6.9a . O

6.9e Corollary. Let p: Y — X be a covering with path connected Y and zo € X.
The images 71 (p) (71 (Y, y)) for y € p~t(xo) form a conjugacy class of subgroups in
1 (X, .’Eo).

This class is called the CHARACTERISTIC CONJUGACY CLASS of the covering p.

Proof. By m1(p)(m1(X,y)) = Gy for G := m(X,z0) and y € F := p~ (o),
and by {G, : y € F'} is a conjugacy class of subgroups of G. O

6.9c Corollary. For transitiv actions of G on F the following statements are
equivalent:

1. Gy is normal in G for some (all) y € F';
2. Gy =Gy forallyy €F;

3. The induced action of G/(,cp Gy is free,
i.e. if g € G has a fized point y € F then it acts as identity on F;

4. Autg(F) acts transitive on F.

For | 3 | note that (), Gy is the kernel of the action G — Bij(F).

Proof. (:>) If Gy, is normal, then Normg(G,,) = G and hence Autg(F) =
G/Gy, by which obviously acts transitive, since G' does.

(:) Let yo-g = yo and y € F. Since Autg(F) acts transitive there is an
automorphism ¢ with y = ¢(yo) = ¢(vo - 9) = ¢(yo) -9 =y - 9.

(=>) Let g € Gy, i.e. y is a fixed point of g. Hence g acts as identity, so g € G
for all y’ € F.

(:>) is obvious, since G, = Gy.y =g~ -G, - g by . O

Let us now show that Covi — Acty,(G) is full and faithful:

6.11 Proposition. Let X be locally path connected. Let p:Y — X andp’ : Y’ —
X be two path-connected coverings with typical fibers F := p~1(zo) and F' =
(p") " (z0) and G := 71 (X, z0). Then Homx (p,p’) = Homg (F, F') via ® — ®|p.
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Proof. The mapping ® — ®|p is well-defined, i.e. | is a G-homomorphism, since
Oy - [u]) = (@ ova)(1) = *Wa(1) = B(y) - [u].

It is injective, since ®1|p = P9 implies P1(yo) = P2(yo) and hence &1 = o, by
the uniqueness of lifts of p proved in .

Surjectivity: Let ¢ : FF — F’ be G-equivariant. As ® : Y — Y’ we take the
lift of p : ¥ — X which maps yo € F to o(yo) € F. This lift exists by [6.7],
since 71 (p) (m1(Y,40)) = Gyo € Goyo) = m (') (m1 (Y, ¢(y0))) and with X also Y
is locally path-connected. By ®|r = ¢, since both are G-equivariant and
coincide on yg. 0

6.24 Corollary. [9, 6.3.4] Two path-connected coverings of a locally path-connected
space are isomorphic, iff their conjugacy classes are the same.

6.11 6.9d
Proof.p%p’F%GF’{Gy:yeF}:{Gyf:y'EF’}. O

6.12 Corollary. [9, 6.5.5] Let Y be path connected and X be locally path connected.
For any covering map p:Y — X we have

Aut(p) = Autr, (x.20) (P (20)) = Norm(my (p) (71.(Y, 0))/m1 (p) (1Y, o) ).

The inverse of this isomorphism is given by mapping [u] € Norm (7 (p)(m1(Y, y0)))
to the unique covering transformation f which maps yo to You.

Proof. Since the elements of Aut are just the isomorphisms of an object with itself,
this follows directly from [6.11],[6.9b | and [6.8]. O

9

6.17 Corollary. Normal coverings. [9, 6.5.8] For path-connected coverings p :
Y — X of locally connected spaces X the following conditions are equivalent:

1. m(p)(m1(Y,y)) is normal for (some) all y in the fiber over zo;
2. The characteristic conjugacy class of the covering consists of a single group;
3. If one lift of a closed path through xg is closed, then so are all lifts;

4. The covering p is normal, i.e. the group Aut(p) acts transitive on the fiber
over xg.

In particular this is true if 71 (X)) is abelian or the covering is 2-fold or m (Y') = {1}.

Proof. Let G := m(X,70) and F := p~!(z0). By m(p)(m(Y,y)) = Gy and
by the characteristic conjugacy class is {G, : y € F'}; the lift with initial
value y of a closed curve u through xg is closed iff y is a fixed point of [u] acting

on F'; and the group of covering transformations is Aut(p) = Autg(F') by .
O

So the result follows from .

86 andreas.kriegl@univie.ac.at © 11. Janner 2012




6. COVERINGS 6.16

6.26 Example. [9, 6.1.5]

Since every subgroup of an abelian group is nor-
mal and also any subgroup of index two, the
simplest non-normal covering could best be found

among the 3-fold coverings of S* Vv S?. & ‘
There is a three-fold covering of S* Vv S, b
which is not normal. > b,

Proof. Let {yo,y1,y2} be the fiber over zg, let a *
and b denote parametrizations of the two factors
Stin ST v ST and let ag,ar,as be the leafs over p

a and by, by, bo be the leafs over b. Let b; be from

Yi+1 10 yiro (mod 3). Let ag be a closed path at a b
1o and a; and ao connect y; and y, in opposite
directions.

So a has closed as well as none closed lifts. O

6.13 Corollary. [9, 6.5.6] If p: Y — X is a convering with Y simply connected
and X locally path connected, then Aut(p) = m (X, xo).

Proof. In this situation m1(Y,y9) = {1} and hence Normg(G,,) = G and so we
have Autg(F) = Normeg(Gy,)/{1} = G. ]

This can be used to calculate (X, z¢) by finding a covering p : X — X with
simply connected total space X (see ) and then determine its automorphism
group.

6.16 Examples of the fundamental group of orbit spaces. [9, 5.7.5]

We can apply to the examples in . In particular, we have Z as group of

covering transformations of R — S! and Z, as group of covering transformations
of S — P™ for n > 1. Furthermore, the homotopy group of L(%) ~ §3/7, from

is Z,, and that of M (¢4) = L(2) from | 1.75 | (see | 1.89]) is Z),

Example. Orbits spaces need not be Hausdorff.
Consider the ordinary differential equation

dr o dy .

o 8T, oy =sing -
Since this vector field is bounded, the solutions
exist globally and we get a smooth function ¢ :
RxR? — R? associating to each t € Rand (z,y) €
R? the solution with value (z,y) at 0 at time ¢t.
If the initial value satisfies cos?z = 0 then the
solution is y(t) = y(0)+¢-sin 2. Otherwise we have
dy Csoiyz = d% COISI, hence it has to be contained _.

dx
in {(y,7) : y(xr) = —t-}. Moreover the time it —

Ccos T
takes from & = xg to x = x is given by ¢(xz1) —
t(zo) = [T 4 = [*' L _dy = tanx|2

T dx r9 cos?x T=x0"

S A A A A A A A A A A A A
KA A A A A A A A A A AA
|
NN N N N NN NN N NN
R T N O N N U U N T Y
'

L

Note that the orbit space R?/R is not Hausdorff (and R?/Z as well). It consists of
a countable union | |, R of R’s together with the points 7/2+ - Z. A neighborhood
basis of 7/2 + k7 is given by end-interval of the two neighboring R’s. However, Z
acts strictly discontinuous on R2.
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We may also form the space X := ([—n/2,7/2]xR)/~, where (—7n/2, —t) ~ (7/2,1).
Since the action of R is compatible with this equivalence relation R acts fixed-point
free on this Mobius strip X as well. The orbits of the discrete subgroup Z C R are
obviously closed subsets. However, the action is not strictly discontinuous,
since for any neighborhood of [(7/2,0)] some translate by ¢ € Z meets it again.

6.20 Maximal Covering.

We aim to show that the functor Covkl — Act, (G), where G := 7 (X, z0), is an
equivalence of categories. In view of it remains to show its denseness.

For this we search for the “maximal” elements (i.e. the initial objects in categorical
language) first. For transitive actions of G the maximal object is G with the right
multiplication on itself, since for every action of G on some F' we have G-equivariant

mappingsevy:G—>F,g»—>y-g,fory€Fby.

The corresponding maximal path-connected covering p : X — X should thus have
as typical fiber p~!(z9) = G and the action of G = 71 (X, zg) on it should be given
by right multiplication. In particular, we must have G, = {1} for all y € G. Choose
a base-point yo € X with xg = p(yo). Since m1(p) : 71(X,y0) — Gy, = {1} is an
isomorphism by , we have that X should be simply connected.

For every point y € X

we find a path v, from o((, 0),(5(73/0))/&

Yo to y and since X is o o

simply connected the ho- e Ps

motopy class [v,] rel. I is be poevy C((I, 0), (X, Io))/'@

well defined.
Let ~ denote temporari- > -
ly the relation of being

‘homotopic relative I’ X

Thus y + [v,] gives bijection X 22 C'((1,0), (X, yo))/~ with inverse evy : v(1) « [v].
By the lifting property , these homotopy classes correspond bijectively to ho-
motopy classes of paths starting at z.

Let U be a path-connected neighborhood of z; € X. We calculate ev; *(U). Note
that evy *(21) = {[v] : v is a path in X from o to 2;} and in particular evi ! () =
1 (X .To)

evi 1 (U) = {[w] : w(1) € U} (now use w ~ w - u~' - u, then)
= {[v] - [u] : v(0) = wo,v(1) = z1,u(0) = z1,u(l) C U}
= {[v] - [u] : [v] € evy " (21), u(0) = fﬂl,u(f) cU}
= {10 < o] € evirt @)}, with PIT = {[o] - [u] : w(0) = 21,u(]) € U},
Since U is path-connected the mapping evy |5 : I7 — U is onto. In order that
it is injective, we need that ug(1) = uy(1) =[ug] = [u1], i-e. every closed curve in U

through z; should be 0-homotopic in X. A space X which has a neighborhood of
sets with this property is called SEMI-LOCALLY SIMPLY CONNECTED. Note that the
closed curves are assumed to be local (i.e. contained in U), whereas the homotopy
may leave U. Since any subset of such a set U has the same property, we get for
a locally connected semi-locally simply connected space a neighborhood-basis of
connected sets U with this property.
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Note that “1]0 N 21T # @ iff there exist curves u; with [v1] - [u1] = [va] - [ua],
where u; are curves in U from z; to the same endpoint. Hence [u;] = [uz] by the
semi-local simple connectedness and thus [v1] = [ve].

For a path-connected, locally path connected and semi-locally simply connected
space X we thus define X to be the set C((I, 0), (X, xo))/fb and p; : X — X by
p1([u]) = evi(u) = u(1). Since for every U as above we want U to be a leaf
over U, we declare those sets to be open in X. In order that these sets form the
basis of a topology we have to consider two such neighborhoods Uy and U; and
y € Uy N¥1U;. Then p;(y) € Uy NU; and hence we can find such a neighborhood
U C UyNU; of pi(y). Then y € YU and YU C ¥ Uy N¥*U;. Obviously we have that
D1l - v - Uis a homeomorphism, and hence p; : X > Xisa covering map.

Note that for any path u starting at zy we have that ¢ — [u;] is the lift along p;
with starting value [const,,] =: yo, where u:(s) := u(ts). Thus X is path-connected.

Finally X is simply connected: Let v be a closed curve in X through yg. Then
u = p1ov is a closed curve through xg and v(t) = [s — u(ts)], since both sides are
lifts of u with starting point yo. Hence [consty,] = yo = v(0) = v(1) = [u]. Since
homotopies can be lifted, we have const,, ~ v rel. I.

Theorem. Universal covering. [9, 6.6.2]

Let X be path-connected, locally path-connected and semi-locally simply-connected.
Then there exists a path-connected, simple-connected covering py : X > X.

Every simply connected path-connected covering of X covers any other path-con-
nected covering.

Proof. We have just shown the first part. The other one follows, since we can lift
the projection of any simple connected covering by and the lift is a covering

by [6.22.1] 5

6.21 Denseness of Covy® — Acter(G). Let us return to the question of surjectivity

of Covl{ — Act,(G), where G := m(X,20). Let G act transitively on F. By
FE G/H, where H := G, is any isotropy subgroup of this action. By
we have Aut(p;) = m1 (X, z9) =: G and it acts strictly discontinuous on X by what

we have shown in . By construction in the typical fiber p;*(x0) = G

and the action of G on it is given by right multiplication. Thus the subgroup H

acts also strictly discontinuously on X and hence X — X /H =:Y is a covering by
. Furthermore the mapping p; : X — X = X /G factors over X — Y to give

some p: Y — X which is a covering by |6.22.3 |.

It remains to show that the action corresponding to the covering p : X JH=Y —
X is isomorphic to H. The standard fiber of this covering is p; ' (z0)/H = G/H =g
F. The action of G on p~!(z¢) = G/H is obviously given by factoring the action of
G on p; *(z0) = G (by right multiplication) over the canonical quotient mapping
7w : G — G/H and is thus up to the isomorphism F' = G/H the given action on F.
Thus we have found the desired covering Y — X, and hence obtain the following:

6.23 Theorem. [9, 6.6.3] Let X be path-connected, locally path-connected and semi-
locally simply connected. Then we have an equivalence between the category of path-
connected coverings of X and transitive actions of G := w1 (X, x¢).

Covly ~ Acty, (G).
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Proof. By the functor is full and faithful and by it is dense, hence
induces an equivalence. O

6.25a The category Covk® is not quasi-ordered.
ILe., we give an example that for two coverings p: Y — X and p’ : Y’ — X there
may be more than one element in Homx (p,p’) up to isomorphy.

By it is enough to consider the corresponding question for transitive G-
actions. For this we will consider subgroups H < H' < G for which Normg(H) = H
and Normg(H') = H' and for which a g ¢ H' exists with gHg~! C H'.

In particular, Autg(H) = {1}, Autg(H') = {1}, and H' # H'g € Hom(H, H'). By
this gives the corresponding result for transitive actions of G.

Remains to show that H, H', G and g can be found. So let F' be finite, G := Bij(F)
and let {F; : j € J} be a partition of F in disjoint subsets of different non-zero
cardinality. Then H = {¢ € G : Vj € J : p(F;) = F;} is a subgroup with
Normg(H) = H: In fact, let ¢ € G be such that gHg~! C H and assume g ¢ H,
i.e. there is some j with g(F}) # F}. Since |g(F;)| = |F}| there has to exist a j € J
and y1,y2 € F; such that g(y1) and g(y2) are in different sets F;, and Fj,. In
fact take j with |Fj| maximal and g(Fj) # Fj, then g(F};) can not be completely
contained in one F; since otherwise by maximality g(F;) = F; so g(Fj) can not
meet F;. Now take h € H given by exchanging just y; and y,. Then ghg~! maps
g(y1) to g(y2), and hence Fj, is not invariant, so ghg™' ¢ H.

If F = {1,2,34,5,6,7,89,10} and F, = {1}, F> = {2,3}, F3 = {4,5,6} and
Fy ={7,8,9,10}. Let H be given by the partition {Fy, Fy, F3, F4} and H' be given
by {F1 U Fy, F3U Fy} and let g := (1,4)(2,5)(3,6) ¢ H'. Then gHg~' C H’, since
g FIUF,) = F;, g7 (F3) = F1 UF, and g~ '(Fy) = Fy, hence ghg™!(F3) =
gh(Fl U FQ) = g(Fl @] FQ) = F3, ghg_l(Fl UFQ) = gh(Fg) = g(Fg) = Iy UF, and
ghg™ ' (Fy) = Fy.

By the group G can then be realized as fundamental group of a 2-dimensional
CW-complex X.

Example. Let p: Y — X and p’ : Y/ — X be two coverings. Then there may
exist homomorphisms in Homx (p, p’) and Homx (p’, p) without p = p/.

In fact we can translate this to transitive actions. So we need subgroups H < G and
H’ < G which are not conjugate, but such that H is contained in some conjugate
g 'H'g of H' and conversely. Then G/H — G /(g7 H'g) = G/H' is G-equivariant
asis G/H' — G/((¢')"*Hg') = G/H, but G/H is not isomorphic to G/H’.

In [6, p.187] the existence of such groups is shown.

6.25 Example. Threefold coverings. [9, 6.7.3] We now try to identify all 3-fold
coverings of SV S and also those of the torus S* x St and Klein’s bottle. For G we

have in these cases ({a, 8} : 0), {{a, 8} : {aB = Ba}), and ({a, B} : {a?3? = 1}).

First we have to determine all transitive actions of ({a, 8} : 0) on {0,1,2}, i.e.
group-homomorphisms from the free group with two generators o and 3 into that
group of permutations of {0, 1,2}. We write such permutations in cycle notation,
i.e. these are

{(0), (01), (02), (12), (012), (021)}.
Where (0) has order 1, (012) and (021) have order 3 and the rest order 2. Up to
symmetry we may assume that the image a of « has order less or equal to the
image b of . Note, that two actions on {0,1,2} are isomorphic if there exists a
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permutation which conjugates the generators for one action onto those of the other
one.

If orda = 1, i.e. @ = (0) then ord b has to be 3 (otherwise the resulting action is
not transitive) and the two possible choices are conjugate via (01).

If orda = 2, then ordb can be 2, but b has to be different from a (otherwise not
transitive) and any two choices {a,b} and {a’,b’} are conjugate via the common
element ¢ € {a,b} N {a’,b'}; or b can have order 3, and again the choices of b are
conjugate by a, and that of a are conjugate by b or b~ !.

If orda = 3 = ord b, they can be either the same or different.

So we get representatives for all transitive actions with (=) + indicating (none-
Jnormality:

a b Sty ST T ST x ST | Kleins bottle
(0) | (012) +

(012) | (0) +
(01) | (02) -
(01) | (012) -
(012) | (01) -

(012) | (012) T
(012) | (021) +

+ e+
B =2 SN E R b SN TR

Note, that the action is normal iff every g € G acts either fixed-point free or is the
identity by . Thus at least the generators a and b have be of order 3 or 1.
This excludes the 3 actions in the middle. All other cases are normal, because there
the group generated by a and b is {(0), (012), (021)} and only the identity (0) has
fixed points.

The last two columns are determined by checking a?b? = 1 and ab = ba.

6.27 Proposition. [9, 6.8.1] Let p : Y — X be a covering. Then the following
statements are true:

1. If X is a CW-complex then so is Y. The cells of Y are the path-components
(leafs) of p~1(e) for all cells e of X.

2. If X is a manifold so is Y.

3. If X is a topological group, so isY .

Proof. (1) Let e be a cell of X. Since e is locally path-connected so is p~!(e)
and every component of p~!(e) is homeomorphic to e via the projection, since the
restriction of the projection is a covering map and e is simply connected. Since
D™ is simply connected we may lift a characteristic map to a characteristic map
x¢ of the lifted cell € by . One can show that the properties (C) and (W) are
satisfied.

(2) We may take the chart domains to be trivialising sets in X. The leafs can then
be used as chart domains of Y.

(3) The group structures X x X — X and X — X can be lifted to mappings
Y XY —Y and Y — Y: In fact chose 1 € p~1(1). Then 71 (o (p x p))([u1], [uz]) =

[(pouy) - (pous)] = m(p)|us - ua] by . Thus o (p x p) has a unique lift to
fi:Y xY =Y by[6.7] Similarly 71 (v o p)([u]) = [pou] ™! = mi(p)[u) L. O
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6.28 Theorem. [9, 6.9.1] Every subgroup H of a free group G is free. If H has
finite index k in G, then rank(H) = (rank(G) — 1) - k + 1. In particular, there exist
subgroups of any finite rank in the free group of rank 2.

Proof. Let G be a free group and H a subgroup of G. By G is the fundamental
group of a join X of 1-spheres. Since X has a universal covering X — X by ,
there exists also a covering ¥ — X with isotropy subgroup H. By Y isa

graph, and hence its homotopy group H is a free group by .

If H has finite index k in G, then rank(H) = (rank(G) — 1) - k + 1 by [5.48], since
the fiber ' = G/H by the proof of and hence Y has k-times as many cells
of fixed dimension as X.

Let G := ({a,b} : 0) and k > 1. Then there exists a unique surjective homomor-
phism ¢ : G — Zj, with ¢(a) =1 and ¢(b) = 0. Thus H := ker ¢ has index k in G
and hence rank H = (2 - 1)k+1=k+ 1. O
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7. Simplicial Homology

Since it is difficult to calculate within non Abelian groups we try to associate
abelian groups to a topological space. Certainly we could take % (X), but in
order to calculate this we can hardly avoid the non-commutative group m;(X) as
intermediate step. So we have to find a more direct approach. We start with the
most explicitly describable spaces, i.e. the simplicial complexes K. By there is
to each closed curve |A| = S' — |K| a homotopic simplicial approximation ¢ from
some barycentric refinement of A to K. Note that any barycentric refinement of A
is just a finite sequence of adjacent edges. If we want to get rid of commutativity we
should consider ¢ as formal linear combination ) _n,-o with integer coefficients n,
of oriented edges ¢ in K (we dropped those edges with same start and end point).
That c is a closed (and connected) curve corresponds to the assumption that every
vertex occurs equally often as start and as end point. So we can associate to such
a linear combination ) n, - o a boundary ) ns -0 := > ns - 0o, where 0o
is just &1 — xo, when o is the edge from g to z;. Thus ¢ :=>__n, - o is closed iff
dc = 0.

Next we should reformulate what it means that ¢ is 0-homotopic, i.e. there exists an
extension ¢ : |A| = D? — |K|. Again by we may assume that ¢ is simplicial
from some barycentric refinement of A. The image of ¢ can be viewed as 2-chain,
i.e. formal linear combination Y n, - o with integer coeflicients n, of ordered 2-
simplices o of K. Note that an orientation of a triangle induces (or even is) a
coherent orientation on the boundary edges. That ¢ is an extension of ¢ means
that the edges of these simplices, which do not belong to ¢, occur as often with
one orientation as with the other. And those which do belong to ¢ occur exactly
that often more with that orientation than with the other. So we can define the
boundary 9(3_, ne - o) of a linear combination of 2-simplices as > n, - 0o, where
do = (xg,21) + (x1,22) + (x2, o), when o is the triangle with vertices xg, z1, 22
in that ordering. Then c is 0-homotopic iff there exists a 2-chain with boundary c.
We call such a chain ¢ EXACT or 0-HOMOLOGUE. The difference between closed and
exact 1-chains is an obstruction to simply connectedness of |K|. At the same time
this easily generalizes to k-chains:

Homology groups

7.1 Definition. [9, 7.1.1] [9, 7.1.4] An ORIENTATION OF A ¢-SIMPLEX (with ¢ > 0)
is an equivalence class of linear orderings of the vertices, where two such orderings
are equivalent iff they can be transformed into each other by an even permutation.
So if a g-simplex o has vertices o, . .., x4 then an orientation is fixed by specifying
an ordering () < --- < Ty (q) and two such orderings o and ¢’ describe the same
oriented simplex iff sign(0’ 0o 0~!) = +1. We will denote the corresponding ordered
simplex with (2,0, -, Zs(q))- Let o~ 1 denote the simplex with the same vertices
as o but the opposite orientation.
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X2

% »
The ¢*"-chain group

Co(K) := {0 : o is O-simplex in K})
Cy(K) := {0 : 0 is ordered g-simplex in K} : {o~! 4+ 0 : ¢ is ordered g-simplex in K})

is the free abelian group with all ordered g-simplices as generators modulo the
relation o + o~ = 0.

7.2 Lemma. [9, 7.1.5] By picking an ordering of each simplex we get an unnatural
isomorphism from Cy(K) to the free abelian group with the unordered q-simplices
as generators.

Proof. We consider the map which associates to each ordered simplex either the un-
ordered simplex, if the ordering is the selected one, or the negative of the unordered
simplex, otherwise. This induces a surjective group-homomorphisms O := #* F({c :
o is ordered g-simplex inK}) — U := ®F({o : o is unordered g-simplex in K}).
It factors over Cy(K), since o + o~ ! is mapped to 0. The induced surjective ho-
momorphism C,y(X) — U is injective, since g :== Y. ny -0 +n,-1-0 ' € O is
mapped to Y _(ns —n,-1) -0 (where o runs through the unordered simplices with
the picked ordering) and this vanishes only if n, = n,-1, i.e. if the image of g in
Cy(K) is 0. O

Note that

1 1 [ _
= (z0, 21, T2 (o, w1, m2) + (w0, 21, 22) "

Y+
[ I _ —
= (20,21, T2) + (T0, 1, 32) " + (20, 21, T2 ),

where 'z;' indicates that x; has to be left out. Let ¢ be the tetrahedron with the

natural orientation zg < 1 < x2 < x3. Its faces should have orientation (x1, z3, x3),

(zo, w2, 23) "1, (w0, 21, 23) and (xg, z1,22) " .

This leads to the generalized definition:

7.3 Definition. [9, 7.1.2] [9, 7.1.6] The ORDERING of the face ¢’ opposite to the ver-

tex z; in o = (o, ..., z,) should be given by o’ := (zo, ..., zj_1, 2", xj41,... ,xq)(*l)j.
Let us show that this definition makes sense. So let o be a permutation of {0, ..., q}
and ¢’ be the face opposite to j. Then (24 (o), ..., To(q)) = (To,...,74)%®" 7 and we
have to show that

(To)s - iy ,xg(q)>(_1)i = (Toy. oy Tj1, T Tjr1, -y mq>(_1)j signo

where i is the position of j in ¢(0),...,0(q), i.e. i = o~1(j). Without loss of
generality let i < j (otherwise consider 0! instead). Consider the permutations of
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{0,...,q} given by the table

0 ... i-1 i =1 G 41 q
0 ... -1 i+l ... § i g+l ... q
o0) ... o@(-1) oi+1) ... oa(j) o@) o(F+1) ... ol
The first one is the cyclic permutation (i,i+1,...,j—1, j), hence has sign (—1)7~¢
the second one is o, and the composite leaves j = o(i) invariant, has sign (—1)7~¢
sign o, and induces the identity

7

—1)iJ g
(Ta0)r > Tjs oo Ta(q)) = (Toy oy Tj—1, T4 Ty, ,xq>( )" signo,
Now we define the BOUNDARY OF AN ORIENTED ¢-SIMPLEX 0 = (X, ...,%,) (for
g > 0) to be

q

do = Z(*l)j«%a R R 'x_jl,$j+1, Co Zg).
=0

For ¢ < 0 one puts do := 0. Extended by linearity and factorization over 0~ ~ —c

we obtain linear mappings 0 := 0, : Cq(K) — Cy—1(K). For 0 > ¢ € Z one puts
Cy(K):={0} and 9, :=0: Cy(K) — Cy_1(K).

7.4 Definition. [9, 7.1.7] [9, 7.1.8] With Z,(K) := Ker(9,) we denote the set of
CLOSED ¢-CHAINS. With B,(K) := Im(9,+1) we denote the set of EXACT (or O-
HOMOLOGOUS) g-chains. Two ¢ chains are called HOMOLOGOUS iff their difference
is exact.

If ¢ = 0 then Cy(K) = Z,(K). If ¢ = dim(K) then B,(K) = {0}.
7.6 Theorem. [9, 7.1.9] 0 = 92 = 9, 0 9,41 and hence B, C Z,,.

Proof. Let 0 = (xg,...,z41+1) with ¢ > 1. Then

q+1
1

000 =0 (=1)(x0,..., Tj, ..., Tqp1)
=0

q+1 il ‘ — —
= Z(*l)j <Z(1)Z<IL’0, ey Ly Tjyens ,$q+1>+

j=0 i=0
q+1 — —
+ Z ( 1)271@70’ » L 7z7a'--axq+1>>
=741
_Z((_l) I _(_1)J+ )<5E0, y Ly s Z'j,...,l'q+1>
1<j
=0 O

7.7 Definition. [9, 8.3.1] A CHAIN COMPLEX is a family (C,),ez of Abelian groups
together with group-homomorphisms 9, : C; — C,_1 which satisfy d; 0 9,41 = 0.
Equally, we may consider C' := € qgez Cq» which is a Z-graded Abelian group and
J:=@P g€z 0y, which is a graded group homomorphism C' — C' of degree —1 and
satisfies 92 = 0.

7.8 Definition. [9, 7.1.10] For a chain complex (C,0) we define its HOMOLO-
cYy H(C,0) := kerd/im0. This is a Z-graded abelian group with H(C,0) =
D,z Hy(C,0), where Hy(C,0) = ker 0;/im Oy1.
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The group H,(K) := Z,(K)/B,(K) is called the ¢-th HOMOLOGY GROUP of K.

Examples and exact sequences

7.9 Example. [9, 7.2.1] We consider the following simplicial complex K formed
by one triangle oo with vertices xq, x1, 72 and edges 0¥, o}, o7 one further point
x3 connected by 1-simplices 0 and of with ; and with z.

X2
The generic chains are of the 1 \ 4
o1 01
form
co = ZCLi x; € Co(K) with a; € Z,
i Xo o) a'g X3
c1 = Zbldi S Cl(K) with b; € Z,
i
co =mog € Cy(K) with m € Z. o3 o
X1

Since dca = m(o? + of + 02) # 0 for m # 0 the only closed 2-cycle is 0, hence
Hy(K)=0.

The boundary dc; = (b1 - bg) xo + (bg —bg + b3) 1+ (b() — b — b4) xo + (b4 - bg) X3
vanishes, iff by = by, by = b3 and by = by + b3. So Z1(K) is formed by ¢ =
bi(0V+ol4+02)4+b3(0)+03+0t) and hence 21 := 00 +0] +0? and 2| := o) +o} 40}
form a basis with dcy = m z1. So B1(K) = {mz; :m € Z} und H,(K) = Z.

For the determination of Hy(K) see .

7.10 Remark. [9, 7.2.2] We have H,(K) = 0 for ¢ < 0 and ¢ > dim K. Further-
more, Hyim k(K) = Caim x (K) (by ) is a free abelian group as subgroup of
Cim k (K).

7.11 Lemma. [9, 7.2.3] If K1,...,K,, are the connected components of K, then
Cy(K) = @jgm Cq(K;) and Ho(K) = @jgm Hy(Kj5). O

7.12 Lemma. [9, 7.2.4] Hy(K) is a free abelian group. Generators are given by
choosing in each component one point.

Proof.

0

Ci(K) Bo(K)S Zo(K) —= Ho(K)

75 =

ker(e)——s Co(K) —— %
Because of we may assume that K is connected. Let € : Co(K) — Z be the
linear map given by x — 1 for all vertices x € K. Obviously ¢ is surjective. Remains
to show that its kernel is Bo(K). Every two vertices x¢p and x; are homologous,
since there is a 1-chain connecting zo with x;. Thus ¢ := ) _ n, -2 is homologous to
(3", na) - xo = €(c) - zo and hence Ker(e) C By. Conversely let ¢ =9(>._ ne-0) =
Yo Mo - 0o Since €(0(xo, x1)) = e(x1 —x9) = 0 we have the converse inclusion. [

7.13 Example. [9, 7.2.10] The homology of the cylinder X := S* x I. Note that
St x I ~ S* and hence we would expect Ho(X) = 0 and Hy(X) = %m(S1) = Z.
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Let us show that this is in fact true. We consider the triangulation given by 6
triangles. We will show in a later section that the homology does not depend on
the triangulation. We orient the triangles in the natural way.

Hy(X): Let 20 =) gimon Mo -0 € Z2(X) = Hy(X), i.e. 0zo = 0. Since those edges,
which join the inner boundary with the outer one belong to exactly two 2-simplices,
the coefficients of these two simplices have to be equal. So n := n, is independent
on o. However () o) is the difference of the outer boundary and the inner one,
hence not zero, and so zo = n(>__ o) is a cycle only if n = 0, i.e. Ho(X) = {0}.

Hi(X): Let [z1] € Hi(X),1.e. 21 = Y gy oo o -0 € Z1(X) with 9z, = 0. Since we
may replace z; by a homologous chain, it is enough to consider linear combinations
of a subset of edges, such that for each triangle at least 2 edges belong to this subset.
In particular we can use the 6 interior edges. Since each vertex is a boundary point
of exactly two of these edges the corresponding coefficients have to be equal (if
we orient them coherently). Thus z; is homologous to a multiple of the sum ¢; of
theses 6 edges. Hence Hy(X) is generated by [c1]. The only multiple of ¢1, which is
a boundary, is 0, since the boundary of >, _,n, -0 contains n, - o1, where oy
is the edge of ¢, which is not an interior one.

7.14 Example. [9, 7.2.14] The homology of the projective plane X := P2. We
use the triangulation of P? by 10 triangles described in . And we take the
obvious orientation of all triangles. Note however that on the “boundary edges”
these orientations are not coherent.

H?*(X):Let 20 = > g1 oo o0 € Zo(X) = Ha(X), i.e. D25 = 0. Since those edges,
which belong to the “interior” in the drawing belong to exactly two 2-simplices, the
coefficient of these two simplices have to be equal. So n := n, is independent on
o. However 0()_ o) is twice the sum a + b + ¢ of three edges along which we

have to glue, and hence is not zero. So zo = n(}__ o) is a cycle only if n = 0, i.e.
Hy(X) = {0}

H(X): Let [z1] € Hi(X), 1e. 21 = Y gimo1 Mo - 0 € Z1(X) with 0z; = 0. Now we
may replace z; by a homologous chain using all edges except the 3 inner most ones
and the 3 edges normal to the “boundary”. Now consider the vertices on the inner
most triangle. Since for each such point exactly two of the remaining edges have
it as a boundary point, they have to have the same coefficient, and hence may be
replaced by the corresponding “boundary” parts. So z; is seen to be homologous
to a sum of “boundary” edges. But another argument of the same kind shows that
they must occur with the same coefficient. Hence Hy(X) is generated by a + b + c.
As we have show above 2(a + b + ¢) is the boundary of the sum over all triangles.
Whereas a + b+ ¢ is not a boundary of some 2-chain ) _n, - o, since as before
such a chain must have all coefficients equal to say n and hence its boundary is
2n(a + b+ c). Thus Hy(P?) = Zy, which is no big surprise, since 1 (P?) = Z,.

7.15 Definition. [9, 8.2.1] A sequence A /- B -4 (' of abelian groups is called
EXACT at B iff ker g =im f. A finite (or infinite) sequence of groups C, and group
homomorphisms f; : Cy41 — Cy is called exact if it is exact at all (but the end)
points.

7.16 Remark. [9, 8.2.2]
1 A sequence 0 — A —L B is exact iff f is injective.

2 A sequence A —L, B — 0 is exact iff f is surjective.
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3 A sequence 0 — A —L B — 0 is exact iff f is bijective.

4 Let Agq LA Aq o, Ag_1Fastf,_1A4—2 be exact. Then the following
statements are equivalent:

o f,4+1 is onto;
L4 fq = 0;
o fy—1 is injective.

7.17 Lemma. Let 0 —» Cy — C; — --- — C;, — 0 be an exact sequence of finitely
generated free abelian groups. Then ZZ:O(_l)q rank C, = 0.

Proof. For an Z-linear map (i.e. abelian group homomorphism) f we have rank(ker f)+
rank(im f) = rank(dom f) by the pendent to the classical formula from linear al-
gebra. Thus taking the alternating sum of all rank(dom f,) gives a telescoping one
and hence evaluates to 0. O

7.18 Proposition. [9, 7.2.5] Let K be a one dimensional connected simplicial
complex. Then Hy(K) is a free abelian group with 1 — ag + an many generators,
where «; are the number of i-simplices.

Compare with .

Proof. Consider the sequence

0 7, C o —2- ¢, H, 0
|z P E2
H, 7

It is exact by definition and the vertical arrow is an isomorphism by and
hence we get by the equation 0 = rank(H;) — oy + ag — 1 O

7.19 Definition. [9, 7.2.6] Let K be a simplicial complex in R™. Let p € R™ be
not contained in the affine subspace generated by all 0 € K. Let px (zq,...,%q) :=
(D, %0, ..., 2q). Let px K := KU{p*o:0 € K}U{p}. It is called the CONE over K
with vertex p and is obviously a simplicial complex. Note that we can extend px (_)
to a linear mapping Cy(K) — Cy(p * K).

7.20 Proposition. [9, 7.2.7] He have Hy(p x K) = {0} for all ¢ # 0.

Proof. Let ¢ be a g-chain of K. Then

a(p*c):{c—s(c)p ifg=0

c—pxJdc otherwise.

Note that this shows that any g¢-chain ¢ (with ¢ > 0) is homologous to p * dc.
In order to show this we may assume that ¢ = (zo,...,x,). For ¢ = 0 we have
A(p*c)=0(p,xo) =x9—p=c—e(c)p. For ¢ > 0 we get
d(p*c)=0(p,xo,...,2q)
—

q
= <x07...,:cq>—Z(—l)%p,xo,..., Ti,...,Tq) =c—px0c
i=0

K3
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Now let ¢ € Z,(px K) for ¢ > 0. We have to show that it is a boundary. Clearly
¢ is a combination of simplices of the form (zo,...,z,) and (p,xo,...,2q-1), L€
c=cq+prcqg_1 with ¢g € Cy(K) and cq—1 € Cy—1(K). Hence c = ¢y + p*cg_1 =
O(p*cq) +p*x0cqg+p*cg_1. S0 p* (0cqg + cq—1) € Z,. But, again by the equation
above, the boundary of such a cone vanishes only if dcy + c¢4—1 = 0, hence c is a
boundary. O

7.21 Corollary. [9, 7.2.8] For an n-simplex oy, let K(oy,) := {7 : 7 < 0,}. Then
K(oy,) is a connected simplicial complex of dimension n with |K(o,)| being an

n-ball. We have Hy(K(0y)) =0 for g # 0.

Proof. Let 0,, = (o, ..., 2n) and 0p,—1 = (21, ..., 2y) then K(0,) = 20* K(0p_1).
O

7.22 Proposition. [9, 7.2.9] For an n + 1-simplex opi1 let K(6py1) = {7 :
T < 0pt1}- Then K(6p41) is a connected simplicial complex of dimension n with
|K(6pnt1)| being an n-sphere and we have

Z for qe {0,n}
0 otherwise.

Hy(K(0n11)) = {
A generator of Hy(K(6py1)) is Oonyr i= S0 (=1 (z, ..., Z5 .. T

7=0 Jo

Proof. Let K := K(6,,41) and L := K(0y41). Then L\ K = {0,+1} and we have

0 ——= Cot (L) 2> Cu(L) — 2> - —2> Oy (L) 2> Cy(1) -2
0—2> Cp(K) —2> oo 25 Oy (K) 2> Cy(K) 2> -

By the top row is exact (for ¢ > 0). Thus we have exactness in the bottom

row for all 0 < ¢ < n. By exactness the arrow (o, 11) = Cpy1(L) =2 C,(L) is
injective, and H,(K) = Z,(K) = Z,(L) = 0(Cp41(L)) = Cpi1(L) = Z. O

We will show later that if |K| ~ |L| then H,(K) = H,(L) for all ¢ € Z, hence it
makes sense to speak about the homology groups of a polyhedra.

7.23 5’Lemma. [9, 8.2.3] Let

Al ¥1 A2 2 A3 ®3 A4 Ppa A5
fllg leg fal )cz;lg fslg
By P1 By P2 Bs Y3 B ha Bs

be a commutative diagram with exact horizontal rows. If all but the middle vertical
arrow are isomorphisms so is the middle one.
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Proof. (fs is injective)

faaz = 0= 0=13fzas = fapsas

fa in,

- p3az =0

exact at Ag
= das : az = paas

= 0= fzaz = fzpaas = P2 faas

exact at B
= 7 3by : faaz = P1by

fl%lu- 30,1 : bl = f1a1

= faaz =1 fra1 = fapra;

f2 inj.
= a2 = p101

exact at A
= a3 =202 = papra1 =0

a a2 asz 0 .
N1 l: fa2| = f3 l fa l =
by Y1 f (az) P2 0 ¥3 0 o

(f5 is onto)
by 12T 3q, faay = 1P3b3
xact at B.
FAL T fopnay = afaas = Patisbs =0
f5_inj.

= 404 = 0

exact bei Ay
= dag : a4 = ©p3as3

= Y3 fsaz = fapzas = fias = P3b3
exact:z;t Bs E'bg . b3 — f3a3 = QDQbQ

fz;l;rj. E'ag . bg = f2a2

= b3 = fzasz + Paby = faaz + 2 faaz = f3(as + p2a2)

° as 2 as ¥3 ay Pa a0y
leﬁ fsl f4lﬁ fsi:
P
o by —= by v 1303 0 O

Remark. An exact sequence of the from
0—A—B—-C—0
is called SHORT EXACT.

1. We have that the top line in the diagram

[ I
Aq+1 q+1 Aq q Aq—l

|

0—— fq+1(Aq+1)C—> Aq - fq(Aq) —0

is exact at A, iff the bottom row is short exact.
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2. Up to an isomorphism we have the following description of short exact se-
quences:

0—=A—-sp—L s 0

I

i(A) &——= B —— B/i(A)

3. The sequence 0 — A — A C — C — 0 is short exact.

4. The sequence 0 — Z "~ 7, — Z,, — 0 is short exact.

7.24 Lemma. [9, 8.2.4] For a short ezact sequence 0 — A - B -9+ C' — 0 the
following statements are equivalent:

1. There is an isomorphism ¢ : A ® C — B such that the diagram below is
commutative;

2. g has a right inverse p;

3. f has a left inverse \.
A
- -
T
0 A

0

04>A—>A@C—>04>0

Q

-
o

Q

Under these equivalent conditions the sequence is called SPLITTING.

Proof. (1=2) The morphism p := ¢ o inj, : ¢ — (0, ¢) is right inverse to g.
(2=3) The morphism idg —p o g has image in ker(g), hence factors to a morphism
A: B — Aover f. Hence folo f = (idgp—pog)of=f—0= foid and so
Ao f=id.

(3¢1) Define ¢ := (A, g) : B — A® C. Then ¢ makes the diagram commutative
(pryotp = g and ¥ o f = (ida,0) = inj;) and therefore is an isomorphism by
7.23 |. O

7.25 Example. [9, 8.2.5] The sequence 0 — Z "~ Z — Z,, — 0 does not split. In
fact, every a € Zy, has order ord(a) < m < oo but all b € Z have order ord(b) = co.

7.26 Remark. If C is free abelian then any short exact sequence 0 - A — B —
C — 0 splits.

If0—-A— B— C — 0isexact and A and C' is finitely generated then so is B. In
fact, the generators of A together with inverse images of those of C' generate B.

7.27 Definition. [9, 8.3.4] Let (C, 0) and (C’, 9") be two chain complexes. A CHAIN
MAPPING is a family of homomorphisms f, : Cqy — C{I which commutes with 0, i.e.

9g0 fq = fq-100,

7.28 Definition. [9, 7.3.1] Let ¢ : K — L be a simplicial map between simplicial
complexes. Define group homomorphisms Cy(p) : Cq(K) — Cy(L) by Cy(p) :== 0
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for ¢ < 0 or ¢ > dim K and by Cy(¢)({(zo,...,2q)) := {@(x0),...,p(xq)) if ¢ is
injective on {zo, ..., x4} and Cy(p)((xo, ..., z4)) := 0 otherwise.

7.29 Proposition. [9, 7.3.2] For every simplicial map ¢ : K — L the induced map
(Cq(@))qez is a chain mapping.

Proof. We have to show that 0,(Cy(¢)(0)) = Cy—1(¢)(940) for every g-simplex
o = (xzg,...,xq). If all vertices ¢(x;) are distinct or are at least two pairs identical
this is obvious. So we may assume that exactly two are the same. By reordering we
may assume ¢(zg) = ¢(x1). Then Cy(p)(o) = 0 and hence also dC,(¢)(c). On the

other hand do = (z1,...,24) — (x0,22,...,2q) + Z?ZQ(—I)j<xO, e T T
The first two simplices have the same image under Cy_1(p). The sum is mapped
to 0, since p(xg) = @(x1). O

7.30 Lemma. [9, 8.3.5] The chain maps form a category.
Any chain map f induces homomorphisms Hy(f) : Hy(C) — Hy(C").

Proof. The first statement is obvious.
Since f o d = do f we have that f(Z,) C Z, and f(B,) C B, and hence H,(f) :
H,(C) — Hy(C’) makes sense,

0~ By(C) ——> Z,(C) ——= Hy(C) —>0

7.31 Theorem. [9, 8.3.8] Let 0 — C' -+ C —9- C" — 0 be a short ezact sequence
of chain mappings. Then we obtain a long exact sequence in homology:

B s Hq(c/) Hq(f) Hq(C) Hq(g) Hq(C//) Oy qul(cl) Hq—1(f)

In particular we can apply this to a chain complex C' and a chain subcomplex C’
and C” := C/C", since 9 factors over 8" : C" — C", via 8" (c+ C') := dc + C".

Proof. Consider

f ’

0 C C,—2 = 0
Bi Bl Bi

0 o/ o P Ao/ p—

Let 0.[2"] == [(f"to0dog™1)(2")] for 2" € C" with 82" = 0.

We first show that it is possible to choose elements in the corresponding inverse
images and then we will show that the resulting class does not depend on any of
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the choices.

So let z;] € C; be a cycle, i.e. 9z, = 0. Since Tqg —— 2]
g is onto we ﬁnd r, € Cf with gz, = 2. Sin-
ce g0x, = Ogry = 0z] = 0, we find x}_, 6 Cia 9 9
with fa) | = Oxg. And hence x;_; € f_lag_lz(’; ) f oz, I 0
Furthermore fOx;_, = dfx,_, = 00z, = 0. Sin-
ce f is injective we get dx;_; = 0 and hence we 6i ai
may form the class 0,[2"] := [z! _,].

Y [ q] [ q 1] ax;_l 0
Now the independency from all choices, So let [2] = [z], i.e. 3z, : 0wl yy =

z) — z,. Choose xq,mq e C, as before, so that gxq = x; and gz, = 7. Also

as before choose 7, 1, ., € Cf_y with fx, | = Oz, and fZ, ; = 0z, We
have to show that [z} _ 1] = [[L'qil] So choose Tgp1 € Cyy1 with gz = g,
Then gOxg11 = 0g9rqy1 = Oxyyy = 2] — 2z = g(xy — Ty), hence there exists an
xy, € Cg with fal = 0xg1 — xq + 4. And fOx], = Ofx) = 8(3l‘q+1 Tq +Z,) =
O 5acq + 0%y = —f(wy_1 — T;_1). Since f is injective we have x;_; = T_; + 0zy,
Le. [Iq 1] [ q— 1]

Exactness at Hq(C'):

(C) fu0ul2"] = [ff710g™ "] = [9g~'2"] = 0.

(D) Let 92" =0 and 0 = f.[¢/] = [f#], i.e. Jz: Oz = fz'. Then 2" := gx satisfies
0z = 0gx = g0z = gf2' = 0 and O,[2"] = [f~10g~'gx] = [f~10x] = [¢'].

Exactness at H,(C):

(C) since go f = 0.

(D) Let 9z = 0 with 0 = g.[z] = [g2], i.e. Fz": 2" = gz. Then Jz: gz = z”’. Hence
gz = 02" = dgx = g0x =3': fo' = 2 — O0x =f0x' = Ofx’ = I(z—0z) =0
=0z’ =0 and f.[2'] = [f2'] = [z — 0x] = [2].

Exactness at Hy(C"):

(C) We have 0.g,[2] = [f~10g~"g2] = [f~'02] = [/ 0] = 0.

(2) Let 92" =0 and 0 = 9,[2"], i.e. J2': 92’ = 2/, where 2’ € f710g712", ie. Tz
gxr = 2" and fz’ = Ox. Then d(x— fa') = fz' — f(02') =0 and g(z — f2') = 2" -0,
ie. gix — fa'] =[] O

q—

Relative homology

7.32 Definition. [9, 7.4.1] Let Ky C K be a simplicial subcomplex. Then C'(Kj) is
a chain subcomplex of C'(K) and hence we may form the chain complex C (K, Kj)
given by C,(K, Ky) := Cy(K)/Cy(Kop). Note that we can identify this so-called
RELATIVE CHAIN GROUP with the free abelian group generated by all g-simplices
in K\ Ko. The boundary operator is given by taking the boundary of }°_k, - o in
C(K), but deleting all summands of simplices in C'(Kp). The ¢-th homology group
of C(K, Kp) will be denoted by H,(K, Ky) and is call the RELATIVE HOMOLOGY
of K with respect to Ky. Using the short exact sequence 0 — C(Ky) — C(K) —

C(K,Ky) — 0 we get a long exact sequence in homology by .

7.33 Remark. [9, 7.4.2]
1. If Ky = K then Cy(K, Ko) = Cy(0) = {0} and hence Hy(K, K) = {0}.
2. If Ky =0 then Cy(K, Ky) = Cy(K) and hence Hy(K,0) = H,(K).
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3. If K is connected and K 2 Ky # 0, then Hyo(K, Ky) = {0}. In fact let
z € Co(K,Ky), ie. z = EzeK\KO ky - x. Let 2o € Ky be chosen fixed.
Since K is connected we find for every x € K a l-chain ¢ with boundary
Oc = — x9, hence z ~ &(z) - g = 0 in Cy(K, Kop).

4. Note that in we calculated the relative chain complex C, (K, L), where
K := K(o,) and L := K(6&,) and obtained C,(K, L) = {0} for ¢ # n and
C,(K,L) = (o,) =2 Z. Hence Hy(K,L) = {0} for ¢ # 0 and H,(K,L) = Z.

7.34 Example. [9, 7.4.7] Let M be the Mobius strip with boundary M. We have a
triangulation of M in 5 triangles as in . Since OM is a 1-sphere H,(OM) = 7Z

by , where a generator is given by the 1-cycle r formed by the 5-edges of the
boundary.

Furthermore Hy (M) = Z, where a generator is given by the sum m of the remaining
edges: In fact every triangle has two of these edges, so it suffices to consider linear
combinations of these edges. Since every vertex belongs to exactly two of theses
edges, the coefficients have to be equal.

If a combination of triangles has a multiple of m as boundary, their coefficients
have to be 0, cf. .

Now consider the following fragment of the long exact homology sequence:

H1(0M) —— Hi(M) —= Hi(M,0M) % Ho(OM) % Ho(M)

([]) ([ml) ([zol) ([o])

Since Ho(OM) = Z = Hy(M) by , where a generator is given by any point
xo in OM C M, we have that the rightmost arrow is a bijection, so the one to
the left is 0 and hence the previous one is onto. Remains to calculate the image of
([r]) = H1(OM) — Hy(M) = ([m]). For this we consider the sum over all triangles
(alternating oriented). It has boundary 2m — r and hence [r] is mapped to 2[m].
Thus Hi(M,0M) =2 7/27 = Z,.

7.35 Proposition. [9, 8.3.11] Let (C,C") and (D, D’) be pairs of chain complexes,
¢’ =C/C', D" =D/D" and f : (C,C") — (D, D') be a chain mapping of pairs.
This induces a homomorphism which intertwines with the long exact homology se-
quences.

o H,(C") Hq () H,(C) Hq(p) H,(C") B qil(C,,)qul(g)_”

f*l f*l f*l f*l
5 (D) 0 (D) P () e (0
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Proof. The commutativity of all but the rec-
tangle involving 0, is obvious. For this remai-

ning one let 2”7 € C” be a cycle. We ha-

ve to show that 0. f.[2"] = f.0:[z"]. So let l\ \
2 € i~ lop~1Z”, ie. iz’ = Oz for some x with fx £
pr = 2. Then f.0.[2"] = [fZ'] and we ha-

ve to show that j(fz') € dg~'fz", which fol- \ \ l

lows from jfz' = fiz/ = fOx = Ofxr and

q(fzx) = f(px) = f2". 0 fo —1>ofx

7.36 Corollary. [9, 7.4.6] Proposition applies in particular to a simplicial
mapping ¢ : (K, Ko) — (L, Lo) of pairs. O

7.37 Excision Theorem. [9, 7.4.9] Let K be the union of two subcomplexes Ky
and K. Then (K1, KoNK;) — (K, Ky) induces an isomorphism H (K1, KoNK;) —
H(K, UKy, Kp).
Proof. Note that we have

Ki\(KonNK;)=K;\ Ky=(KoUKy)\ Ky

and also

Oﬁcq(K()ﬂKl)#Cq(Kl)HCq(Kl,KoﬁKl) < KomKl» 0

) ki

0 — Cy(Ko) —2> Cy(Ko U K1) — Cy(Ko U K1, Ko) = (KoUK;)\ Ko) =0

IR

IR

This is gives even an isomorphism on the level of chain complexes, as follows from
the commutativity of the diagram. O

IftU .= K\Kl = KQ\(KoﬂKl) then K1 = K\U and KoﬂK1 = I(()\(]7 hence the
isomorphism of reads H(K\U, Ko\U) = H(K, Ky). Conversely, if (K, Kj) is
a pair of simplicial complexes and U C Kj is such that K; := K \ U is a simplicial
complex, then we get:

7.38 Corollary. [9, 7.4.8] Let Ko C K be a pair of simplicial complexes and
U C Ky a set such that VT € U: 7 < 0 =0 € U. Then K; == K\ U and
KoNK; := Kog\U are simplicial complexzes and H(K, Ko) = H(K\U,Ko\U). O
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8. Singular Homology
Basics

8.1 Definition. [9, 9.1.1] The STANDARD (CLOSED!) ¢-SIMPLEX A, is the simplex
spanned by the standard unit vectors e; € Rt for 0 < j<gq.So

Agi={00, M) 0N <123 N =1}
J

8.2 Definition. [9,9.1.2] For ¢ > 1 and 0 < j < ¢ let the FACE-MAP 53_1 HVAWIR IR

A4 be the unique affine map, which maps e; to e; for i < j and to e;11 for i > j,
i.e.
€0y -y Cqa1 > €0,.. ., €5 ., €q.
8.3 Lemma. [9, 9.1.3] For ¢ > 2 and 0 < k < j < q we have 5;_1 oy, =
i—1
5(];_1 o 551_2. O

Proof. The mapping on the left side has the following effect on the edges:

(| - [
€05---,€qg—2r7 €0y, €Ly €q_1 €0y €ky.y, €5y, €g
And on the right side:
[ - [l
€05---,€¢g—2F>€0y...,€j—1,...,6qg—1—€0y... €EL,...,€j,...,€4 O

8.4 Definition. [9, 9.1.4] Let X be a topological space. A SINGULAR ¢-SIMPLEX
is a continuous map o : A; — X. The ¢-th SINGULAR CHAIN GROUP S,(X) is the
free abelian group generated by all singular g-simplices, i.e.

Sq(X) :="F(C(Ag, X))

Its elements are called SINGULAR ¢-CHAINS. The boundary operator 9 is the linear
extension of

q
0:0— Z(fl)jaoéj.
7=0

By the groups S;(X) together with 0 from a chain complex S(X):

q

990 = 3(2(71)%0&)

§=0
q _q—l _

— 2(71)3 Z(fl)ka 0ok
§=0 k=0

= Z (=1)7 %5 067 0 6% + Z (—1)7T* g 0 67 0 5%
0<k<j<q 0<j<k<gq

Z (_1)j+k0.06k05j—1_|_ Z (_1)j+k—10.05jo5k—1

0<k<j<q 0<j<k<q

= Y (DHoosted 4 Y (~)f oot o =0, O

0<k<j<gq 0<k<j<gq
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The ¢-th SINGULAR HOMOLOGY GROUP H,(X) is defined to be H,(S(X)). The
elements of B,(X) := By(S(X)) are called (SINGULAR) ¢-BOUNDARIES and those
of Zy(X) := Z,(S(X)) are called (SINGULAR) ¢-CYCLES.

Remark that singular O-simplices can be identified with the points in X and singular
1-simplices with paths in X.

8.5 Definition. [9, 9.1.6] [9, 9.1.8] [9, 9.1.9] Let f : X — Y be continuous.
Then f induces a chain-mapping f. := S(f) : S(X) — S(Y) and hence group-
homomorphisms f, := H,(f) : Hy(X) — Hy(Y).

q q

O(S()(0)) = dfoo) = > (=1) forod’ = S(f) (D (-1 r0s’) = S(£)(0() ).
j=0 Jj=0

So H, is a functor from continuous maps between topological spaces into group

homomorphisms between abelian groups.

8.6 Remark. [9, 9.1.7] The identity ida, : A; — A, is a singular g-simplex of
Ay, which we will denote again by A,. If ¢ is a singular g-simplex in X, then
S(0)(Ay) = 0. We will make use of this several times in order to construct natural

transformations, by defining them first for the standard simplex, see and

[8:30]

8.7 Theorem. [9, 9.1.10] Let X = {x} be a single point. Then Hy(X) = {0} for
q# 0 and Ho(X) = So(X) 2 Z.

A space X is called AcycLic iff it is path-connected and H,(X) = {0} for ¢ # 0.

Proof. The only singular g-simplex is the constant mapping. Its boundary is 0oy =
(3% (=1)7)o4—1. For even g > 0 we have that Z,(X) = {0} for odd q we have that
By(X) = Z4(X), hence in both cases Hy(X) = {0}. For ¢ = 0 we have By(X) = {0}
and Z()(X) = S()(X) = 7. O]

8.8 Corollary. [9, 9.1.11] Let f : X — Y be constant then H,(f) =0 for ¢ # 0.

Proof. Obvious, since f factors over a single point. O

8.9 Proposition. [9, 9.1.12] Let X; be the path components of X. Then the inclu-
sions of X; — X induce an isomorphism @; Hy(X;) — Hy(X); cf. .

Proof. This follows as : Let o be a singular simplex of X. Then o is comple-
tely contained in some X, hence the induced map P, S4(X;) — Sq(X) is onto.
Conversely this linear map is injective, since the chains in the various X; have
disjoint images. Thus we have a bijection B, 54(X;) = S¢(X), which induces an
isomorphism of homology groups. O

8.10 Proposition. [9, 9.1.13] Let X be a topological space. Then Hy(X) is a free
abelian group with generators given by choosing one point in each path-component;

cf. .

Proof. Because of we may assume that X is path-connected. The mapping

€:50(X)—2Z,Y  ne-or— Y  n,isontoand as in its kernel is just By(X),
so ¢ induces an isomorphism Ho(X) = Z; cf. . O
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8.16 8. SINGULAR HoMOLOGY

8.11 Corollary. [9, 9.1.14] Let X andY be path-connected. Then every continuous
mapping f: X — Y induces an isomorphism Hy(f) : Ho(X) — Ho(Y).

Proof. Obvious since the generator is mapped to a generator. O

8.12 Definition. [9, 9.1.15] Let A C R™ be convex and p € A be fixed. For a
singular ¢g-simplex o : A; — A we define the CONE px o : A1 — A by

(pxa)((1 —t)e® +t3°(z)) := (1 — t)p + to(z) for t € [0,1] and = € A,.

For a g-chain ¢ = ) _n, - 0 we extend it by linearity

pxci= Zna “(pxo)
and obtain a homomorphism S,(A) — S,41(A); cf. [7.19].

8.13 Lemma. [9, 9.1.16] Let c € S,(A) then

Ip*c)=c—e(c)p forq=0,
d(p*c)=c—p*0c for g >0,

where 5(29c Ny - x) =), ng; cf. .

Proof. It is enough to show this for singular simplices ¢ = 04. For ¢ = 0 we have
that px o : Ay — X is a path from p to o hence d(p*xo) =0 —p = 0 — e(o)p.
For ¢ > 0 we have (px o) o6’ =0 and (px0) 0" = px (0 06°~1) for i > 0, hence
dpxo)=0—pxdo. O

8.14 Corollary. [9, 9.1.18] Let A C R"™ be convex. Then A is acyclic; cf. &
7]

Proof. Let p € A and z be a g-cycle for ¢ > 0. Then z = 9(p x z) by and
hence Z,(A) = By(A), i.e. Hy(A) = {0}. O

Relative homology

8.15 Definition. [9, 9.2.1] Let (X, A) be a pair of spaces. Then we get a pair of
chain complexes (S(X), S(A)) and hence a short exact sequence

0—S(A) — S(X)— S(X,A) — 0,
where S,(X,A) 1= 54(X)/S4(A). Its elements are called RELATIVE SINGULAR ¢-

CHAINS. But unlike we can not identify them with formal linear
combinations of simplices in X \ A.

8.16 Remark. [9, 9.2.3] But as in we get a long exact sequence in homology
= Hy(A) — Hy(X) — Hy(X, A) — Hg1(A) — ...,

where Hy (X, A) := H,(S(X, A)). Note that z € So(X) with 0z € S4(A) describe
the classes [z + Sq(A)] € Hy(X, A).
For a continuous mapping of pairs (4, X) — (B,Y) we get a homology ladder as

in .
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8.17 Remark. [9, 9.2.2] As in we get
1. Hy(X,X) = {0},
2. Hy(X,0) = H,(X), and
3. Ho(X,A) = {0} for path connected X and A # §.

8.18 Remark. [9, 9.2.4] Using the long exact homology sequence
o Hyp1(X,A) - Hy(A) - Hy(X) - Hy(X,A) - Hyp_1(4) — ...,
we obtain:

1. Let A C X be such that H,(A) — H,(X) is injective for all ¢. Then we get
short exact sequences 0 — Hy(A) — Hy(X) — Hy(X,A) — 0, where the
right most arrow is 0, since the next one in the exact homology sequence of
the pair is assumed to be injective.

2. Let A C X be a retract. Then by functorality H,(A4) — H,(X) is a retract
and hence by (1) we have (splitting) short exact sequences.

~

3. Let zp € X. The constant mapping X — {xz¢} is a retraction, hence H, (X)) =

H,({z0}) ® H,y(X, {xo}) by [2] By we have that H,({zo}) = {0} for
g # 0 and Ho({z0}) = Z, hence Hy(X,{zo}) = Hy(X) for ¢ > 0 and

0—Z — Ho(X) — Ho(X,{zo}) — 0 is splitting exact.

4. Let f: (X, A) — (Y, B) besuch that f, : H,(A) — Hy(B) and f. : Hy(X) —
H,(Y) are isomorphisms for all . Then the same is true for f, : H,(X, A) —
H,(Y, B) by the 5’'Lemma.

8.19 Theorem. Exact Homology Sequence of a Triple. [9, 9.2.5] Let B C
A C X. Then we get a long exact homology sequence

= Hyp1(X, A) =2 Hy(A,B) — Hy(X,B) — Hy(X,A) — ...
The boundary operator 0. can also be described by [2](x a) — [02](a,p) for z €

S,(X) or as composition Hy1(X,A) -2 H,(A) — H,(A,B).

Proof. We have a short sequence
0— S(A,B)— S(X,B)— S(X,A) — 0.

given by
S(B) ———S(B) &———= 5(4)
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Hence the bottom row is exact at S(X, A) and at S(A, B): In fact for a € S(4, B)
let the image in S(X, B) be 0. Then a = b € S(B) and hence ¢ =0 in S(A4, B).

b=——3b o
14. 13.
§|a|L> a °
Il. —v|72.
a0 .

It is also exact at S(X, B), since for & € S(X, B) which is mapped to 0 in S(X, A)
the image x € S(X) is an a € S(A) and hence satisfies @ is mapped to 4.

° ° Ja
Ig.
4.
aOF——=dy ——2

Is. Il. IQ.

Qi 0
So this short exact sequence induces a long exact sequence in homology. The boun-
dary operator maps by construction the class [z + S(A)] with 9z € S(A) to

[0z + S(B)]. This is precisely the image of value of the boundary operator [9z] for
the pair (X, A) under the natural map H(A) — H(A, B). O

8.20 Exercise. Let X be path-connected and A C X. Then Hy(X, A) = 0.

Homotopy theorem

We are now going to prove that homotopic mappings induce the same mappings in
homology. For this we consider first a homotopy, which is as free and as natural as
possible, i.e. the homotopy given by inj, : X — X x I, x — (z,t). We have to show
that inj, and inj; induce the same mapping in homology. So the images of a cycle
should differ only by a boundary. Let o : A; — X be a singular simplex. Then
we may consider the cylinder o(A,) x I over o(4,). It seems clear, that we can
triangulate Ag x I. The image of the corresponding chain c¢441 under o x I gives
then a g+ 1-chain in X x I, whose boundary consists of the parts o x {1} = inj; oo
and o x {0} = inj, oo and a triangulation of (¢ x I).0c,. Note that it would havew
been easier here, if we had defined the singular homology by using squares instead of
triangles, since it is not so clear how to describe an explicit triangulation of A, x I,
in fact we will show the existence of ¢,41 by induction in the following lemma.

We make use of the following

8.21 Definition. [9, 8.4.6] Let R, S : X — ) be two functors. A NATURAL TRANS-
FORMATION ¢ : R — S is a family px : R(X) — S(X) of Y-morphisms for every
object X € X such that for every X-morphism f: X — X’ the following diagram
commutes:

px

R(X) 2%+ 5(X)

R(f)l S(f)l

R(X') ——> S(X')

Px’!
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8.22 Lemma. [9, 9.3.7] Let g, 1 : S(-) — S(-xI) be two natural transformations
and assume furthermore that Hy(po) = Ho(p1) : Ho({*}) — Ho({*} x I). Then g
and 1 are chain homotopic, i.e. there exists natural homomorphisms Z = (Z,),
with Z¢ 1 Sg(X) — Sg41(X x I) and 024+ Z4-10 = p1 — @o on Sq(X).

Proof. We construct Z, by induction on g:

For ¢ < 0 let Z, := 0. Now let Z; for all j < ¢ be already constructed. Consider
the natural transformation ¢ := 1 — ¢g. We first treat the case X := A,. So we
have to find Z,(Ag) =: cqg41 € Sq(Ag x I) with Ocgy1 = @Ay — Z4_10A,. For ¢ =0
this follows from the assumption [p(Ag)] =0 € Ho(Ag x I). For ¢ > 0 we can use
that S(A, x I) is acyclic (since A, x I is a convex subset of R?"2) by . So
we only have to show that the right side is a cycle. In fact by induction hypothesis
(applied to 0A,) we have

a(qu—zq,laAq) = @aAq—(w—zq,Qa) A, = PN ,— (apaAq—zq,gaaAq) = 0.
Now we extend Z, : 94(X) — Sy41(X x I) by naturality to the case of a general
X:Le. for 0 : Ay — X we define Z,(0) := Sg41(0 % I)(cq41)-

Then Z, is in fact natural, since Sq(f X I)Z4(0) = Sq41(f X I)Sg+1(0 x I)cq4+1 and
205(£)(0) = 24(0) = Sy(fo X Neqrr and (f x o (0 x I) = (fo ) x I

Sy(Y) — 22 S,(Y x I

fe T(fxf)*

Sy(X) — 25 5,(X x 1)

TU* T(ox[)*

Zq
Sq(Ag) —= 54(Ag x 1)
Furthermore Z, is also a chain-homotopy, since
0Z4(0) = 0Sq(0 x I)(cq41) = Sq(o x 1)Dcqr1 = Sq(o x I)(pAq — Z4-10A)
= ©54(0)(Aq) = 24-1054(0)(Aq) = (o) = 24-10(0). O

8.23 Definition. [9, 8.3.12] [9, 8.3.15] Two chain mappings ¢, : C — C’ are
called (CHAIN) HOMOTOPIC and we write ¢ ~ ¢ if there are homomorphisms Z :
Cy — Cpyq such that ¢ —p = 0Z + Z0.

8.24 Proposition. [9, 8.3.13] Let ¢ ~ 1 : C — C' then H(y¢) = H(y) : H(C) —
H(C).

Proof. Let [¢] € H(C), i.e. dc¢ = 0 then H(¢)[c] — H(p)[c] = [(¥ — ¢)c] = [Z0c +
0Zc] =[0Zc] = 0. O

8.25 Proposition. [9, 8.3.14] Chain homotopies are compatible with compositions.

Proof. Clearly, for ¢ ~ 1 we have y op ~ y o and ¢ o x ~ 1 o x and being
homotopic is transitive. O

8.26 Theorem. [9, 9.3.1] Let f ~ g: (X,A) — (Y,B). Then f, = g. : Hy(X, A) —
H,(Y,B).
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Proof. By we have that the chain mappings induced by the inclusions inj; :
X — X x I are chain homotopic to each other for j € {0, 1} by a chain homotopy Z.
Let h be a homotopy between f and g, i.e. f = hoinj, and g = hoinj;. By we
have S(f) ~ S(g) : S(X) — S(Y) and also the restrictions S(f) ~ S(g) : S(A) —
S(B), since the constructed homotopy is natural. Thus S(f) ~ S(g) : S(X,A) —
S(X,B). By we have that H(f) = H(g) : H(X,A) — H(X, B). O

8.27 Corollary. [9, 9.3.2] Let f ~g: X — Y. Then f, = g.: Hy(X) — Hy,(Y).
Proof. Obvious, since Hy(X,0) = H,(X). O

8.28 Corollary. [9, 9.3.3] Let f : X — Y be a homotopy equivalence. Then fi :
H,(X) — Hy(Y) is an isomorphism for all q. In particular all contractible spaces
are acyclic.

Proof. Obvious by functoriality and since an inverse g up to homotopy
induces an inverse H(g) of H(f). O
8.29 Corollary. [9, 9.3.4] [9, 9.3.5] [9, 9.3.6]

1. Let A C X be a DR. Then Hy(A) — Hy(X) is an isomorphism and hence
H,(X,A) = {0} for all q.

2. Let BC AC X and A be a DR of X. Then Hy(A,B) — Hy(X,B) is an
isomorphism.

3. Let BC AC X and B be a DR of A. Then Hy(X,B) — H, (X, A) is an
isomorphism.

Proof. The first part follows as special case from and from the long exact
homology sequence of a pair, . The other two cases then follow by using the

long exact homology sequence of a triple, . O

Excision theorem

In order to prove the general excision theorem we need barycentric refinement for
singular simplices, since a singular simplex in X need neither be contained in S(U)
nor in S(V) for a given covering {U,V} of X.

8.30 Definition. [9, 9.4.1] For the standard g-simplex A, we define the BARYCEN-
TRIC CHAIN B(A,) € Sq(A,) recursively by

B(Ap) :=Ag = {60}

=A, *Z 1)75(87)(B(Ay-1)) for ¢ > 1,

where A denotes the barycenter 7 +1 S =0 el

Now we define in a natural way B(o) := B(S(U)(Aq)) = S(o)B(Ay) for o : Ay —
X and extend it linearly to B : Sg(X) — S¢(X) by setting B(ZU Ng - a) =
> o NeB(0).
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8.31 Proposition. [9, 9.4.2] The barycentric refinement is a natural chain mapping
B:S5() — S(0) with B ~1id.

Proof. Let us first show naturality: So let f : X — Y be continuous. Then
(f«B)o = (fs0.B)Ay = (f 0 0)«BA, = B(f o o) = Bf,o.
Next we prove that it is a chain mapping, i.e. 0B = BJ. On S, (X) with ¢ < 0 this
is obvious. Note that the formula for B(A,) can be rewritten as
BA, = A, x BOA,.
so we use induction for ¢ > 0:
0Bo = 00,BA, = 0,0BA, = a*a(AAq x BaAq)

8.13 I.Hyp.

o.(BOA, ~ B, +0BOA,)
= BOo(Ay) — 0 = Boo.

Bo.0(A,) — 0. (AAq * B&?(Aq))

Finally we prove the existence of a chain homotopy id ~ B : S — S. Let i : X —
X x I be given by z — (2,0) and p : X x I — X given by (x,t) — x then
S(p) o S(i) =id. By we have a chain homotopy S(i) ~ S(i) o B. Composing
with S(p) gives a chain homotopy id = S(p) o S(i) ~ S(p) 0o S(i) o B = B by

[5.25) 0

8.32 Corollary. [9, 9.4.3] Let Y C X then B, =id: H(X,Y) — H(X,Y).

7 times
By iteration we get the corresponding results for B" := Bo...o B.

Proof. Let oo € Hy(X,Y) be given, i.e. a = [z + S4(Y)] for a z € S;(X) with
0z € 8S4-1(Y). By B ~ id. Let Z be a corresponding natural chain homotopy,
then Bz —z = 0242 — 2410z € 0242+ 54(Y), i.e. Bz is homologous to z relative
Y and, furthermore, 0Bz € 02+ 0+ 0Z,_10z € S4_1(Y), so Bz is a cycle relative
Y,ie.a=[z+5,Y)] =[Bz+5,Y)] = B(a). O

8.33 Lemma. [9, 9.4.4] Let X be the union of two open subsets U and V. Then
for every ¢ € Sy(X) there is an r > 0 with B"c € Sq(U) + 54(V) C S4(X).

Proof. It is enough to show this for ¢ being a singular simplex o : A; — X. The sets
o1 (U) and ¢~ !(V) form an open covering of A,. Let A be the Lebesgue number
for this covering, i.e. all subsets of A, of diameter less than A belong to one of the
two sets. Since B"(A,) is a finite linear combination of singular simplices, whose
image are closed simplices of the r-th barycentric refinement of K := {7: 7 < A,},
we have by that each summand of B"(A,) has image in 0= (U) or in o= (V).
Hence B"(0) = B"S(0)(A,) = S(0)B"(4,) is a combination of terms in .S, (U) and
in Sy(V). O

8.34 Excision theorem. [9, 9.4.5]

Let X; C X for j € {0,1} such that the interiors X3 cover X.

Then the inclusion i, : (Xa,X2 N X1) — (X2 U X3, Xy) induces isomorphisms
Hq(XQ,XQ N Xl) — Hq(XQ U Xl,Xl) fOT all q.

In particular this applies to X1 :=Y C X and X5 := X \ Z for subsets Z and' Y
satisfying Z C Y° and so gives isomorphisms Hy(X \ Z,Y \ Z) — H,(X,Y).
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Proof. We have to show that i, : Hy(X2, XoNX7) — Hy(X2UX5, X1) is bijective.

is is onto: Let f € Hy(X2 U X3,X1), ie. B = [z + S4(X1)] for some z € Sy(X)
with 9z € S,(X1). By there exists an r > 0 and u; € Sy(X7) such that
z ~ B"z = u; + us ~ ug relative X; by . We have duy € S,_1(X32) and
Oug = O0B"z — Ouy = B"0z — Ouy € Sy_1(X1), hence dus € S,_1(X1 N X3). So
a = [ug + S4(X2 N X4)] € Hy(X2, X2 N X7) and it is mapped by i. to §.

i is injective: Let a € Hy (X2, X2 N X1) be such that i,a = 0. Then a = [z +
Sq(X2 N Xy)] for some x9 € Sq(X2). Since i, (a) = 0 we have a (g+ 1)-chain ¢ in X
and a ¢g-chain z1 in Xy with ¢ = x5+x1. Again by there is an r > 0 such that
B"c = uy +up with u; € Sq(X]‘?). Hence duj 4+ Quy = OB"¢c = B"0c = B" (x5 + 21).
Soa := B"x9—0us = Qu; —B"x7 is a chain in X;NXs and x9 ~ B"x9 = Qus+a ~ 0
relative X, by , ie.a=[ry+5,(XoNX1)] =[Ouz +a+S,(X2NX7)] =0.

The alternate description is valid, since the interiors of X;: =Y and X5 := X\ Z
cover X iff Yo = X¢ D X\ X9=X\(X\Z)=Z.Obviously Y\Z=X;NXy. O

8.35 Corollary. (9, 9.4.6] [9, 9.4.7] Let (X, A) be a CW-pair. Then the quotient
map p : (X, A) — (X/A, A/A) induces an isomorphism in homology for all ¢ and
hence H (X, A) =2 Hy(X/A) for all ¢ # 0.

Proof. By we have an open neighborhood U of A in X, of which A is a SDR.
Let p: X — X/A =Y be the quotient mapping and let V := p(U) C X/A =Y
and y := A/A € X/A. Since U is saturated also V C Y is open and p(4) = {y} a
SDR in V. Now consider

o

Hy(X,A) ———— H,(X,U)

l ' l 8.
D P«

o

IR

Hy(X\ AU\ A)

p*lu
Hy Y\ {y},V\{y})

w
=~

1R

Hy (Y, {y})

8.34

By we have that p: (X, A) — (Y, {y}) is a relative homeomorphism, so the
vertical arrow on the right side is induced by an isomorphism of pairs and hence is
an isomorphism. The horizontal arrows on the right side are isomorphisms by the
excision theorem . Hence the vertical arrow in the middle is an isomorphism.
By the horizontal arrows on the left are isomorphisms, hence also the vertical
arrow on the left.

By we have finally that H, (Y, {y}) = H,(Y) for ¢ > 0. O

8.37 Proposition. [9, 9.4.8] Let f : (X, A) — (Y, B) be a relative homeomorphism
of CW-pairs. Assume furthermore that X \ A contains only finitely many cells
or f X — Y is a quotient mapping. Then f. : Hy(X,A) — Hy(Y,B) is an
isomorphism for all q.
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Proof. By we have an induced continuous bijective mapping X/A — Y/B
making the following diagrams commute:

A B

]V(—fj/ Hy(X,A) — '~ H,(v,B)
o o R e
X/A—L>v/B Hy(X/A, AJA) H (Y/B,B/B)

That this bijection is a homeomorphism follows in case X \ A has only finitely many
cells since then X/A is compact, and in the case where f : X — Y is a quotient
map then so is X — Y — Y/B and hence also X/A — Y/B. Both X/A and Y/B

are CW-complexes by and by |8.18.2| the bottom arrow on the right is an
isomorphism. By the vertical arrows on the right are isomorphisms as well,
so the same has to be true for the top one. O

8.38 Proposition. [9, 9.4.9] Let X; be CW-complexes which 0-cells x; € X; as
base-points. Then we have natural isomorphisms [I; Hy(X;) — He(V; X;) for
q# 0.

Proof. We have \/; X; := | |; X;/A where A := {z; : j € J}. Hence Hy(A) = 0 for

q # 0 and so
(VX ) () () = e T )
J

J J

8.39 Proposition. [9, 9.4.10] Let X = X3 U Xy, where X; C X is open. Then
there is a long exact sequence (the so called MAYER-VIETORIS SEQUENCE )

T Hq(Xl N X2) - Hq(Xl) D Hq(X2) - Hq(X) - qfl(Xl NXz) —

Proof. Let S := S(X), S; := S(X;) C S(X) and Sy := S(X2) C S(X). Then
S(X; N Xs) =51 NS, Let S; + 52 be the chain complex which has the subgroup
of S generated by S; and Sy in every dimension. We claim that the following short
sequence
0— Sl/(Sl OSQ) — S/SQ — S/(Sl +S2) — 0

is exact. In fact by the first isomorphy theorem we have Sy /(51 NSs2) 2 (S14.52)/5s
and hence the inclusion S; + S2 C S induces an injection S;/(S1 N S3) — S/Ss.
The quotient of it is by the second isomorphy theorem (S/Ss)/((S1 + S2)/S2) =
S/(S1 4+ Sz2), which proves the claim. By we have that the inclusion (51,51 N
S3) — (S,8S2) induces an isomorphism H(S;/(S1 N S3)) = H(X1, X1 N X3) —
H(X;UXy, Xo) := H(S/S3). Hence the long exact homology sequence gives
H(S/(S1+ S2)) =0

If we consider now the short exact sequence
0—>51+SQ—>S—>S/(S1+SQ)—>O

we deduce from the long exact homology sequence that H(Sy + S2) — H(S) is an
isomorphism.
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Now consider the sequence
0—-5NS—>5®5 — 85 +S5 —0,

where the inclusion is given by ¢ — (¢, —c¢) and the projection by (c1,¢2) — ¢1 + ca.
This is obviously short exact, since (c1,c¢2) is mapped to 0 iff ¢; + ¢ = 0, i.e.
c:=c¢ = —cg €51 NSy is mapped to (c1, ¢2).

Sl ﬂSg C—>S2 :S2
S — 8+ 55 € £ S/(SlJFSQ)
S1/81 NSy == (51 + S2)/55 € S/ S S/(S1+ S2)

So we get a long exact sequence in homology, where we may replace H(S; + S2) by
H(S) =: H(X) by what we said above. Note that the boundary operator is given
by [z] — [0z1], where B"z = z1 + z». O

8.40 Remark. [9, 9.4.12]

(1) It is enough to assume in that there are neighborhoods of X; and X,
which have X; and X5 and their intersection has X; N X, as DRs. In particular
this applies to CW-subspaces X; of a CW-complex X by .

(2) Let X7 N Xy be acyclic. Then the Mayer-Vietoris sequence gives Hy(X) =
H,(X1) ® Hy(X>) for g # 0. In fact only the case ¢ = 1 needs some argument: We
have the exact sequence

0 - Hl(Xl ﬂXg) HHl(Xl) @Hl(Xg) 4>H1(X)

Z = Ho(X1 N X3) —— Ho(X1) © Ho(X2) — Ho(X) —0

and the mapping Ho(X1NXs) — Ho(X1)® Ho(X2) is injective, since the generator
is mapped to a generator of Hy(X;) and of Hy(X3).

(3) Let X, and X5 be acyclic, then we have Hy (X1 N X3) =2 Hyyq1(X) for ¢ > 0 and
furthermore H;(X) is free abelian and

H, X1 @Hl X2)9H1(X)9H0(X1ﬂX2)9H0 X1 @Ho X2)9H0 )90
Z

Zk
gives Hy(X) = Z*~! via the rank formula rank(ker f) + rank(im f) = rank(dom f),
where we used that X = X; U X5 is connected being the union of two connected
sets.

(4) Consider the covering S™ = D% U D™. By (1) we get a long exact Mayer-
Vietoris sequence. And since D" and D" are contractible, they are acyclic. So
H,(S™) = Hy(D} N D") = Hy_1(S" 1) for ¢,n > 0. Inductively we hence
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get Hy(S™) = H,_,(S°) = {0} for ¢ > n, since S° is discrete and H,(S™) =
Hy(S"=4971) = {0} for 0 < ¢ < n, since

0= Hy(S" 9t) = Ho(S" ) = Ho(D!"7) ® Ho(D™™7) = Hp(S"9%1) =0

YASYA Z
and H,(S™) = H,(S') = Z, since

0‘>H1(Sl) ‘>H0 SO ‘>H0( EBHO DO)%Ho(Sl) —=0

YASY/ YASY/ Z

Homology of balls, spheres and their complements

8.41 Proposition. [9, 9.5.1] Let n > 0 then

Z forq=n
0 otherwise

Hy(An, Ay) = {

The generator in Hy,(A,,A,) will be denoted [A,] and is given by the relative
homology class of the singular simplex ida, : Ap — A,,.

Proof. We proof this by induction on n.
.
(n=0) Hy(Ao,Ao) = Hy({1},0) Hq({}).

(n > 0) We consider A,,_; as face opposite to e, in A,, and let A,, := A, \Ap_1.
Since A, is a DR of A,, we conclude from the homology-sequence of the
triple A, C A,, C A, that H,(An,A,) = H, 1(A,, A,). Since A, 1\ A,_; =
A, \ A, we get from or that the inclusion induces an isomorphism
H,_1(A,— LA, 1) 2 H, 1(An,A ). Hence H (An,A ) =2 Hy_1(A,— LA, 1) and
by recursion we finally arrive in case ¢ > n at Hy—pn (Ao, Ao) which we calculated
above, and in case ¢ < n at Ho(A,—q, An,q) =0 by , since A,,_ is connected
and A,,_, # 0.

Let [A,,] denote the relative homology class in Hn(An,An) of ida, : A, — A,
Then its image in H,_1(An, A,) ist given by [dida, +Sn(Ay)] which equals the
image [ida,_, +$n(A4,)] of [Ap_1] € Hp—1(An—1,;A,_1). Obviously [Ag] is the
generator of Ho(Ag, Ag) = Ho({1}). O

8.42 Corollary. [9, 9.5.2] For n > 0 we have

Hq(D”,Snfl) ~ {Z forqg=n

0 otherwise

We denote the canonical generator by [D™]. It is given by th relative homology class
of a homeomorphism A, — D™. O
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8.43 Corollary. [9, 9.5.3] For n > 0 we have

N forq=mnorq=20
Hq(S ): .
0 otherwise
We denote the canonical generator by [S™]. It is given by [S™] = 0.([D™]) = [0D"].

So this gives a different proof from | 8.40.4

Proof. Consider the homology sequence of the pair S™ C D"t1:
1 (D™) —— Hya (D", §") —> Hy(S™) —> Hy(D"+)

(
[5.14]
0 0

O

8.44 Corollary. [9, 9.5.6] By we have Hq(\/;5™) = 0 for ¢ ¢ {0,n} and
H,(\,;s") = ab [1;Z and the generators are (inj;)«[S™]. O

Proposition. Let m # n then R™ 2 R™ and S™ % S™.

We have “proved” this by applying the theorem of the invariance of domains.

Proof of for R™ and S™. Let m # n and m > 0. Then H,,(5™) = Z
but H,,(S™) = {0}, so S™ £ S"™. Assume R" = R™ then S™ 1 ~ R™ \ {0} =
R™ \ {0} ~ S"~1 hence m = n. O

9.1 Proposition. [9, 11.1.1] S™ is not contractible and is not a retract in D"*!

Proof. Since H,(S™) = Z % {0} = H,({x}) the first statement is clear. And
the second follows, since retracts of contractible spaces are contractible. In fact let
hy : X — X be a contraction and let 7 : A — X have a left inverse p : X — A.
Then poh;oi: A— A is a contraction of A. O

9.2 Corollary. Brouwers fixed point theorem. [9, 11.1.2] Every continuous
map f: D™ — D" has a fixed point.

Proof. Otherwise we can define a retraction as in . O

10.1 Proposition. [9, 11.7.1] Let B C S™ be a ball. Then S™\ B is acyclic.

Proof. Induction on r := dim B.

(r =0) Then B is a point and hence S™ \ B = R" is contractible and thus acyclic.
(r+1) Let z € Z,(S"\ B) for ¢ > 0 and z :==x —y € Zy(S™ \ B) for ¢ = 0 with
z,y € S™\ B. We have to show that 3b € Sg41(S™ \ B) with 0b = z.

Consider a homeomorphisms f : I"*!1 = I" x [ = B. Then B; := f(I" x {t}) is
an r-ball. Thus by induction hypothesis there are by € Sg41(S™ \ By) with 0by = =
considered as element in S, (S™\ B;) < S4(S™\B). Since the image of b, is disjoint to
By, we can choose an open neighborhood V; of t such that I" <V, C f=1(S™\Im(b;)).
Using compactness we find a partition of 0 = ¢y < t; < --- < t§y = 1 of I into
finitely many intervals I; := [t;_1,t;] such that for each j there exists a ¢ with
I; C V;. Let b; := b, € Sq11(Y;) where Y; is the open subset S™ \ f(I" x I;). Now
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let X; := ﬂi<jYi- Then X; UY; =)
and _ij)/;’:XjJrl.

Y;UY; =Yj1UY; = 8"\ f(I" x {t;})

i<j

We now show by induction on j that [z] = 0 in Hy(X;). For (j = 1) nothing is to
be shown, since X; = S™. For (j + 1) we apply the Mayer-Vietoris sequence
to the open sets X; and Y:

ST\ FUI x A{t;}) X
Hy(X;UY)) — = Hy(X;NY;) —— Hy(X;) & Hy(Y;)

ind. on r

0
The image of [2] € Hy(X,11) in Hy(X,;) ® Hy(Y;) is zero, since the first component
is [z7] = 0 € Hy(X;) by induction hypothesis on j, and the second component
[z] = [0b;] = 0 € Hy(Y;). Since the space on the left side is zero, the arrow on the
right is injective we get that [2] =0 € Hy(X,41).

Since X; = 8™\ B finally, we are done. O

10.2 Theorem. [9, 11.7.4] Let S C S™ be an r-sphere with 0 < r < n —1 and
n > 2. Then

7Z8®7Z forq=0andr=n-—1
H,(S"\S)=<7Z forqe{0,n—1—r} andr <n-—1

0 otherwise.

Proof. Induction on r.
(r =0) Then S = {—1,+1} and S™\ S ~ S"~ !, so the result follows from or

s3]

(r > 0) We have S” = D" UD’, and By := f(D7.) are r-balls and 5" := f(S""!) an
(r—1)-sphere. By S™\ By are acyclic and since S™\.S" = (S™\ B;)U(S™\B_-)

and S™\S = (S™\B4)N(S™\B_) we get by | 8.40.3 | that H,(S™\S) & Hy41(S™\S")
for ¢ > 0 and Ho(S™\ S) = H1(S™\ S’) ® Z. By recursion we finally arrive at
Hy i (S™\ {£1}) = Hy4r(S™71), which we treated before.

10.3 Proposition. [9, 11.7.2] [9, 11.7.5] Let n > 2. If B C R™ is a ball, then

n Z forqe{0,n—1}
Hq(R \B) = .
0 otherwise.
If S CR™ is an r-sphere with 0 <r <n —1, then
VASY/ for(g=n—-1,r=0) or (¢g=0,r=n—1)
H,(R"\S)=17Z for(g=n—1,1r#0) or (ge{0,n—1—-r},r#n—1)
0 otherwise.

Proof. Let A C R™ = S\ {P;} C S™ be compact. The long exact homology
sequence of the pair (S™\ A,R™\ A) gives

— Hyp1 (8" \ A, R"\ A) % H (R" \ A) — Hy(S"\ A) — Hy(S" \ A,R"\ A) —
By the excision theorem applied to A C R™ C 8™ we get Hy(S™\ A, R"\ 4) =
H,(S™ R™), which is isomorphic by to Hq(S™, {*}), since R™ is contractible.
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This homology equals for ¢ > 0 by |8.18.3 | that of H,(S™) and is 0 for ¢ = 0 by

since S™ is path-connected. So

Hy(S",{+}) = {

Z forqg=n

0 otherwise

The long exact sequence from above thus is
— Hy1(S™, {#}) =% Hy(R" \ A) — Hy(S" \ A) — Hy(S", {+}) —

In particular, Hy(R™\ A) = H,(S™\ A) for ¢ ¢ {n —1,n} and near ¢ =n — 1 it is
for A a sphere or ball:

0—- H,(R"\A) - 0—->Z— H, 1(R"\A) - H,_1(S"\ 4) — 0,

This gives H,(R"\ A) =0 and H,_1(R"\ A) 2 Z® H,,_1(S™\ A), from which the
claimed result follows. O

10.4 Corollary (Jordan’s separation theorem generalized). [9, 11.7.6] [9,
11.7.7) Let X € {R",8"}. For any r-sphere S with v < n—1 we have that X \ S is
connected (i.e. we cannot cut X into two pieces along such a sphere).

If S is an n — 1-sphere then X \ S has two components, both of which have S as
boundary. If X = S™ then the components are acyclic.

Proof. For spheres of dimension 7 < n — 1 the result follows from and
since Ho(X \ S) & Z in these cases.

If S is a sphere of dimension n— 1, then Ho(X \ S) = Z2 by and . Hence
X \ S has two components, say U and V.

That for X = S™ the components are acyclic follows from H,(U) & H,(V) =
H,(X\ S)={0} for ¢ #0.

(U € S) In fact UNU = 0, since U is open and thus U = U \ U° = U \ U.
EromiU C ~V we get U C ~V = ~V since V is open and hence UNV = (. So
U=U\NUCX\V)\U=X\(UuV)=5.

(S CU) Let # € S and W be a neighborhood of z € X. Choose n — 1-balls B and
B’ with S = BU B’ and such that x € B C W. Let ¢ be a path in R™ from U to
V', which avoids B’ C S (this is possible by since X \ B’ is path connected).
Let to := sup{t : ¢(t) € U}. Hence y := ¢(ty) € U\U = U C S = BU B'. Hence
y € BCW and so WNU contains y and is not empty, hence z € U. O

10.5 Remark. [9, 11.7.8] For dimension 2 we have Schonflies’s theorem (see [7, §9]),
i.e. for every Jordan curve in 52, i.e. injective continuous mapping ¢ : S — S? there
exists a homeomorphism f : S% 22 §% with f|s1 = c. Thus up to a homeomorphism
a Jordan-curve looks like the equator S* C S2.

In dimension greater than 2, Alexanders horned sphere is a counterexample: One
component of the complement is not simply connected. This gives at the same time
an example of an open subset of S, which is homologically trivial (i.e. acyclic) but
not homotopy-theoretical (m1(U) # 0).
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Corollary (Invariance of the domain). Let X, Y C R™ be homeomorphic.
If X is open then so is Y.

Proof. Take x € X and y := f(z) € Y. By assumption there is a ball B := {z: |z —
x| <r} C X.Let S:=9B. Then R\ f(S) = (R"\ f(B))U(f(B)\ f(S)). The first

part is connected by and the second one coincides with f(B\S) = B\S = Dr
and hence is connected as well. Thus they are the path components of R™\ f(5)
and hence open. Since the set on the right side is a neighborhood of y in Y, we
have that Y is open. O

10.6 Exercise. Let v : S — S' Vv 8! be the closed path, which first runs once
through one and then through the other factor as in . Then v, : H1(S') —
Hi(STV §Y) is given by 71 ({S1}4) = (i1). ({81 1) + (). ({51} 4).

Cellular homology

10.7 Proposition. [9, 9.6.1] Let X be a CW-complex. Then H,(X?, X%1) =0
forp#q.

Proof. For ¢ < 0 this is clear. For ¢ = 0 we have H,(X4, X%') = H,(X°,0) =0
by [8.15],[8.7] and [8.9].

)

So let ¢ > 0. For p = 0 we have Ho(X% 1) — Hy(X9) -2 Hy(X9, X9 1) — 0 and
the first mapping is onto (since X? has less components). So the next arrow is 0.

Now let p # 0. By we have H,(X?, X971) =~ H,(X?/X97!) and so the result
follows from | 8.44 ], since X4/X4971 2 \/ §9. O

10.8 Corollary. [9, 9.6.2] The inclusions induce an epimorphism Hy(X?) — Hy(X)
and an isomorphism Hy(X9T") — H,(X).

Proof. By and
Hyt (X9, X971) = Hy(XT") — H,(X7) — H,(X?, X7
the first arrow in sequence
Hy(XT) — Hy(XT) — - — Hy(XP) — -+ — Hy(X)

is onto and the others are isomorphisms. So we have the result for finite C'W-
complexes. In the general case we use that every singular simplex lies in some
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XP, hence all mappings are surjective. Similar one shows injectivity, since [z] =
0 € Hy(X) implies z = dc for some ¢ € Sy(X) = |J; S,(X7), hence [z] = 0 €
H,(X7). O

10.9 Corollary. [9, 9.6.3] Let X be a CW -space without g-cells. Then Hy(X) = 0.
In particular Hy(X) =0 for ¢ > dim X.

Proof. From the homology sequence
ot (XP, XP7Y) = H (XP~Y) = H (XP) — H,(X?, X"")

for ¢ > p and we deduce H,(X%1) ~ ..~ H,(X~') = 0. By assump-
tion X9 = X! and hence H, (X%, X% 1) = 0 so we get the surjectivity of
H, (X% ') — H,(X?) and thus H,(X9) = 0 as well. Now the result follows sin-
ce by H,(X?) — H,(X) is onto. O

10.10 Definition. [9, 9.6.4] The ¢g-th CELLULAR CHAIN GROUP of a CTW-complex
X is defined as

Cq(X) = Hq<anXq_1)7

and its elements are called CELLULAR ¢-CHAINS. For every g-cell e in X with cha-
racteristic map x¢ : (D?,S971) — (X9, X97°!) we define a so-called orientation
x¢([D1)) € Cy(X) as the image of x¢ : Hy(D9,877') 2 7Z — H, (X9, X%1), whe-
re [D?) denotes the generator in H,(D9,5971) induced from a homeomorphism
A? — D1,

For every cell there are exactly two orientations, which differ only by their sign.
And Cy(X) is a free abelian group generated by a selection of orientations for each
q-cell.

Proof. Let x; and x2 be two characteristic mappings for e. We can consider them
as rel. homeomorphisms y; : (D9,5771) — (X97'Ue, X771). By these
factorizations induce isomorphisms. Hence H,(x1)[D9] = £H,(x2)[D?], since the
generator [D?] has to be mapped to a generator of Hy (D4, 5971), and the only ones
are £[D1].

Obviously Co(X) = Ho(X?) is free abelian.

For ¢ > 0 the projection p : (X9, X% 1) — (YV,{yo}) := (X9/X971 Xa-1/xa71)
induces by an isomorphism p, : Cy(X) — H,(Y,yo). Since Y is a join of
g-spheres we have that p.x$[D9] form a basis in the free abelian group Hy (Y, o),
as follows from . In fact consider the following commutative diagram:

(D4, 59-1) X (X9, X971)

hi /|

(qu {*}) - (Xq/Xq717 {*})7
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where the vertical arrows are rel. homeomorphisms and hence induce isomorphisms
in homology

e

Hy (D1, §171) —> Hy (X9, X971

h*lg p*lg

o (87) = H,(V/ 5%

ab HZ
and the bottom arrow maps the generator [S7] € H,(S9) = H,(S9, {}) to one of
the generators in H,(X?/X%7 1) = H (X1/X971 {}). O

10.11 Definition. [9, 9.6.6] Using the long exact sequences for the pairs (X971, X7)
and (X4, X971) we have

q+1 X)

"*)Hq-kl( xat+1 Xq)8—>H(X‘1)*>H(X‘1+1)H~-~

Hy(X7) e f (X9, X971) —>

Hy(X17)

Cq(X)

Let 0 := j. 00, : Cyy1(X) — Cy(X). We have 92 = 0 by the exactness of the
second sequence at Hy (X7, X 4=1) and thus we obtain a chain complex. Its homology
H(C(X)) is called CELLULAR HOMOLOGY of the CW-complex X.

For any q + 1-cell e with characteristic map x© we get

AXSIDI]) = 40X S [DTT] = G (X°]59)20u[DTH] = Ju(X®[50)£[0DTT] = ju(x®|)[S7],
by the homology ladder

Hyp1 (D7, 59) —> Hypy (X7, X9) == Cyy1(X)
a*l a*i ai
(x°159)« G

(59) — X2 o H(X7) —2 > O (X)

Singular versus cellular homology

10.12 Proposition. [9, 9.6.9] [9, 9.6.11] The homomorphism j. : Hy(X?) —
H,(X4,X97Y) is injective and maps onto the g-th cellular cycles. The map i, :
H,(X%) — Hy(X) is onto and its kernel is mapped by j. onto the g-th cellular
boundaries.

Thus one obtains isomorphisms
Jx t Hy(C(X)) —= Hy(X),

which are natural for cellular mappings.
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10.9

Proof. From the exact sequence 0 == H (qul) H,(X ) L (Xq X171y =
Cq(X) we deduce that j, is injective and hence Ker(9) = Ker(j.0 ) Ker(9,) =
mj.).

From the exact homology sequence of the pair (X, X7+1)

Ho (X9 s x) 2 X, xot) 2 o fgo(xeth S o H (X
q+1( ) q+1( ) q+1( ) q( ) q( )

we get H,i1(X, X71) = 0. By the exact homology sequence for the triple
X1CxattCcXx

Hyp 1 (XTH, X9) ——= Hyy1 (X, X9) —— Hypa (X, X7

we get that Hy1 (X9, X9) — H,1(X, X9) is onto. The g-th cellular boundary
is the image of the top row in

Hyr (X0, X9) & (X0 — 25 [, (X9, X))

:

(XX s H (XY s H(X)

H,

q

Since the rectangle commutes by naturality of 0, and since Im 0, = Keri, we get
Im(0) = Im(j.04«) = j«(Im9,) = ju(Keriy).

Hence the g-th cellular boundaries are the image of Keri, under j,. Now we get
the desired natural isomorphism

T

0 Keri, C H,(X1) Hy(X)——=0
\
H, (X9, X1
=N &~ | . >~ j.
Cq(X)
/ 1
0 —>Im0y41 & Ker g, H,(C(X))—0 N

10.13 Proposition. [9, 9.6.10] For ¢ > 1 we have that in the short ezact sequence
0 — Ker(i,) — Hy(X?) > H,(X) — 0

H,(X) is free abelian and Ker(i.) is generated by H,(x°)[S?], where x© : ST — X1
is a chosen gluing map for any q + 1-cell e in X.
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Proof.
00— Keri,—— H, (X9) —— H,(X) ——0

Bild 0 =~ /108

N

"4>Cq+1(X) THq(Xq) 4>Hq(Xq+1) ...

By we have that Hy(X?) = Kerd, C Cy(X) and hence is free abeli-
an. Furthermore H,(X9T') = H,(X) by [10.8], and hence the kernel of i, :
H,(X9) — Hy(X) equals the kernel of H,(X9) — H,(X%') =2 H,(X), and
equals by the homology sequence of the pair (X, X9) the image of 0, : Cq11(X) :=
H,y 1 (X9t X9) — H,(X9). By we have that C,,1(X) is the free abeli-
an group generated by x¢[D91], where x¢ : (D1, S%) — (X9t X) are chosen
characteristic maps for all ¢ 4+ 1-cells e in X. By ’ 10.11 ‘ (see ’ 8.15 ‘) we have that
0. (XS[DIH]) = [ox“[DT]] = x£[S7]. O

10.14 Proposition. [9, 9.9.10] For the projective spaces we have

{Z forq=20,2,...,2n

H, (P"(C)) =
q( (©) 0 otherwise

and

Hy (P (H)) =

Z forq=10,4,...,4n
0 otherwise

Proof. Since there are no-cells in all but the dimensions divisible by 2 (or 4) the
boundary operator of the cellular homology is 0 (since either domain or codomain
is zero) and hence the homology coincides with the cellular chain complex. O

Simplicial versus singular homology

We are now going to show that the singular homology of a singular complex K is
naturally isomorphic to the homology of the associated CW-space |K|. The idea
behind this isomorphism is very easy: To a given simplex o = (zy,...,z,) € K one
associates the affine singular simplex & : A; — |K|, which maps e; — z; for all
0 < j < ¢q. We will show that this induces a map H,(K) — H,(|K]), [0] — [o].
In order that it is well defined we have to show that an even permutation of the
vertices does not change the homology class of . We do this in the following

10.15 Lemma. [9, 9.7.1] Let 7 be a permutation of {0,...,q}. Then 7 indu-
ces a affine mapping T 1 (Aq, Ag) — (Ag,Ag), with Hy(T)[Ag] = sign(7)[A,] €
Hy(Ag, Ag)-

Proof. Since any permutation is a product of transpositions, we may assume
that 7 is a transposition, say (0,1). Let an affine o : Ag41 — A, be defined by

€0;€1,€2... — €1;€p,€e1,.... The boundary of this singular ¢ + 1-simplex in A, is
Jo = 0050+Zi¢{072}(71)i005i+0052 =1ida, +c+7 for c:= Zié{og}(fl)iaodi €
Sq(Ag). Hence H(T)[Ag] = —[7] = —[A4]. O
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Although this lemma shows that the mapping H,(K) — H,(|K|) is well-defined,
it is not so obvious to show that it will be an isomorphism, since there are a lot
more singular simplices in |K| then just the simplices of K. So we will make a little
detour via the cellular homology.

10.16 Definition. [9, 9.7.2] Let 0 = (z, ..., x4) be an oriented g-simplex in a sim-
plicial complex K. This induces an affine mapping & : (A,, A,) — (|K|9, |K|71),
which can be considered as characteristic mapping for ¢ C |K|. Note however that
o depends on the chosen ordering of the vertices. Hence we get a mapping

P : Cy(K) — Cq(|KD = Hq(‘K|q7 ‘K|q_1)= P(0) := 5*[Aq] = [7].

This is well-defined (i.e. depends no longer on the ordering but only on the orien-

tation) by | 10.15 | Note that we used an identification of Cq(K) with the free

abelian group generated by the simplices with some fixed orientation.

10.17 Theorem. [9, 9.7.3] The mapping ® defines a natural isomorphism C(_) —
C(l-)-

Proof. That ®x : C(K) — C(]K]) is an isomorphism is clear, since the free
generators o are mapped to the free generators [7] | 10.10 |

It is natural for simplicial mappings ¢ : K — L. In fact take a simplex ¢ =
(xo,...,xq) € K. If ¢ is injective on the vertices z; of o, then

o = &((wo), -, Y (@) = [(Y(@0), .-, P(@g))] = [[¥] 0 0] = [ Do

In the other case o = 0, hence ®po = 0 and |Y].Po = |¢|.[d] = [|¢| o 7], but
|| o & has values in |L|?7!, hence [|[¢)| 0 5] = 0 € H,(|L|9,|L|771).

Let us show that it is a chain mapping. For o = (o, ..., z,) we have

0Do = j,0.[5] = 7.[05] = [95] [Z(—l)j(yoéﬂ} and

Do = @(Z(q)ﬂ‘@o, T ,xq>) = [Z(q)ja o 53}

So 0P = ®0. O

10.18 Corollary. [9, 9.7.4] Let K be a simplicial complex. Then we have natural
isomorphisms Hy(K) =2 H,(C(|K|)) — H,(|K]|), from the simplicial to the
cellular and further on to the singular homology.

Proof. This follows by composing the isomorphisms in ‘ 10.17 ‘ and ‘ 10.12 ‘ O

Let us now come back to the description of the isomorphism H(K) = H(|K|)
indicated in the introduction to this section.

10.19 Proposition. [9, 9.7.7] The isomorphism H(K) = H(|K|) between simpli-
cial and singular homology can be described as follows: Choose a linear ordering of
the vertices of K, and then map a simplexr 0 = (xo,...,xq) with zg < --- < x4 to
g, which is just o considered as map A, — |K]|.
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Proof. We consider the following commutative diagram

Hy(|K|7) — H,(|K])

Hy (K], |K|97Y) g =
Cy(IKT) Ker 8, ——= H,(C(|K]))
anf—v o | b, |

Co(K) <————Z4(K) —— Hy(K)

and take o € Hy(K). It can be represented by a simplicial cycle z := >~ _n,o €
Zy(K) C Cy(K). On the other hand we can consider the singular ¢-chain z :=
Yo Ne0 € Se(|K]). It is a cycle, since 0z = ) _n,00 < Y. ne00 =0(>, n,0) =
0z = 0 = 0. Since the image of & is the closure of the simplex o it is contained
in the g-skeleton |K|?, and hence we may consider § := [Z] € H,(|K|?). Note that
J«(B) = 3D, ned] = Do, ned4[Ag] = >, neP(0) = ®(2). Thus the composition
of isomorphisms H,(K) 2= H,(C(|K|)) — H,(|K|) maps o = [2] — [®(z)] —
iJi H(@(2)) = 0[] = [2]. 0

Fundamental group versus first homology group

10.20 Proposition. [9, 9.8.1] We have a natural homomorphism hy : m (X, z) —
H1(X) given by [p] — @«[St] = [p]. For the last equality we consider ¢ : (S*,1) —
(X, z0) either as singular chain Ay = S' — X or as singular simplex A; — St —
X.

If X is path-connected then this homomorphism is surjective and its kernel is just
the commutator subgroup. Thus Hy(X) is just the abelization of w1 (X, xg).

Proof. That h is natural is clear. Let us show that it is a homomorphism. So let
two closed curves o, : (S*,1) — (X, zg) be given.

We need a formula for the concatenation of paths considered as mappings (S!,1) —
(X, z0): The corresponding paths I — S are obtained by composing with ¢ +— 27,
hence ¢ - 1 is given by (p,9)ov : (S1,1) — (S, 1) v (S',1) — (X, z0), where
v: S8t — S1v Slisgiven by t — (€272 1) € ST v ST C S x St for 2t < 1 and
ts (1,e2™21) ¢ v ST for 2t > 1.

We also need a formula for v, : Hy(S') — H;(S' Vv S'): Consider the relative
homeomorphism o : (A1, A;) — (S, 1) given by (1 —t)eg + te; — €2™. It induces
an isomorphism Hy (A1, A) — Hy(S',1) = H,(S"), which maps the generator [A,]
to [S!]. Now take the barycentric refinement Bo of o. We have v,[S!] = v.[o] =
v.[Bo] = [inj; oo] + [inj, oo] = [St] & [S1] € H1 (St v S') = H (SY) & H1(SY).

andreas.kriegl@univie.ac.at © 11. Janner 2012 127



10.23 8. SINGULAR HoMOLOGY

Thus we have

14
() P2 () 0 1)) = ((929) 0 1) [8Y] = (0, ). ["]
2 (0. (19 @ [51) = (5] + 1ls")
= hile] + ha[Y].

Although the theorem is valid for arbitrary path-connected topological spaces, see
[8, TV.3.8], we give the proof only for connected CW-complexes X. Since 7 and
H, do not depend on cells of dimension greater then 2 by and 7 we may
assume dim X < 2. The theorem is invariant under homotopy equivalences, hence
we may assume by and that X has exactly one 0-cell and that this cell
is 29. So X! is a one point union of I-cells and X is obtained by gluing 2-cells e

via maps f¢:S! — X! By and we may assume that f¢(1) = zo. Now

consider the commutative diagram

(X1, 20) —— 1 (X, z0)

0 —— N——m (X', z0) L>>7T1(X7$0) —0

hi|n hi1 hli
0— U H(X') — s Hy(X) ——>0
0 0

By the top 7, is onto and its kernel IV is the normal subgroup generated by the
[£¢]. By [10.13 | the bottom 4, is onto and its kernel U is the subgroup generated
by (f¢)«[S']. By we know that the abelization of a free group is the free

abelian group and by ‘ 5.38 ‘ and ‘ 8.44 ‘ the two spaces in the middle are free resp.
free abelian, with the corresponding generators. So we have that the result is true
for X*. Furthermore hy(N) = U, since the generators of N are mapped to those of
U. By diagram chasing the general result follows: Let G := 71 (X!, x¢). The map
hy : (X, 29) — Hy(X) is obviously surjective and its kernel is given by all gV
for which hy(gN) = hi1(g)U = 0, i.e. h1(g) € U. By surjectivity of hy : N — U we
have an n € N with hy(n) = hi(g), i.e. gn~! € G'. So gN € (G/N)'. The converse
inclusion is clear, since Hy(X) is abelian. O

10.21 Corollary. [9, 9.8.2] For the closed orientable surface X of genus g we have
Hyi(X) =2 Z%9 for the non-orientable one we have Hy(X) = Z9~ ' @® Zy for the
projective spaces we have Hy(P™) 2 Zs for 2 < n < co.

Proof. Use the formulas given in ’ 5.53 ‘, ’5.54‘ and ’ 5.43 ‘ O

10.23 Proposition. [9, 9.9.2] Let f : St — S be continuous of degree k. Then
fe t Hi(SY) — Hy(SY) is given by [S1] — k- [S1].
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Proof. We know that f acts by multiplication in homotopy and using the naturality
of hq gives the same result for homology.

1R

Z—=mi(8',1) —= Hy(S")

1
k~L Wl(f)l Hl(f)i

7 — (S, 1) hi>H1(Sl)

1

IR

For a direct proof see [9, 9.5.5] and . O

10.24 Proposition. [9, 9.9.9] We have for the homology of the closed orientable
surface of genus g:

Z forq=20,2
Hy(X)=({7Z% forq=1

0 otherwise
and for the non-orientable ones:
Z forq=20
Hy(X)=2 297 @ Zy forq=1
0 otherwise

Proof. We calculate the cellular homology. Recall that in both cases X can be
described as the CW-complex obtained by gluing one 2-cell e to a join of circles
51 along a map f : S* — \/¥ ST of the form ijt - -45™. Thus the non-vanishing
cellular chain groups are Cp(X) = Z, C1(X) =2 R* and Co(X) = Z with generators

given by the base-point 1, the 1-cells e} and the 2-cell 2. As in the proof of | 10.20

and using one shows that f.[S1] = n; - €]+ A+ [éjl] Hence 0 (e?) =
Jo(x®s1)[S'] = niej, + -+ + nme; , whereas 9, = 0.

In case of an oriented closed surface X of genus g we thus have Oye? = el + el —
el —el+---=0, hence Hy(X) = Hy(C(X)) = Cy(X) is as claimed.

In case of a non-orientable surfaces X of genus g we have dye® = 9(x% [D?]) =
Jefe[ST] = 2e} + -+ + 2¢

10.11
> which shows that Hy(X) = Kerdy = {0} and
Hy(X) =Kerdy/Ker 0y =79 [2Z(e1 + - -+ ef) = “Plef, ..., ef : 2(el +--- +e}) =

0) =e1,...,ef j,x:=ef+--Fe):20=0)=29" L. O

10.25 Proposition. [9, 9.9.14] For the projective spaces we have

Z forg=0o0orgq=n=1 mod2
H,(P"(R)) =< Zy for0<qg<nwithq=1 mod 2

0 otherwise

Proof. The idea is to consider a CW-decomposition of S™ compatible with the
equivalence relation x ~ —z, which gives P" = S§™/~. For this we consider the
spheres S° C S' C -+ C S™ and the cells {z € S9: £x,41 > 0} with characteristic
map fI :xz — (z,£4/1 —|z|?). They form a cell decomposition of S™ and hence
el == (f1).[D?] is a basis in Cy(S™). We have the reflection r : D? — D9, z —
—x and may consider it as mapping r : (59,8971) — (5%,597!) to obtain an
homomorphism r, : Cy(S™) — Cy(S™).
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We claim r.ef = (—1)%2: Note that r.[D9] = (—1)?[D] which is obvious for
g = 1 and follows by induction for ¢ > 2. Since r o f{ = f% or we thus get
reed =1 (f1)u[DY] = (f2)eri[D] = (—1)%€.

Next we claim that 8eq+1 = (el —el) = et Since fITS9 = id we get
dedt! = 4.[59] using . Now consider

787 1 — H,(57) H, (54,59 1)i> g—1( Sq — H,_1(99)

b ({el}) 0

So 9. # 0 since it is onto and in particular applied to the generators el we have
Ovel = 0,e? #0. So Ker 0, = Z is generated by e —e?, but it coincides with the
image of j, and hence is generated by j.[S?]. Thus j,[S] = (el —e?).

Now P" is a C'W-complex with cells e” = p(el) and with characteristic mappings
po fl:D?— P Hence the generators of C,(IP") are given by (po f{).[D?] again
denoted e9. Since por = p we have by the first claim that p,(e?) = (=1)%p,(r.el) =
(—1)p.(el) = (—1)%. For 0 < g < n we get by the second claim that

det = Ip.(el) = p.d(ed) = tp.(el! — et
f
—i(1 - (cne et =)0 forodda
+2e?~!  for even ¢

For even ¢ with 0 < ¢ < n we have no non-trivial cycle in C,(P"), since de? =
+2e97L. For odd 0 < ¢ < n we have that e? is a cycle and 2e¢? = 4+9e9t! is a
boundary for ¢ < n. So the claimed homology follows. O
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0-homologous ¢-chains, 95
0-homologue, 93
0-homotopic, 30

decktransformations, 78
deformation retract, 37

degree, 34
abelization of a group, 65 dense functor, 80
act freely, 19 dimension of a simplical complex, 44
act strictly discontinuous, 76 direct sum of Abelian groups, 65
acyclic space, 107 doubling of a manifold, 15

affine homeomorphisms, 1 . .
edges of a simplical complex, 44

barycenter, 47 equivalence classes, 5
barycentric chain, 112 exact, 93
barycentric refinement, 47 exact g-chains, 95
base space, 76 exact sequence of Abelian groups, 97
base-point preserving homotopy, 30 face, 43
boundary, 5, 12
boundary of an oriented g-simplex, 95 face-map, 106
Y 1 b fibers, 76

boundary point, 12 fibration, 35

first homotopy group, 60
free abelian group, 66
free group, 66

free product of groups, 64
fundamental group, 60

carrier simplexof a point, 44
cellular g-chains, 122
cellular chain group, 122
cellular homology, 123
cellular mapping, 56

chain complex, 95

. . general lens space, 20
chain mapping, 101

. . graph, 71
character}st}c conjugacy class, 85 group with generators X and defining rela-
zlﬁz;:’ctle;lstlc map, 52 tions R, 66
closed g-chains, 95 Heegard decomposition, 18
closed manifold, 12 homeomorphism of pairs, 2
cofibration, 35 homologous g¢-chains, 95
commutator subgroup, 65 homology, 95
commutators, 65 homology group, 96
components, 45 homomorphism of coverings, 78
concatenation of paths, 60 homotopic, 29, 30
cone, 98, 108 homotopy, 29
congruence relation, 64 homotopy class, 29
connected sum, 15 homotopy equivalence, 37
connectible, 45 homotopy equivalence of pairs, 37
contractible, 30 homotopy equivalent, 37
convex, 3 homotopy extension property (HEP), 35
coproduct of Abelian groups, 65 homotopy of pairs, 30
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homotopy relative a subset, 30

induced ordering of the opposite face, 94
inductive limit, 67

inverse path, 60

isotropy subgroup, 83

Klein’s bottle, 14
knot, 23

leaves, 76
lens space, 18

Mobius-strip, 14

manifold, 12

mapping cylinder, 40
mapping degree, 32

mapping of pairs, 2
Mayer-Vietoris sequence, 115

natural transformation, 110

neighborhood deformation retract, 37
neutral element, 64

normal coverings, 80

normal subgroup, 64

normal subgroup generated by a subset, 64

orbit space, 19
orientation of a g-simplex, 93

pair of spaces, 2

points in general position, 43
polyhedra, 44

product of groups, 64
projective plane, 16
projective space, 16
push-out of groups, 65

quotient mapping, 5
quotient topology, 5

relative chain group, 103
relative homeomorphism, 2
relative homology, 103
relative singular g-chains, 108
representationof group, 66
retract, 33

semi-locally simply connected, 88
short exact sequence of Abelian groups, 100
simplex, 43
simplicial approximation, 46
simplicial complex, 43
simplicial mapping, 45
simply connected space, 62
singular g-chains, 106
singular g-simplex, 106
singular chain group, 106
singular homology group, 107
splitting sequence, 101
standard (closed

) g-simplex, 106
star, 48
strict deformation retract, 37
subcomplex, 45
subgroup, 64

subgroup generated by a subset, 64
surface, 12

topological equivalent, 23
topological group, 21

total space, 76

tree, 71

triangulation, 44

trivialising neighborhood, 76
turning (winding) number, 34

underlying topological space, 44

vertices, 43
vertices of a simplical complex, 44
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