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1.2

1. Building blocks and homeomorphy

For the first chapter I mainly listed the contents in form of short statements. For
details please refer to the book.

Ball, sphere and cell

Problem of homeomorphy.
When is X ∼= Y ? Either we find a homeomorphism f : X → Y , or a topological
property, which hold for only one of X and Y , or we cannot decide this question.

1.1 Definition of basic building blocks. [9, 1.1.2]

1. R with the metric given by d(x, y) := |x− y|.

2. I := [0, 1] := {x ∈ R : 0 ≤ x ≤ 1}, the unit interval.

3. Rn :=
∏
n R =

∏
i∈n R =

∏n−1
i=0 R = {(xi)i=0,...,n−1 : xi ∈ R}, with the

product topology or, equivalently, with any of the equivalent metrics given
by a norm on this vector space.

4. In :=
∏
n I = {(xi)n−1

i=0 : 0 ≤ xi ≤ 1∀i} = {x ∈ Rn : ‖x− ( 1
2 , . . . ,

1
2 )‖∞ ≤ 1

2},
the n-dimensional unit cube, where ‖x ∞ := max{|xi| : i}.

5. For subsets A ⊆ Rn we denote with Ȧ = ∂RnA the boundary of A in Rn. In
particular, İn := ∂RnI

n = {(xi)i ∈ In : ∃i : xi ∈ {0, 1}}, the boundary of In

in Rn.

6. Dn := {x ∈ Rn : ‖x‖2 :=
√∑

i∈n(xi)2 ≤ 1}, the n-dimensional closed unit
ball (with respect to the Euclidean norm).
A topological space X is called n-ball iff X ∼= Dn.

7. Ḋn := ∂RnD
n = Sn−1 := {x ∈ Rn : ‖x‖2 = 1}, the n − 1-dimensional unit

sphere.

A topological space X is called n-sphere iff X ∼= Sn.

8.
◦
Dn := {x ∈ Rn : ‖x‖2 < 1}, the interior of the n-dimensional unit ball.
A topological space X is called n-cell iff X ∼=

◦
Dn.

1.2 Definition. [9, 1.1.3] An affine homeomorphisms is a mapping of the form
x 7→ A · x+ b with an invertible linear A and a fixed vector b.
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1.8 1. Building blocks and homeomorphy

Hence the ball in Rn with center b and radius r is homeomorphic to Dn and thus
is an n-ball.

1.3 Example. [9, 1.1.4]
◦
D1 ∼= R: Use the odd functions t 7→ tan(π2 t), or t 7→ t

1−t2

with derivative t 7→ t2+1
(t2−1)2 > 0, or t 7→ t

1−|t| with derivative t 7→ 1/(1−|t|) > 0 and
inverse mapping s 7→ t

1+|t| . Note, that any bijective function f : [0, 1) → [0,+∞)

extends to an odd function f̃ : (−1, 1)→ R by setting f̃(t) := −f(−t) for t < 0. For
f(t) := t

1−t we have f̃(t) = − −t
1−(−t) = t

1−|t| and for f(t) := t
1−t2 we have f̃(t) =

− −t
1−(−t)2 = t

1−t2 . Note that in both cases f(0) = 0 and ∃f ′(0) = limt→0+ f
′(t),

hence f̃ is a C1 diffeomorphism. However, in the first case limt→0+ f
′′(t) = 2 and

hence the odd fucntion f̃ is not C2.

1.4 Example. [9, 1.1.5]
◦
Dn ∼= Rn: Use for example f : x 7→ x

1−‖x‖ = x
‖x‖ · f1(‖x‖)

with f1(t) := t
1−t and directional derivative f ′(x)(v) = 1

1−‖x‖ v+ 〈x|v〉
(1−‖x‖)2‖x‖ x→ v

for x→ 0.

1.5 Corollary. [9, 1.1.6] Rn is a cell; products of cells are cells, since Rn × Rm ∼=
Rn+m by “associativity” of the product.

1.7 Definition. A pair (X,A) of spaces is a topological space X together with a
subspace A ⊆ X.
A mapping f : (X,A) → (Y,B) of pairs is a continuous mapping
f : X → Y with f(A) ⊆ B. A homeomorphism f : (X,A) →
(Y,B) of pairs is a mapping of pairs which is a homeomorphism
f : X → Y and satisfies f(A) = B (and hence induces a homeo-
morphism f |A : A→ B).

X
f // Y

A
f |A //

?�

OO

B
?�

OO

1.8 Definition. [9, 1.3.2] A mapping f : (X,A) → (Y,B) of pairs is called rela-
tive homeomorphism, iff f : X \A→ Y \B is a well-defined homeomorphism.

A homeomorphism of pairs is obviously a
relative homeomorphism, but not conver-
sely even if f |A : A → B is a homeomor-
phism: Consider for example A := {−1},
X := A ∪ (1, 2], and f : t 7→ t2 − 2.

A X�A

B Y�B

However, forX and Y compact any homeomorphism f : X\{x0} → Y \{y0} extends
to a homeomorphism f̃ : (X, {x0})→ (Y, {y0}) of pairs, since X ∼= (X \{x0})∞, cf.
1.35 . Note that Z∞ denotes the 1-point compactification of the locally compact

space Z, see [2, 2.2.5].
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1. Building blocks and homeomorphy 1.13

1.9 Example. [9, 1.1.15]

1. Rn \ {0} ∼= Sn−1 × (0,+∞) ∼= Sn−1 × R,
via x 7→ ( 1

‖x‖x, ‖x‖), e
t y← (y, t).

2. Dn \ {0} ∼= Sn−1 × (0, 1] ∼= Sn−1 × (ε, 1],
via (0, 1] ∼= (ε, 1] and (1).

Sn-1

x�ÈxÈ

x

ÈxÈ

1.6 Definition. A subset A ⊆ Rn ist called convex, iff x + t(y − x) ∈ A for
∀x, y ∈ A, t ∈ [0, 1].

1.10 Theorem. [9, 1.1.8] X ⊆ Rn compact, convex,
◦
X 6= ∅ ⇒(X, Ẋ) ∼= (Dn, Sn−1).

In particular, X is a ball, Ẋ is a sphere and
◦
X is a cell.

If X ⊆ Rn is (bounded,) open and convex and not empty ⇒X is a cell.

Proof. W.l.o.g. let 0 ∈
◦
X (translate X by −x0 with x0 ∈

◦
X). The mapping

f : Ẋ 3 x 7→ 1
‖x‖x ∈ S

n−1 is bijective, since it keeps rays from 0 invariant and since
for y 6= 0 let t0 := max{t > 0 : t y ∈ X}. Then t y /∈ X for all t > t0 and t y ∈

◦
X for

all 0 ≤ t < t0 (consider the cone with an open 0-neighborhood in X as basis and
t0 y as apex), hence t0 is the unique t > 0 with t y ∈ Ẋ. Since Ẋ is compact f is a
homeomorphism and by radial extension we get a continuous bijection

Dn \ {0} ∼= Sn−1 × (0, 1]
f×id∼= Ẋ × (0, 1]→ X \ {0},

x 7→
(

x

‖x‖
, ‖x‖

)
7→
(
f−1

(
x

‖x‖

)
, ‖x‖

)
7→ ‖x‖ f−1

(
x

‖x‖

)
which extends via 0 7→ 0 to a continuous bijection of the 1-point compactifications
and hence a homeomorphism of pairs (Dn, Sn−1)→ (X, Ẋ).

The second part follows by applying the first part to X, a compact convex set with
non-empty interior X: In order to see this take a point x in the interior of X̄. So
there exists a open neighborhood of x in X̄ and we may assume that this is of the
form of an n-simplex (see 3.2 ) (i.e. a hypertetraeder). Since its vertices are in X̄
we can approximate them by points in X and hence x lies inside this approximating
simplex contained in X.

That the boundedness condition can be dropped can be found for a much more
general situation in [5, 16.21].

1.11 Corollary. [9, 1.1.9] In is a ball and İn is a sphere.

1.12 Example. [9, 1.1.10] [9, 1.1.11] Dp×Dq is a ball, hence products of balls are
balls, and ∂(Dp ×Dq) = Sp−1 ×Dq ∪Dp × Sq−1 is a sphere:
Dp×Dq is compact convex, and by exercise (1.1.1A) ∂(A×B) = ∂A×B∪A×∂B.
So by 1.10 the result follows.

1.13 Remark. [9, 1.1.12] 1.10 is wrong without convexity or compactness as-
sumption: For compactness this is obvious since Dn ic compact. That, for example,
a compact annulus is not a ball will follow from 2.19 .
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1.20 1. Building blocks and homeomorphy

1.14 Example. [9, 1.1.13] Sn = Dn
+ ∪Dn

−, Dn
+ ∩Dn

− = Sn−1×{0} ∼= Sn−1, where
Dn
± := {(x; t) ∈ Sn ⊆ Rn × R : ±t ≥ 0} ∼= Dn are the southern and northern

hemispheres. The stereographic projection Sn \ {(0, . . . , 0; 1)} ∼= Rn is given by
(x; t) 7→ 1

1−tx.

1

x

���������������
x

1 - t

Hx,tL

1.15 Corollary. [9, 1.1.14] Sn \ {∗} is a cell.

1.16 Example. [9, 1.1.15.3]
For all ẋ ∈ Sn−1:

Dn \ {ẋ} ∼= Rn−1 × [0,+∞),

via

Rn−1 × [0,+∞) ∼= (Sn−1 \ {ẋ})× (0, 1] ∼= Dn \ {ẋ},
(x, t) 7→ ẋ+ t(x− ẋ).

x 

x

x  +tHx-x  L

1.17 Example. [9, 1.1.20] Sn 6∼= Rn and Dn 6∼= Rn, since Rn is not compact.

None-homeomorphy of X = S1 with I follows by counting components of X \ {∗}.

1.18 Example. [9, 1.1.21] S1 × S1 is called torus. It is embeddable into R3 by
(x, y) = (x1, x2; y1, y2) 7→ ((R+r y1)x, r y2) with 0 < r < R. This image is described
by the equation {(x, y, z) : (

√
x2 + y2−R)2 +z2 = r2}. Furthermore, S1×S1 6∼= S2

by Jordan’s curve theorem, since (S1 × S1) \ (S1 × {1}) is connected.

1.19 Theorem (Invariance of a domain). [9, 1.1.16] Rn ⊇ X ∼= Y ⊆ Rn, X
open in Rn ⇒Y open in Rn.

We will prove this hard theorem after 10.5 .

1.20 Theorem (Invariance of dimension). [9, 1.1.17] m 6= n ⇒Rm 6∼= Rn,
Sm 6∼= Sn, Dm 6∼= Dn.

4 andreas.kriegl@univie.ac.at c© 11. Jänner 2012



1. Building blocks and homeomorphy 1.26

Proof. Let m < n.

Suppose Rn ∼= Rm, then Rn ⊆ Rn is open, but the image Rm ∼= Rm × {0} ⊆ Rn is
not, a contradiction to 1.19 .

Sm ∼= Sn ⇒ Rm ∼= Sm \ {x} ∼= Sn \ {y} ∼= Rn ⇒ m = n.

f : Dm ∼= Dn ⇒
◦
Dn ∼= f−1(

◦
Dn) ⊆ Dm ⊆ Rm ⊂ Rn and f−1(

◦
Dn) is not open, a

contradiction to 1.19 .

1.21 Theorem (Invariance of the boundary). [9, 1.1.18] f : Dn → Dn homeo-
morphism ⇒f : (Dn, Sn−1)→ (Dn, Sn−1) homeomorphism of pairs.

Proof. Let ẋ ∈ Ḋn with y = f(ẋ) /∈ Ḋn. Then y ∈
◦
Dn =: U and f−1(U) is

homeomorphic to U but not open, since x ∈ f−1(U)∩ Ḋn, a contradiction to 1.19 .

1.22 Definition. [9, 1.1.19] Let X be an n-ball and f : Dn → X a homeomorphism.
The boundary Ẋ of X ist defined as the image f(Ḋn). This definition makes sense
by 1.21 .

Quotient spaces

1.23 Definition. Quotient space. [9, 1.2.1] Cf. [2, 1.2.12]. Let ∼ be an equiva-
lence relation on a topological space X. We denote the set of equivalence classes
[x]∼ := {y ∈ X : y ∼ x} by X/∼. The quotient topology on X/∼ is the final
topology with respect to the mapping π : X → X/∼, x 7→ [x]∼ (i.e. the finest
toplogy for which this mapping is continuous, see [2, 1.2.11]).

1.24 Proposition. [9, 1.2.2] A subset B ⊆ X/∼ is open/closed iff π−1(B) is
open/closed. The quotient mapping π is continuous and surjective. It is open/closed
iff for every open/closed A ⊆ X the saturated hull π−1(π(A)) is open/closed.

For a proof see [2, 1.2.12].

The image of the closed subset {(x, y) : x · y = 1, x, y > 0} ⊆ R2 under the first
projection pr1 : R2 → R is not closed!

1.25 Definition. [9, 1.2.9] A mapping f : X → Y is called quotient mapping
(or final), iff f is surjective continuous and satisfies one of the following equivalent
conditions:

1. The induced mapping X/∼ → Y is a homeomorphism,
where x1 ∼ x2 :⇔ f(x1) = f(x2).

2. B ⊆ Y is open (closed) if f−1(B) is it.

3. A mapping g : Y → Z is continuous iff g ◦ f is it.

(1⇒2) X → X/∼ has this property.
(2⇒3) g−1(W ) open ⇔ (g ◦ f)−1(W ) = f−1(g−1W ) is open.
(3⇒1) X/∼ → Y is continuous by (1⇒3) for Y := X/∼. And Y → X/∼ is
continuous by (3).

1.26 Example. [9, 1.2.3]
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1.30 1. Building blocks and homeomorphy

1. I/∼ ∼= S1, where 0 ∼ 1: The mapping t 7→ e2πit, I → S1 factors to homeo-
morphism I/ ∼→ S1.

2. I2/∼ ∼= S1 × I, where (0, t) ∼ (1, t) for all t.

a a

a

3. I2/∼ ∼= S1 × S1, where (t, 0) ∼ (t, 1) and (0, t) ∼ (1, t) for all t.

a a

b

b

a

b

1.27 Proposition. Universal property of X/∼. [9, 1.2.11] [9, 1.2.6] [9, 1.2.5]
Let f : X → Y be continuous. Then f is compatible with the equivalence relation
(i.e. x ∼ x′ ⇒ f(x) = f(x′)) iff it factors to a continuous mapping X/∼ → Y
over π : X → X/∼. Note that f is compatible with the equivalence relation iff the
relation f ◦π−1 is a mapping. The factorization X/∼ → Y is then given by f ◦π−1.

Proof. (z, y) ∈ f ◦π−1 ⇔ ∃x ∈ X : f(x) = y, π(x) = z. Thus f ◦π−1 is a mapping,
i.e. y is uniquely determined by z iff π(x) = π(x′)⇒ f(x) = f(x′).

1.28 Proposition. [9, 1.2.4] Functoriality of formation of quotients. Let f : X → Y
be continuous and compatible with equivalence relations ∼X on X and ∼Y on Y .
Then there is a unique induced continuous mapping f̃ : X/∼X → Y/∼Y .

If f and f−1 are compatible with the equivalence relations and is a homeomorphism,
then f̃ is a homeomorphism.

For a proof see [2, 1.2.11,1.2.12].

1.29 Proposition. [9, 1.2.7] [9, 1.2.12] The restriction of a quotient-mapping to a
closed/open saturated set is a quotient-mapping.
Let f : X → Y be a quotient mapping, B ⊆ Y open (or closed), A := f−1(B). Then
f |A : A→ B is a quotient mapping.

For example, the restriction of π : I → I/İ to the open set [0, 1) is not a quotient
mapping.

Proof. Let U ⊆ B with (f |A)−1(U) open. Then f−1(U) = (f |A)−1(U) is open and
hence U ⊆ Y is open.

1.30 Corollary. [9, 1.2.8] A closed/open, ∀a ∈ A, x ∈ X,x ∼ a⇒ x = a, p : X →
Y quotient-mapping ⇒p|A : A→ p(A) ⊆ Y is an embedding.

Proof. ⇒ A = p−1(p(A)) =
1.29

====⇒ p|A : A → p(A) is a quotient mapping and
injective, hence a homeomorphism.
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1. Building blocks and homeomorphy 1.34

1.31 Proposition. [9, 1.2.10] Continuous surjective closed/open mappings are ob-
viously quotient-mappings, but not conversely. Continuous surjective mappings from
a compact to a T2-space are quotient-mappings, since the image of closed subsets is
compact hence closed. f , g quotient mapping ⇒g ◦ f quotient mapping, by 1.25.3 .
g ◦ f quotient mapping ⇒g quotient mapping, by 1.25.3 .

1.32 Proposition. Theorem of Whitehead. [9, 1.2.13] Let g be a quotient
mapping and X locally compact. Then X × g is quotient mapping.

For a counterexample for not locally compact X see [2, 1.2.12]:

Proof.

g-1V

g-1V

U X

Y

f -1W

f -1W

Hx0 ,y0L

V

W

Z

XU

Hx0 ,z0L

Let (x0, z0) ∈W ⊆ X×Z with open f−1(W ) ⊆ X×Y , where f := X×g for g : Y →
Z. We choose y0 ∈ g−1(z0) and a compact U ∈ U(x0) with U × {y0} ⊆ f−1(W ).
Since f−1(W ) is saturated, U×g−1(g(y)) ⊆ f−1(W ) provided U×{y} ⊆ f−1(W ). In
particular, U×g−1(z0) ⊆ f−1(W ). Let V := {z ∈ Z : U×g−1(z) ⊆ f−1(W )}. Then
(x0, z0) ∈ U×V ⊆W and V is open, since g−1(V ) := {y ∈ Y : U×{y} ⊆ f−1(W )}
is open (see [2, 2.1.11]).

1.33 Corollary. [9, 1.2.14] f : X → X ′, g : Y → Y ′ quotient mappings, X, Y ′

locally compact ⇒f × g quotient mapping.

Proof.

X × Y
f×Y //

f×g

%%LLLLLLLLLL

X×g
��

X ′ × Y

X′×g
��

X × Y ′
f×Y ′ // X ′ × Y ′

Special cases of quotient mappings

1.34 Proposition. Collapse of subspace. [9, 1.3.1] [9, 1.3.3] A ⊆ X closed
⇒π : (X,A)→ (X/A, {A}) is a relative homeomorphism, where X/A := X/∼ with
the equivalence relation generated by ∀a, a′ ∈ A : a ∼ a′. The functorial property
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1.41 1. Building blocks and homeomorphy

for mappings of pairs is:

(X,A)
f //

��

(Y,B)

��
(X/A,A/A) // (Y/B,B/B)

Proof. That π : X \A→ X/A \A/A is a homeomorphism follows from 1.29 . The
functorial property follows from 1.27

1.35 Example. [9, 1.3.4] X/∅ ∼= X, X/{∗} ∼= X. I/İ ∼= S1, X/A ∼= (X \ A)∞,
provided X compact and A ⊆ X is closed. In fact, X/A is compact, X \A is openly
embedded into X/A and X/A \ (X \A) is the single point A ∈ X/A.

1.36 Example. [9, 1.3.5] Dn \ Sn−1 =
◦
Dn ∼= Rn and hence by 1.35 Dn/Sn−1 ∼=

(Dn \ Sn−1)∞ ∼= (Rn)∞ ∼= Sn. Or, explicitly,

x 7→
(
t := ‖x‖, x

‖x‖

)
7→
(

sin
(
π(1− t)

) x

‖x‖
, cos

(
π(1− t)

))
.

1.37 Example. [9, 1.3.6] X×I is called cylinder over X. And CX := (X×I)/(X×
{0}) is called the cone with base X. C(Sn) ∼= Dn+1, via (x, t) 7→ t x.

1.38 Example. [9, 1.3.7] Let (Xj , xj) be pointed spaces. The 1-point union is∨
j∈J

Xj =
∨
j∈J

(Xj , xj) :=
⊔
j

Xj/{xj : j}.

By 1.24 the projection π :
⊔
j Xj →

∨
j Xj is a closed mapping.

1.39 Proposition. [9, 1.3.8] Xi embeds into
∨
j Xj and

∨
j Xj is union of the

images, which have pairwise as intersection the base point.

Proof. That the composition Xi ↪→
⊔
j Xj →

∨
j Xj is continuous and injective

is clear. That it is an embedding follows, since by 1.38 the projection π is also a
closed mapping.

1.40 Proposition. [9, 1.3.9] Universal and functorial property of the 1-point-union:

(Xi, xi)
fi //

��

(Y, y) (Xi, xi)
fi //

��

(Yi, yi)

��∨
j Xj

::

∨
j Xj //

∨
j Yj

Proof. This follows from 1.28 and 1.27 .

1.41 Proposition. [9, 1.3.10] Embedding of X1 ∨ · · · ∨Xn ↪→ X1 × . . .×Xn.

8 andreas.kriegl@univie.ac.at c© 11. Jänner 2012



1. Building blocks and homeomorphy 1.43

X1´X2´X3

X1

X2

X3

X1ÞX2ÞX3

Proof. Let ij : Xj →
∏n
k=1Xk be given by z 7→ (x1, . . . , xj−1, z, xj , . . . , xn), where

the xk are the base-points of Xk. Then
⊔
k ik :

⊔
kXk →

∏
kXk factors to the

claimed embedding, see exercise (1.7).

1.42 Example. [9, 1.3.11] 1.41 is wrong for infinite index sets: The open neigh-
borhoods of the base point in

∨
j Xj are given by

∨
j Uj , where Uj is an open

neighborhood of the base point in Xj . Hence
∨
Xj is not first countable, whereas

the product of countable many metrizable spaces Xj is first countable.

Also countable many circles in R2 which intersect only in a single point have as
union in R2 not their one-point union, since a neighborhood of the single point
contains almost all circles completely.

1.43 Definition. Gluing. [9, 1.3.12] f : X ⊇ A → Y with A ⊆ X closed.
Y ∪f X := Y tX/∼, where a ∼ f(a) for all a ∈ A, is called Y glued with X via f
(or along f).

andreas.kriegl@univie.ac.at c© 11. Jänner 2012 9



1.46 1. Building blocks and homeomorphy

X

A

A

Y

fHAL

Y

Yæ
f
X

fHAL

1.44 Proposition. [9, 1.3.13] [9, 1.3.14] f : X ⊇ A → Y with A ⊆ X closed.
π|Y : Y → Y ∪f X is a closed embedding. π : (X,A)→ (Y ∪f X,π(Y )) is a relative
homeomorphism.

Proof. That π|Y : Y → Y ∪f X is continuous and injective is clear. Now let B ⊆ Y
be closed. Then π−1(π(B)) = B t f−1(B) is closed and hence also π(B).

That π : X \A→ Y ∪f X \ Y is a homeomorphism follows from 1.29 .

1.45 Proposition. [9, 1.3.15] Universal property of push-outs Y ∪f X:

A_�

��

f // Y_�

��

��

X //

..

Y ∪f X

##
Z

Proof. 1.27 .

1.46 Lemma. Let fi : Xi ⊇ Ai → Y be given, X := X1 tX2, A := A1 t A2 ⊆ X
and f := f1 t f2 : X ⊇ A→ Y . Then Y ∪f X ∼= (Y ∪f1 X1) ∪f2 X2.
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1. Building blocks and homeomorphy 1.48

Proof.

A2

  BBBBBBBB� _

��

� p

  BBBBBBB
f2

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

A� _

(0)

��

f // Y

i

��

i1

}}{{{{{{{{{{{{{{{{{{{

A1

``BBBBBBBB f1

33fffffffffffffffffffffffffffffffP0

``BBBBBBB

� _

��
X1

p1 //
oO

��~~~~~~~~

p1 // Y ∪f1 X1

i2

��

(1)

((
X

p //

(0)

**

Y ∪f X

(2)

vv
X2

p2 //
/ �

??~~~~~~~~
(Y ∪f1 X1) ∪f2 X2

(2)

66

1.47 Example. [9, 1.3.16] f : X ⊇ A → Y = {∗} ⇒Y ∪f X ∼= X/A, since X/A
satisfies the universal property of the push-out.

f : X ⊇ {∗} → Y ⇒Y ∪f X ∼= X ∨ Y , by definition.

f : X ⊇ A→ Y constant ⇒Y ∪f X ∼= X/A ∨ Y , since we can compose pullbacks:

A
f //

_�

��

Y
� � //

g

��

Z
_�

��

��

X //

//

Y ∪f X //

++

Z ∪g (Y ∪f X)

&&
W

1.48 Example. [9, 1.3.17] f : X ⊇ A→ B ⊆ Y homeomorphism of closed subsets.
⇒Y ∪f X = π(X) ∪ π(Y ) with π(X) ∼= X, π(Y ) ∼= Y and π(X) ∩ π(Y ) ∼= A ∼= B.
This follows from 1.44 since Y ∪f X ∼= X ∪f−1 Y . Note however, that Y ∪f X
depends not only on X ⊇ A and Y ⊇ B but also on the gluing map f : A→ B as
the example X = I × I = Y and A = B = I × İ with id 6= f : (x, 1) 7→ (1 − x, 1),
(x, 0) 7→ (x, 0) of a Möbius-strip versus a cylinder shows.

a

a
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1.57 1. Building blocks and homeomorphy

1.49 Proposition. [9, 1.3.18]

X

F∼=
��

A
f //_?

oo

F |A∼=
��

Y

∼=G

��
X ′ A′

f ′ //_?
oo Y ′

⇒Y ∪f X ∼= Y ′ ∪f ′ X ′.

Proof. By 1.45 we obtain a uniquely determined continuous mapG∪F : Y ∪fX →
Y ′ ∪f ′ X ′ with (G ∪ F ) ◦ π|X = π|X′ ◦ F and (G ∪ F ) ◦ π|Y = π|Y ′ ◦ F . Since
G−1 ◦ f ′ = G−1 ◦ f ′ ◦ F ◦ F |−1

A = G−1 ◦G ◦ f ◦ F |−1
A = f ◦ F−1|A′ we can similarly

G−1 ∪ F−1 : Y ′ ∪f ′ X ′ → Y ∪f X. On X and Y (resp. X ′ and Y ′) they are inverse
to each other, hence define a homeomorphism as required.

1.50 Example. [9, 1.3.19]

(1) Z = X ∪ Y with X, Y closed. ⇒Z = Y ∪id X: The canonical mapping
Y tX → Z induces a continuous bijective mapping Y ∪id X → Z, which is
closed and hence a homeomorphism, since Y tX → Z is closed.

(2) Z = X ∪ Y with X, Y closed, A := X ∩ Y , f : A → A extendable to a
homeomorphism of the pair (X,A) ⇒Z ∼= Y ∪f X: Apply 1.49 to

X

f̃∼=
��

A

f∼=
��

_?
oo f // A

id∼=
��

�� // Y

id∼=
��

X A_?
oo id // A �� // Y

(3) Dn ∪f Dn for all homeomorphisms f : Sn−1 → Sn−1: We can extend f

radially to a homeomorphism f̃ : Dn → Dn by f̃(x) = ‖x‖ f( x
‖x‖ ) and can

now apply (2).

(4) Gluing two identical cylinders X × I along any homeomorphism f : X ×
{0} → X × {0} yields again the cylinder X × I: Since f extends to a ho-
meomorphism X × I → X × I, (x, t) 7→ (f(x), t) we may apply (2) to obtain
(X × I) ∪f (X × I) = (X × I) ∪id (X × I) ∼= X × I.

Manifolds

1.51 Definition. [9, 1.4.1] [9, 1.5.1] An m-dimensional manifold (possibly with
boundary) is a topological space X (which we will always require to be Hausdorff
and second countable), for which each of its points x ∈ X has a neighborhood A
which is an n-ball, i.e. a homeomorphism ϕ : A ∼= Dm (which we call chart at
x) exists. A point x ∈ X is called boundary point iff for some (and by 1.21
any) chart ϕ at x the point is mapped to ϕ(x) ∈ Sm−1. The set of all boundary
points is called the boundary of X and denoted by ∂X or Ẋ. A manifold is called
closed if it is compact and has empty boundary. Two-dimensional manifolds are
called surfaces.

1.57 Examples. [9, 1.4.4] [9, 1.4.5]

1. 0-manifolds are discrete countable topological spaces.
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1. Building blocks and homeomorphy 1.55

2. The connected 1-manifolds are R, S1, I and [0,+∞).

3. Quadrics like hyperboloids (∼= R2 t R2 or ∼= S1 × R), paraboloids (∼= R2),
and the cylinder S1 × R are surfaces.

4. Let X be a surface without boundary and A ⊆ X be a discrete subset. Then
X \A is also a surface without boundary.

5. Dm is a manifold with boundary Sm−1, so
◦
Dm ∼= Rm is a manifold without

boundary, and the halfspace Rm−1 × [0,+∞) is a manifold with boundary
Rm−1 × {0}.

1.51a Lemma. Let U ⊆ X be open in an m-manifold X. Then U is an m-manifold
with U̇ = Ẋ ∩ U

Proof. Let x ∈ U and ϕ : A−∼=→ Dm be a chart at x ∈ A. Then ϕ(U) is an open
neighborhood of ϕ(x) in Dm and hence contains a convex compact neighborhood
B which is an m-ball by 1.10 . Consequently, ϕ : U ⊇ ϕ−1(B) ∼= B ⊆ Dm is
the required chart at x for U . Obviously x ∈ U̇ ⇔ ϕ(x) ∈ Ḃ ⇔ ϕ(x) ∈ Sm−1 ⇔
x ∈ Ẋ.

1.52 Proposition. [9, 1.4.2] [9, 1.5.2] Let f : X → Y be a homeomorphism between
manifolds. Then f(Ẋ) = Ẏ .

Proof. Let x ∈ X and ϕ : A ∼= Dm a chart at x. Then ϕ ◦ f−1 : f(A) → Dm is a
chart of Y at f(x) and hence x ∈ Ẋ ⇔ f(x) ∈ Ẏ .

1.53 Proposition. [9, 1.4.3] [9, 1.5.3] Let X be an m-manifold and x ∈ Ẋ. Then
there exists a neighborhood U of x in X with (U,U ∩ Ẋ, x) ∼= (Dn−1 × I,Dn−1 ×
{0}, (0, 0)), an homeomorphism of triples.

Proof. By assumption there exists a neighborhood A of x in X and a homeomor-
phism ϕ : A → Dm with ϕ(x) ∈ Sm−1. Choose an open neighborhood W ⊆ A

of x. Then Ẇ = Ẋ ∩W and the manifold W is homeomorphic to ϕ(W ) ⊆ Dm.
Obviously ϕ(W ) contains a neighborhood B of ϕ(x) homeomorphic to Dm−1 × I,
where Sm−1 ∩ B corresponds to Dm−1 × {0}. The set U := ϕ−1(B) is then the
required neighborhood.

1.54 Corollary. [9, 1.5.4] The boundary Ẋ of a manifold is a manifold without
boundary.

Proof. By 1.53 Ẋ is locally homeomorphic to Dn−1×{0} and x ∈ Ẋ corresponds
to (0, 0) thus is not in the boundary of Ẋ.

1.55 Proposition. [9, 1.5.7] Let M be an m-dimensional and N an n-dimensional
manifold. Then M×N is an m+n-dimensional manifold with boundary (M×N). =
Ṁ ×N ∪id |Ṁ×Ṅ M × Ṅ . For a manifold X without boundary (like S1) the cylinder
X × I is a manifold with boundary X × {0, 1}.

This way we get examples of 3-manifolds: S2 × R, S2 × I, and S2 × S1.

Proof. 1.12 and 1.50.1 .
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1.62 1. Building blocks and homeomorphy

1.59 Example. Möbius strip. [9, 1.4.6] The Möbius-strip X is defined as
I × I/ ∼, where (x, 0) ∼= (1 − x, 1) for all x. Its boundary is (I × İ)/∼ ∼= S1 and
hence X is not homeomorphic to the cylinder S1 × I.

An embedding of X into R3 is given by factoring

(ϕ, r) 7→ ((2 + (2r − 1) cosπϕ) cos 2πϕ, 2 + (2r − 1) cosπϕ) sin 2πϕ, (2r − 1) sinπϕ)

over the quotient.

The Möbius-strip is not orientable which we will make precise later.

1.60 Proposition. [9, 1.4.7] [9, 1.5.5] By cutting finitely many disjoint open holes
into a manifold one obtains a manifold whose boundary is the union of the boundary
of X and the boundaries of the holes. More precisely, let X be an m-manifold and
fi : Dm → X embeddings with pairwise disjoint images. Let

◦
Di := {fi(x) : |x| < 1

2}
and Si := {fi(x) : |x| = 1

2}. Then X \
⋃n
i=1

◦
Di is an m-manifold with boundary

Ẋ t
⊔n
i=1 Si.

The manifold which results by cutting g open holes in the unit-disk D2 will be
denoted D2

g .

Proof. No point in {fi(x) : |x| < 1} is a boundary point of X, hence the result
follows.

1.61 Proposition. [9, 1.4.8] [9, 1.5.6] Let F and F ′ be two manifolds and R and
R′ components of the corresponding boundaries and g : R→ R′ a homeomorphism.
Then F ′ ∪g F is a manifold in which F and F ′ are embedded as closed subsets with
boundary (Ḟ \R) ∪ (Ḟ ′ \R′).

Proof. Let A ∼= Dm×I and A′ ∼= Dm×I be neighborhoods of x ∈ R and g(x) ∈ R′
with Ḟ ∩ A = Dm−1 × {0} and Ḟ ′ ∩ A′ = Dm−1 × {0}. W.l.o.g. we may assume
that g(Ḟ ∩ A) = Ḟ ′ ∩ A′. The image of A′ t A in F ′ ∪g F is given by gluing
Dm−1 × I ∪Dm−1 × I along a homeomorphism Dm−1 × {0} → Dm−1 × {0} and
hence by 1.50.3 is homeomorphic to Dm−1 × I where x corresponds to (0, 0).

1.62 Example. [9, 1.4.9] S1×S1 can be obtained from two copies of S1×I that way.
The same is true for Klein’s bottle but with different gluing homeomorphism.

a a

b

b

a

b
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1. Building blocks and homeomorphy 1.66

1.63 Example. Gluing a handle. [9, 1.4.10] [9, 1.5.8.7] Let X be a surface in
which we cut two holes as in 1.60 . The surface obtained from X by gluing a handle
is (X \ (

◦
D2 t

◦
D2)) ∪f (S1 × I), where f : S1 × I ⊇ S1 × İ ∼= S1 t S1 ⊆ D2 tD2.

More generally, one can glue handles Sn−1 × I to n-manifolds.

1.64 Example. Connected sum. [9, 1.4.11] [9, 1.5.8.8] The connected sum of
two surfaces X1 and X2 is given by cutting a whole into each of them and gluing
along boundaries of the respective holes. X1]X2 := (X1 \

◦
D2) ∪f (X2 \

◦
D2), where

f : D2 ⊇ S1 ∼= S1 ⊆ D2.

More generally, one can define analogously the connected sum of n-manifolds. This
however depends essentially on the gluing map.

1.65 Example. Doubling of a manifold with boundary. [9, 1.4.12] [9, 1.5.8.9]
The doubling of a manifold is given by gluing two copied along their boundaries
with the identity. 2X := X ∪f X: where f = id : Ẋ → Ẋ.

1.66 Example. [9, 1.4.13] The compact oriented surfaces Fg (of genus g) without
boundary can be described as:

1. boundary of a brezel Vg := D2
g × I of genus g.

2. doubling 2D2
g .

3. connected sum of tori.

4. sphere with g handles.
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1.69 1. Building blocks and homeomorphy

1.67 Example. [9, 1.4.14]

a0

a0

a1

b0

b0

b1

an bn

The compact oriented surface als
quotient of an 4g-polygon. By induc-
tion this surface is homeomorphic to
those given in 1.66 .

a0

a0

b0 b0

1.68 Example. [9, 1.4.15] [9, 1.5.13] The projective plane P2 is defined as
(R3 \ {0})/∼ with x ∼ λ · x für R 3 λ 6= 0.

More generally, let for K ∈ {R,C,H} the projective space be defined by PnK :=
(Kn+1 \{0})/∼, where x ∼ λx for 0 6= λ ∈ K. The quotient mapping Kn+1 \{0} →
PnK is an open mapping, since the saturated hull of an open subset U is the open
double-cone with base U and without its apex.

1.69 Examples. [9, 1.4.17] [9, 1.4.18]

1. P2 ∼= D2/∼ where x ∼ −x for all x ∈ S1.

2. Pn ∼= Dn/∼ where x ∼ −x for all x ∈ Sn−1:
Consider a hemisphere Dn

+ ⊆ Sn. Then the open quotient mapping Sn → Pn

restricts to a quotient mapping (by 1.31 ) on the compact set Dn
+ with

associated equivalence relation x ∼ −x on Sn−1 ⊆ Dn
+. Thus Pn is an n-

manifold.

3. P2 can be obtained by gluing a disk to a Möbius strip.
Consider the closed subsets A := {x ∈ S2 : x2 ≤ 0, |x3| ≤ 1/2} and B = {x ∈
S3 : x3 ≥ 1/2}. The open quotient mapping induces an homeomorphism on
the saturated subset B ⊆ Dn

+, i.e. π(B) is a 2-Ball. A is mapped to a Möbius-
strip by 1.28 and 1.59 . Since π(B)∪π(A) = P2 and π(B)∩π(A) ∼= S1 we
are done.
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1. Building blocks and homeomorphy 1.86

1.71 Proposition. [9, 1.4.16] [9, 1.5.14] [9, 1.6.6] PnK is a dn-dimensional connected
compact manifold, where d := dimR K. The mapping p : Sdn−1 → Pn−1

K , x 7→ [x] is
a quotient mapping. In particular, P1

K
∼= Sd.

Proof. Charts Kn → PnK, (x1, . . . , xn) 7→ [(x1, . . . , xi, 1, xi+1, . . . , xn)].
The restriction Kn+1 ⊇ Sd(n+1)−1 → PnK is a quotient mapping since Kn+1 \ {0} →
PnK is an open mapping. For K = R it induces the equivalence relation x ∼ −x. In
particular PnK is compact.
For n = 1 we have P1

K \ U1 = {[(0, 1)]}, therefore P1
K
∼= K∞ ∼= Sd.

1.72 Example. [9, 1.4.19] The none-oriented compact surfaces Ng (of genus g)
without boundary:

1. Connected sum of g projective planes.

2. Sphere with g Möbius strips glued to it.

Klein’s bottle as sum of two Möbius strips, see [4, 9.3].

1.73 Proposition. [9, 1.4.20] The none-orientable compact surfaces without boun-
dary as quotient of a 2g-polygon.

a0

a0

a1

an

1.86 Theorem. [9, 1.9.1] Each connected closed surface is homeomorphic to one
of the surfaces S2 = F0, S

1 × S1 = F1, . . . or P2 = N1, N2, . . . .

For a sketch of proof, see [4, 9.4]
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1.74 Example. [9, 1.5.9] Union of filled tori (D2×S1)∪id(S1×D2) = (D2×D2). ∼=
(D4). ∼= S3 by 1.12 . Other point of view: S3 = D3

+ ∪id D
3
− and remove a filled

cylinder from D− and glue that to D+ to obtain two tori. With respect to the
stereographic projection the torus {(z1, z2) ∈ S3 ⊆ C2 : |z1| = r1, |z2| = r2} with
r2
1 + r2

2 = 1 corresponds to the torus with the z-axes as its axes and big radius
A := 1/r1 ≥ 1 and small radius a :=

√
A2 − 1 = r2

r1
, see [4, 11.6,11.7].

1.75 Example. [9, 1.5.10] More generally, let f : S1 × S1 → S1 × S1 be given by
f : (z, w) 7→ (zawb, zcwd), where a, b, c, d ∈ Z with ad− bc = ±1.

R2

����

0@a b
c d

1A
// R2

����
S1 × S1

f // S1 × S1

A meridian S1×{w} on the torus is mapped to a curve t 7→ (e2πit, w) 7→ (wb e2πiat, wd e2πict)
which winds a-times around the axes and c-times around the core of S1×S1 ↪→ R3.

M

(
a b
c d

)
:= (D2 × S1) ∪f (S1 ×D2).

In 1.88 together with 1.89 and 1.83 we will indicate that M is often not ho-
meomorphic to S3.

1.76 Example. [9, 1.5.11] Cf. 1.61 . By a Heegard decomposition of M one
understands a representation of M by gluing two handle bodies Vg (see 1.66.1 ) of
the same genus g along their boundary.

1.77 Example. [9, 1.5.12] Cf. 1.67 and 1.73 . For relative prime 1 ≤ q < p let
the lens space be L( qp ) := D3/∼, where (ϕ, θ, 1) ∼ (ϕ+2π qp ,−θ, 1) for θ ≥ 0 with
respect to spherical coordinates, so the northern hemisphere is identified with the
southern one after rotation by 2π qp . The interior of D3 is mapped homeomorphically
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1. Building blocks and homeomorphy 1.81

to a 3-cell in L( qp ) by 1.30 . The image of points in the open hemispheres have
also such neighborhoods (formed by one half in the one part inside the northern
hemisphere and one inside the southern). Each p-points on the equator obtained by
recursively turning by 2π qp get identified. After squeezing D3 a little in direction
of the axes we may view a neighborhood of a point on the equator as a cylinder
over a sector of a circle (a piece of cake) where the flat sides lie on the northern
and southern hemisphere. In the quotient p many of these pieces are glued together
along their flat sides thus obtaining again a 3-cell as neighborhood. We will come
to this description again in 1.89 .

Group actions and orbit spaces

1.78 Definition. [9, 1.7.3] Group action of a group G on a topological space X
is a group-homomorphism G → Homeo(X) into the group of homeomorphisms
of X. The orbit space is X/G := X/∼ = {Gx : x ∈ X}, where x ∼ y :⇔
∃g ∈ G : y = g · x. For this we may without loss of generality assume that G is a
subgroup of Homeo(X), since only its image in Homeo(X) is needed.

1.79 Examples. [9, 1.7.4]

1. S1 acts on C by multiplication ⇒C/S1 ∼= [0,+∞).

2. Z acts on R by translation (k, x) 7→ k + x ⇒R/Z ∼= S1, R2/Z ∼= S1 × R.
ATTENTION: R/Z has two meanings.

3. S0 acts on Sn by reflection (scalar multiplication) ⇒Sn/S0 ∼= Pn.

1.80 Definition. [9, 1.7.5] G is said to act freely on X, when no g 6= 1 has a
fixed-point on X, i.e. gx 6= x for all x and g 6= 1.

1.81 Theorem. [9, 1.7.6] Let G act strictly discontinuously on X, i.e. each x ∈ X
has a neighborhood U with gU ∩ U 6= ∅ ⇒g = id. In particular, this is the case,
when G is finite and acts freely on a T2 space X. Then X/G is a closed m-manifold
provided X is one.

Proof. π : X → X/G is open and U ∼= π(U) is the required neighborhood, since
π−1(π(W )) =

⋃
g∈G gW . Free actions of finite groups on T2-spaces are strictly

discontinuous, since for x ∈ X and g 6= 1 we find disjoint neighborhoods Ug of x
and Wg of g x. Then U :=

⋂
g 6=1 Ug ∩ g−1(Wg) is the required neighborhood.
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1.82 Example. [9, 1.7.7] Let 1 < p ∈ N be relative prime to q1, . . . , qk ∈ Z. Then
Ep := {g ∈ C : gp = 1} ∼= Zp acts freely on S2k−1 ⊆ Ck by g · (z1, . . . , zk)) 7→
(gq1z1, . . . , g

qkzk). The general lens space L2k−1(p; q1, . . . , qk) := S2k−1/Ep of
type (p; q1, . . . , qk) is a closed manifold of dimension 2k − 1. Note that this space
depends only on qj mod p and not on qj itself, so we may assume 0 < qj < p.

In particular, L3(p; q, 1) ∼= L( qp ): We may parametrize S3 ⊆ C2 by the quotient
mapping f : D2×S1 � S3, (z1, z2) 7→ (z1,

√
1− |z1|2 z2) and the action of E3 = 〈g〉,

where g := e2πi/p, lifts to the action given by g · (z1, z2) = (gq z1, g z2). Only the
points in {z1} × S1 for z1 ∈ S1 get identified by f . A representative subset of S3

for the action is given by {(z1, z2) ∈ S3 : | arg(z2)| ≤ π
p }, its preimage in D2 × S1

is homeomorphic to D2 × I, and only points (z1, 0) and (gq z1, 1) are in the same
orbit. Thus the top D2×{1} and the bottom D2×{0} rotated by gq = e2πi qp have
to be identified in the orbit space and also the generators {z1}× I for z1 ∈ S1. This
gives the description of L( qp ) in 1.77 .

One has:

• L3(p; q1, q2) ∼= L3(p; q2, q1) via the reflection C × C ⊇ S3 → S3 ⊆ C × C,
(z1, z2) 7→ (z2, z1).

• L3(p; q q1, q q2) = L3(p; q2, q1) for q relative prime to p via the group isomor-
phism g 7→ gq.

• L3(p;−q1, q2) ∼= L3(p; q1, q2) via (z1, z2) 7→ (z1, z2) and the group isomor-
phism g 7→ g−1 = g:

(z1, z2) //

g

��

(z1, z̄2)

ḡ

��
(gq1z1, g

q2z2) // (gq1z1, ḡ
q2 z̄2) (ḡ−q1z1, ḡ

q2 z̄2)

1.83 Theorem. [9, 1.9.5] L( qp ) ∼= L( q
′

p′ )⇔ p = p′ and (q ≡ ±q′ mod p or qq′ ≡ ±1
mod p).

Proof. (⇐) By 1.82
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1. Building blocks and homeomorphy 1.87

• L3(p; q, 1) ∼= L3(p; q′, 1) for q′ ≡ ±q mod p.

• L3(p; q, 1) ∼= L3(p; q′, 1) for qq′ ≡ ±1 mod p, since L3(p; q, 1) ∼= L3(p; q′ q, q′) =
L3(p;±1, q′) ∼= L3(p; 1, q′) ∼= L3(p; q′, 1)

(⇒) is beyond the algebraic methods of this lecture course.

1.84 Definition. [9, 1.7.1] A topological group is a topological space together
with a group structure, s.t. µ : G×G→ G and inv : G→ G are continuous.

1.85 Examples of topological groups. [9, 1.7.2]

1. Rn with addition.

2. S1 ⊆ C and S3 ⊆ H with multiplication, see [4, ].

3. G×H for topological groups G and H.

4. The general linear group GL(n) := GL(n,R) := {A ∈ L(Rn,Rn) : det(A) 6=
0} with composition, see [4, 14.1].

6. The special linear group SL(n) := {A ∈ GL(n) : det(A) = 1}, see [4, 14.5].

5. The orthogonal group O(n) := {A ∈ GL(n) : At · A = id} and the (path-)
connected component SO(n) := {T ∈ O(n) : det(T ) = 1} of the identity in
O(n). As topological space O(n) ∼= SO(n)× S0. For all this see [4, 14.6].

7. GL(n,C) := {A ∈ LC(Cn,Cn) : detC(A) 6= 0}, see [4, 14.14].

8. The unitary group U(n) := {A ∈ GL(n,C) : A∗ · A = id} with closed
subgroup SU(n) := {A ∈ U(n) : detC(A) = 1}, see [4, 14.14]. As topological
space U(n) ∼= SU(n)× S1, see [?, 1.27]

9. In particular SO(1) = SU(1) = {1}, SO(2) ∼= U(1) ∼= S1, SU(2) = {
(
a b
c d

)
:(

a b
c d

)∗ =
(
a b
c d

)−1} = {( a −c̄c ā ) : |a|2 + |c|2 = 1} ∼= S3, SO(3) ∼= P3. For the
last homorphism consider the surjective mapping f : [0, π] × S2 → SO(3)
given, by associating to an angle ϕ ∈ [0, π] and an unit-vector x ∈ S2

the rotation f(ϕ, x) by the angle ϕ around the axes x. This mapping is
injective except for f(0, x) = f(0, x′) and f(π, x) = f(π,−x) for all x, x′ ∈
S2. It factors to a surjective mapping f̃ : D3 → SO(3) over the surjective
multiplication µ : [0, π]× S2 → D3, (ϕ, x) 7→ ϕ

π · x, which is injective except
for µ(0, x) = µ(0, x′) for all x, x′ ∈ S2. Thus f̃ is injective except for f̃(y) =
f̃(−y) for all y ∈ S2. This is exactly the equivalence relation defining P3 =
D3/ ∼.

The problem of homeomorphy

Remark. For 3-manifolds one is far from a solution to the classification problem.
For n > 3 there can be no algorithm.

1.87 Theorem. [9, 1.9.2] Each closed orientable 3-manifold admits a Heegard-
decomposition.

Hence in order to solve the classification problem one has to investigate only the
homeomorphisms of closed oriented surfaces and determine which gluings give ho-
meomorphic manifolds.
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1.89 1. Building blocks and homeomorphy

In the following example we study this for the homeomorphisms of the torus con-
sidered in 1.75 .

1.88 Example. [9, 1.9.3] LetM = M

(
a b
c d

)
andM ′ = M

(
a′ b′

c′ d′

)
with

(
a b
c d

)
and

(
a′ b′

c′ d′

)
in SL(2,Z), see 1.75 . For α, β, γ, δ ∈ S0 and m,n ∈ Z consider the

homeomorphisms

F : D2 × S1 → D2 × S1, (z, w) 7→ (zαwm, wβ)

G : S1 ×D2 → S1 ×D2, (z, w) 7→ (zγ , znwδ)

If (
γ 0
n δ

)(
a b
c d

)
=
(
a′ b′

c′ d′

)(
α m
0 β

)
,

i.e.

γa = a′α, γb = a′m+ b′β, na+ δc = c′α, nb+ δd = c′m+ d′β

then (G|S1×S1) ◦ f = f ′ ◦ (F |S1×S1) and thus M ∼= M ′ by 1.49 .

Reduction:

(a ≤ 0): α := −1, β := γ := δ := 1, m := n := 0

⇒M
(
a b
c d

)
∼= M

(
−a −b
c d

)
, i.e. w.l.o.g. a ≥ 0.

(ad− bc = −1): α := β := γ := 1, δ := −1, m := n := 0

⇒M
(
a b
c d

)
∼= M

(
a b
−c −d

)
, i.e. w.l.o.g. ad− bc = 1.

(a = 0): ⇒bc = −1. α := c, β := b, γ := 1, δ := 1, n := 0, m := d

⇒M
(
a b
c d

)
∼= M

(
0 1
1 0

)
∼= (D2 ∪id D

2)× S1 ∼= S2 × S1.

(a = 1): α := δ := a, β := ad− bc, γ := 1, m := b, n := −c

⇒M
(
a b
c d

)
∼= M

(
1 0
0 1

)
= (D2 × S1) ∪id (S1 ×D2) ∼= S3, by 1.74 .

(ad′ − b′c = 1): ⇒a(d − d′) = c(b − b′) since a d − b c = 1 and ∃m: b − b′ = ma,
d− d′ = mc since gcd(a, c) = 1.

α := β := γ := δ := 1, n := 0 ⇒M
(
a b
c d

)
∼= M

(
a b′

c d′

)
=: M(a, c).

(c′ := c− na): α := β := γ := δ := −1, m := 0 ⇒M(a, c) ∼= M(a, c′), i.e. w.l.o.g.
0 ≤ c < a (If c = 0 ⇒a = 1, since gcd(a, c) = 1 ⇒M(a, c) ∼= S3).

Thus only the spaces M(a.c) with 0 < c < a and ggT (a, c) = 1 remain.

1.89 Theorem (Heegard-decomposition via lens spaces). [9, 1.9.4] For re-
lative prime 1 ≤ c < a we have L( ca ) ∼= M(a, c).
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1. Building blocks and homeomorphy 1.91

Proof. We start with L( ca ) = D3/ ∼ and drill a cylindrical hole into D3 and glue its
top and bottom via ∼ to obtain a filled torus, where collections of a many generators
of the cylinder are glued to from a closed curve which winds c-times around the
core of the torus (i.e. the axes of the cylinder) and a-times around the axes of the
torus. The remaining D3 with hole is cut into a sectors, each homeomorphic to
a piece of a cake, which yield D2 × I after gluing the flat sides (which correspond
to points on S2) and groups of a many generators of the cylindrical hole are glued
to a circle S1 × {t}. After gluing the top and the by 2π 1

a rotated bottom disc we
obtain a second filled torus, where the groups of a many generators of the cylinder
form a meridian. In contrast the meridians of the cylindrical hole corresponds to a
curve which winds a times around the axes and c times around the core. This is
exactly the gluing procedure described in 1.75 for M(a, c).

1.90 Definition. [9, 1.9.6] Two embeddings f, g : X → Y are called topological
equivalent, if there exists a homeomorphism h : Y → Y with g = h ◦ f . Each
two embeddings S1 → R2 are by Schönflies’s theorem (which is a strong version of
Jordan’s theorem) equivalent.

1.91 Definition. [9, 1.9.7] A knot is an embedding S1 → R3 ⊆ S3.

Remark. To each knot we may associated the complement of a tubular neighbor-
hood in S3. This is a compact connected 3-manifold with a torus as boundary.

By a result of [1] a knot is up to equivalence uniquely determined by the homotopy
class of this manifold.

On the other hand, we may consider closed (orientable) surfaces in R3 of minimal
genus which have the knot as boundary.
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1.92 1. Building blocks and homeomorphy

b0

b1

b2

a0

a1

a2

c2

c0

c1

a0

c2a1

c0

a2 c1

b0

a2b1

a1b2

a0

c2

a1

c0

a2

c1

b0

a2

b1

a1

b2

Gluing cells

1.92 Notation. [9, 1.6.1] f : Dn ⊇ Sn−1 → X. Consider X ∪f Dn, p : Dn tX →
X ∪f Dn, en := p(

◦
Dn), i := p|X : X ↪→ X ∪f Dn =: X ∪ en.

Dn

X

By 1.44 p : (Dn, Sn−1)→ (X ∪ en, X) is a relative homeomorphism and i : X →
X ∪ en is a closed embedding.

For X T2 also X ∪ en is T2: Points in X can be separated in X by Ui and the sets
Ui ∪ {tx : 0 < t < 1, f(x) ∈ Ui} separate them in X ∪ en. When both points are in
the open subset en, this is obvious. Otherwise one lies in en and the other in X, so
a sphere in Dn separates them.
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1. Building blocks and homeomorphy 1.101

Conversely we have:

1.93 Proposition. [9, 1.6.2] Let Z T2, X ⊆ Z closed and F : (Dn, Sn−1)→ (Z,X)
a relative homeomorphism. ⇒X ∪f Dn ∼= Z, where f := F |Sn−1 , via (F t i) ◦ p−1.

Proof. We consider

Sn−1
f=F |Sn−1 //

� _

��

X
lL

zzvvvvvvvvv � _

j

��

X ∪f Dn

g

$$
Dn

p|Dn
99ssssssssss F // Z

j : X ↪→ Z is closed and also F , since Dn is compact and Z is T2. Thus g is closed
and obviously bijective and continuous, hence a homeomorphism.

1.94 Theorem. [9, 1.6.3] Let f : Sn−1 → X be continuous and surjective and X
T2 ⇒ p|Dn : Dn → X ∪f Dn is a quotient mapping.

Proof. p is surjective, since f is. Since Dn is compact and X ∪f Dn is T2, p is a
quotient mapping.

1.95 Examples. [9, 1.6.4]

(1) f : Sn−1 → {∗} =: X ⇒X ∪f Dn
1.47
∼= Dn/Sn−1

1.36
∼= Sn.

(2) f : Sn−1 → X constant ⇒X ∪f Dn
1.47
∼= X ∨ (Dn/Sn−1)

1.36
∼= X ∨ Sn.

(3) f = id : Sn−1 → Sn−1 =: X ⇒X ∪f Dn ∼= Dn by 1.94 .

(4) f = incl : Sn−1 ↪→ Dn =: X ⇒X ∪f Dn ∼= Sn by 1.50.2 .

(5) [9, 1.6.10] Let gn : S1 → S1, z 7→ zn. Then S1 ∪g0 D
2 ∼= S1 ∨S1 by 1.95.2 ,

S1∪g1D
2 ∼= D2 by 1.95.3 , S1∪g2D

2 ∼= P2 by 1.69 , S1∪gkD2 ∼= S1∪g−kD2

by conjugation z 7→ z̄.

1.101 Theorem. [9, 1.6.9] [9, 1.6.11] Let inj : S1 ↪→
∨r
k=1 S

1, z 7→ zn on the jth

summand S1, furthermore, Bk := {exp( 2πit
m ) : k − 1 ≤ t ≤ k} an arc of length 2π

m

and fk : Bk → S1, exp( 2πit
m ) 7→ exp(2πi(t−k+ 1)). Finally, let in1

j1
· · · · · inmjm : S1 →∨r

S1 the mapping which coincides on Bk with inkjk ◦ fk, i.e. one runs first n1-times
along the j1-th summand S1, etc.

For g ≥ 1 and f := i1 · i2 · i−1
1 · i

−1
2 · · · · · i2g−1 · i2g · i−1

2g−1 · i
−1
2g resp. f := i21 · i22 · · · · · i2g

we have
∨2g

S1 ∪f D2 ∼= Fg resp.
∨g

S1 ∪f D2 ∼= Ng.
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1.103 1. Building blocks and homeomorphy

Proof. 1.94 ⇒Xg :=
∨
S1 ∪f D2 ∼= D2/∼ where x ∼ y for x, y ∈ S1 ⇔ f(x) =

f(y). This is precisely the relation from 1.67 , resp. 1.73 .

1.97 Proposition. [9, 1.6.5] [9, 1.6.7] [9, 1.6.8] We have an embedding Pn−1 ↪→ Pn
via Kn ∼= Kn × {0} ⊆ Kn+1. The mapping

F : Kn ⊇ Ddn → PnK, (x1, . . . , xn) 7→ [(x1, . . . , xn, 1− ‖x‖)]

defines a relative homeomorphism F : (Ddn, Sdn−1)→ (PnK,P
n−1
K ). Thus, by 1.93 ,

PnK = Pn−1
K ∪F |

Sdn−1 D
dn. Hence we have decompositions into disjoint cells:

PnR ∼= e0 ∪ e1 ∪ · · · ∪ en, PnC ∼= e0 ∪ e2 ∪ · · · ∪ e2n, and PnH ∼= e0 ∪ e4 ∪ · · · ∪ e4n

Proof. The charts Kn ∼= Un+1 = PnK \ Pn−1
K , (x1, . . . , xn) 7→ [(x1, . . . , xn, 1)] were

constructed in the proof of 1.71 . The mapping Ddn \ Sdn−1 → Kn, given by
x 7→ ( x1

1−‖x‖ , . . . ,
xn

1−‖x‖ ), is a homeomorphism as in 1.4 , and thus the composite

F is a relative homeomorphism as well. Now use 1.93 and 1.94 .

1.102 Definition. Gluing several cells. [9, 1.6.12] For continuous mappings
fj : Dn ⊇ Sn−1 → X for j ∈ J let

X ∪(fj)j

⋃
j∈J

Dn := X ∪F
j∈J fj

⊔
j∈J

Dn.

1.103 Example. [9, 1.6.13]

(2) X ∪(f1,f2) (Dn tDn) ∼= (X ∪f1 D
n) ∪f2 D

n, by 1.46 .

(3) fj = id : Sn−1 → Sn−1 ⇒Sn−1∪(f1,f2) (DntDn)
2
∼= (Sn−1∪ en)∪ en

1.95.3
∼=

Dn ∪ en
1.95.4
∼= Sn.

(1) fj : Sn−1 → {∗} ⇒X ∪(fj)j

⋃
j∈J D

n ∼=
∨
J S

n: By 1.36 λ : (Dn, Sn−1) →
(Sn, {∗}) is a relative homeomorphism and hence also

⊔
J λ = J × λ : (J ×

Dn, J×Sn−1)→ (J×Sn, J×{∗}). By 1.32 the induced map (J×Dn)/(J×
Sn−1) → (J × Sn)/(J × {∗}) =

∨
j S

n is a quotient mapping, since J is
locally compact as discrete space. Obviously this mapping is bijective, hence
a homeomorphism.

J × Sn−1 � � //

1.36
����

J ×Dn // //

1.32
����

(J ×Dn)/(J × Sn−1)
��

����

⊔
J D

n/
⊔
J S

n

J × {∗} � � // J × Sn // // (J × Sn)/(J × {∗})
∨
J S

n
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1. Building blocks and homeomorphy 1.108

Inductive limits

1.104 Definition. [9, 1.8.1] Let X be a set and Aj ⊆ X topological spaces with
X =

⋃
j∈J Aj and the trace topology on Aj ∩ Ak induced from Aj and from Ak

should be identical and the intersection closed. The final topology on X induces on
Aj the given topology, moreover Aj ↪→ X is a closed embedding: Let B be closed
in Aj , then B ∩ Ak = B ∩ (Aj ∩ Ak) is closed the toplogy of Aj and hence also in
that of Ak, so B is closed in the final topology on X. Conversely, let B ⊆ Aj be
closed in the final topology, then B = B ∩Aj = inj−1

j (B) is closed in Aj .

The canonical mapping p :=
⋃
j injj :

⊔
j Aj → X is by definition of the final

topology a quotient mapping (it is clearly onto and B ⊆ X is closed, iff inj−1
j (B) =

B capAj is closed in Aj) and thus we have the corresponding universal property:
A mapping f : X → Y is continuous, iff f |Aj : Aj → Y is continuous for all j.

1.105 Proposition. [9, 1.8.3] [9, 1.8.4] Let A be a closed (locally) finite covering
of X. Then X carries the final topology with respect to A.

Proof. See [2, 1.2.14.3]: Let B ⊆ X be such that B ∩A ⊆ A is closed. In order to
show that B ⊆ X is closed it suffices to prove that

⋃
B∈B B =

⋃
B∈B B for locally

finite families B(:= {B ∩ A : A ∈ A}). (⊇) is obvious. (⊆) Let x ∈
⋃
B∈B B and

U an open neighborhood of x with B0 := {B ∈ B : B ∩ U 6= ∅} being finite. Then
x /∈

⋃
B∈B\B0

B and since

x ∈
⋃
B∈B

B =
⋃
B∈B0

B ∪
⋃

B∈B\B0

B

we have x ∈
⋃
B∈B0

B =
⋃
B∈B0

B ⊆
⋃
B∈B B.

1.107 Definition. [9, 1.8.5] Let An be an increasing sequence of topological spaces,
where each An is a closed subspace in An+1. Then

⋃
n∈N An with the final topology

is called (inductive) limit lim−→n
An of the sequence (An)n.

1.108 Examples. [9, 1.8.6] [9, 1.8.7]

0. R∞ := lim−→n
Rn, the space of finite sequences. Let x ∈ R∞ with εn > 0.

Then {y ∈ R∞ : |yn − xn| < εn∀n} is an open neighborhood of x in R∞.
Conversely, let U ⊆ R∞ be an open set containing x. Then there exists an
ε1 > 0 with K1 := {y1 : |y1 − x1| ≤ ε1} ⊆ U ∩ R1. Since K1 ⊆ R1 ⊆ R2

is compact, there exists by [2, 2.1.11] an ε2 > 0 with K2 := {(y1, y2) : y1 ∈
K1, |y2 − x2| ≤ ε2} ⊆ U ∩ R2. Inductively we obtain εn with {y ∈ R∞ :
|yk − xk| ≤ εk∀k} =

⋃
nKn ⊆ U . Thus the sets from above form a basis of

the topology. The sets
⋃
n{y ∈ Rn : |y − x| < εn} do not, since for εn ↘ 0

they contain none of the neighborhoods from above, since ( δ12 , . . . ,
δn
2 , 0, . . . )

is not contained therein for εn ≤ δ1
2 .

1. S∞ := lim−→n
Sn is the set of unit vectors in R∞.

2. P∞ := lim−→n
Pn is the space of lines through 0 in R∞.

3. O(∞) := lim−→n
O(n), where GL(n) ↪→ GL(n+ 1) via A 7→ (A 0

0 1 ).

4. SO(∞) := lim−→n
SO(n)

5. U(∞) := lim−→n
U(n)
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1.108 1. Building blocks and homeomorphy

6. SU(∞) := lim−→n
SU(n)
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1. Building blocks and homeomorphy 2.4

2. Homotopy

2.1 Definition. [9, 2.1.1] A homotopy is a mapping h : I → C(X,Y ), which is
continuous as mapping ĥ : I×X → Y . Note that this implies, that h : I → C(X,Y )
is continuous for the compact open topology (a version of the topology of uniform
convergence for general topological spaces instead of uniform spaces Y , a subbasis
for this topology is given by the sets NK,U := {f ∈ C(X,Y ) : f(K) ⊆ U} with
arbitrary compact K ⊆ X and open U ⊆ Y ) but not conversely.

Two mappings hj : X → Y for j ∈ {0, 1} are called homotopic (we write h0 ∼ h1)
if there exists a homotopy h : I → C(X,Y ) with h(j) = hj for j ∈ {0, 1}, i.e. a
continuous mapping H : I ×X → Y with and H(j, x) = hj(x) for all x ∈ X and
j ∈ {0, 1}.

{0, 1} ×X h0∪h1 //
� _

��

Y

I ×X
H

77

0 1t

X
h0

h1

h

Y

2.2 Lemma. [9, 2.1.2] To be homotopic is an equivalence relation on C(X,Y ).

2.3 Definition. [9, 2.1.5] The homotopy class [f ] of a mapping g ∈ C(X,Y ) is
[f ] := {g ∈ C(X,Y ) : g is homotopic to f}. Let [X,Y ] := {[f ] : f ∈ C(X,Y )}.

2.4 Lemma. [9, 2.1.3] Homotopy is compatible with the composition.

For f : X ′ → X and g : Y → Y ′ let f∗ : C(X,Y ) → C(X ′, Y ) be defined by
f∗(k) = k ◦ f and g∗ : C(X,Y ) → C(X,Y ′) be defined by g∗(k) := g ◦ k. Finally,
let C(f, g) := f∗ ◦ g∗ = g∗ ◦ f∗ : C(X,Y )→ C(X ′, Y ′), k 7→ g ◦ k ◦ f .

C(X,Y )

g∗

��

f∗ //

C(f,g)

&&

C(X ′, Y )

g∗

��
C(X,Y ′)

f∗
// C(X ′, Y ′)

Proof. Let h : I → C(X,Y ) be a homotopy and f : X ′ → X, g : Y → Y ′

be continuous. Then C(f, g) ◦ h := f∗ ◦ g∗ ◦ h : I → C(X ′, Y ′) is a homotopy
g ◦ h0 ◦ f ∼ g ◦ h1 ◦ f , since (C(f, g) ◦ h)̂= g ◦ ĥ ◦ (f × I) is continuous.
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2.7 2. Homotopy

2.5 Definition. [9, 2.1.4] A mapping f : X → Y is called 0-homotopic iff it is
homotopic to a constant mapping.
A space X is called contractible, iff idX is 0-homotopic.

2.6 Remarks. [9, 2.1.6]

(0) Any two constant mappings into Y are homotopic iff Y is path-connected :
In fact a path y : I → Y induces a homotopy t 7→ consty.

(1) [{∗}, Y ] is in bijection to the path-components of Y : Homotopy = Path.

(2) Star-shaped subsets A ⊆ Rn are contractible by scalar-multiplication. In par-
ticular, this is true for A = Rn and for convex subsets A ⊆ Rn.

(4) For a contractible space X there need not exist a homotopy h which keeps
x0 fixed, see the infinite comb 2.40.9 .

Contractible spaces are path-connected.

(5) A composition of a 0-homotopic mapping with any mapping is 0-homotopic :
2.4 .

(6) If Y is contractible then any two mappings fj : X → Y are homotopic, i.e.
[X,Y ] := {∗} : 2.4 and 2.2 .

(7) Any continuous none-surjective mapping f : X → Sn is 0-homotopic : Sn \
{∗} ∼= Rn by 1.14 , now use 2 and 6 .

(8) If X is contractible and Y is path-connected then again any two mappings
fj : X → Y are homotopic, i.e. [X,Y ] = {∗} : 5 and 2.6.1 .

(9) Any mapping f : Rn → Y is 0-homotopic : 2 and the arguments in 8 .

2.7 Definition. [9, 2.1.7] [9, 2.1.8] [9, 2.1.10] (1) A homotopy relative A ⊆ X
is a homotopy h : I → C(X,Y ) with incl∗ ◦h : I → C(X,Y ) → C(A, Y ) constant.
Two mappings hj : X → Y are called homotopic relative A ⊆ X, iff there exists
a homotopy h : I → C(X,Y ) relative A with boundary values h(j) = hj for
j ∈ {0, 1}.

(2) A homotopy of pairs (X,A) and (Y,B) is a homotopy h : I → C(X,Y ) with
h(I)(A) ⊆ B Two mappings hj : (X,A) → (Y,B) of pairs are called homotopic,
iff there exists a homotopy (of pairs) h : I → C(X,Y ) with h(I)(A) ⊆ B and
h(j) = hj for j ∈ {0, 1}. We denote with [h0] also this homotopy class and with
[(X,A), (Y,B)] the set of all these classes.

(3) A homotopy of pairs with A = {x0} and B = {y0} is called base-point
preserving homotopy. We have f ∼ g : (X, {x0}) → (Y, {y0}) iff f ∼ g relative
{x0}.
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2. Homotopy 2.14

2.10 Example. [9, 2.1.9] Since I is contractible we have [I, I] = {0}.
But [(I, İ), (I, İ)] = {[id], [t 7→ 1− t], [t 7→ 0], [t 7→ 1]}.

2.11 Lemma. [9, 2.1.11] Let p : X ′ → X be a quotient mapping and let h : I →
C(X,Y ) be a mapping for which p∗ ◦ h : I → C(X ′, Y ) is a homotopy. Then h is a
homotopy.

Proof. Note that for quotient-mappings p the induced injective mapping p∗ is in
general not an embedding (we may not find compact inverse images). However
p̂∗ ◦ h = ĥ ◦ (I × p) and I × p is a quotient-mapping by 1.32 .

2.12 Corollary. [9, 2.1.12]

(1) Let p : X ′ → X be a quotient mapping, h : I → C(X ′, Y ) be a homotopy
and ht ◦ p−1 : X → Y be a well-defined mapping for all t. Then this defines
a homotopy I → C(X,Y ) as well: This is just a reformulation of 2.11 .

(3) Let f : X ⊇ A → Y be a gluing map and h : I → C(X,Z) and k : I →
C(Y, Z) be homotopies with incl∗ ◦h = f∗ ◦ k. Then they induce a homotopy
I → C(Y ∪f X,Z): Apply 1 to p : Y tX → Y ∪f X.

(2) Let h : I → C(X,Y ) be a homotopy compatible with equivalence relations
∼ on X and on Y , i.e. x ∼ x′ ⇒h(t, x) ∼ h(t, x′). Then h factors to a
homotopy I → C(X/∼, Y/∼): Apply 1 to (qY )∗ ◦ h : I → C(X,Y/∼).

(4) Each homotopy h : I → C((X,A), (Y,B)) of pairs induces a homotopy I →
C(X/A, Y/B): 2 .

(5) Homotopies hj : I → C((Xj , x
0
j ), (Yj , y

0
j )) induce a homotopy

∨
j h

j : I →
C((
∨
j Xj , x

0), (
∨
j Yj , y

0)).

2.13 Example. [9, 2.1.13]

(1) Let ht : (X, I) → (X, I) be given by ht(x, s) := (x, ts). This induces a
contraction of CX := (X × I)/(X × {0}).

(2) The contraction of Dn = CSn−1 given by 1 is not compatible with the
equivalence relation describing Dn/Sn−1 ∼= Sn, hence induces no contraction
of Sn. We will see in 2.19 and 9.1 , that Sn is not contractible at all.

Homotopy classes for mappings of the circle

2.14 Definition. [9, 2.2.1] We consider the (periodic) quotient mapping (and group
homomorphism) p : R→ S1, t 7→ exp(2πit) as well as its restriction p|I : I → S1.

Each mapping ϕ : I → R factors to a well defined mapping ϕ := p◦ϕ◦p−1 : S1 → S1

iff n := ϕ(1)− ϕ(0) ∈ Z.

I

p

��

ϕ // R
p

��
S1

ϕ // S1

Conversely:

andreas.kriegl@univie.ac.at c© 11. Jänner 2012 31



2.18 2. Homotopy

2.15 Lemma. [9, 2.2.2] Let f : S1 → S1 be continuous, then there exists a unique
continuous ϕ : (R, 0)→ (R, 0) with f = f(1) · ϕ̄.

(R, 0)
ϕ //

p

��

(R, 0)

p

��
(S1, 1)

f(1)−1f// (S1, 1)

Proof. Replace f by f(1)−1 · f , i.e. w.l.o.g. f(1) = 1. Let h := f ◦ p. Then h
is periodic, uniformly continuous and h(0) = 1. So chose δ > 0 with |t − t′| ≤ δ

⇒|h(t) − h(t′)| < 2 and hence h(t)
h(t′) 6= −1. Let tj := j δ. The mapping t 7→ eit is a

homeomorphism (−π, π)→ S1 \ {−1} let arg : S1 \ {−1} → (−π, π) ⊆ R denote its
inverse. Then for tj ≤ t ≤ tj+1 let

ϕ(t) :=
1

2π

(
arg

h(t1)
h(t0)

+ · · ·+ arg
h(t)
h(tj)

)
,

which gives the desired lifting.

This lifting is unique, since the difference of two such liftings has image in the
discrete subset p−1(1) ⊆ R, and hence is constant (=0).

2.16 Definition. [9, 2.2.3] Let f : S1 → S1 be continuous and ϕ as in 2.15 , then
deg f := ϕ(1) ∈ Z is called mapping degree of f .

2.17 Theorem. [9, 2.2.4] deg induces an isomorphism [S1, S1] ∼= Z of semigroups.
In more detail:

(1) The mapping gn : z 7→ zn from 1.95.5 has degree n.

(2) Two mappings are homotopic iff they have the same degree.

(3) deg(f1 ◦ f2) = deg(f1) · deg(f2).

Proof. 1 follows since ϕ(t) = n · t.

2 Let f be a homotopy I → C(S1, S1). Then, by 2.15 , there exists a lifting
ϕ : I → C(R,R) with p(ϕt(z)) = ft(1)−1 · ft(p(z)). This ϕ is a homotopy, since we
can use for each ht the same δ in the proof of 2.15 . In particular ϕt(1) ∈ p−1(1) = Z
and hence is constant. So deg(f0) = ϕ0(1) = ϕ1(1) = deg(f1).

Conversely, we define ϕ : I → C(R,R) by ϕt := (1− t)ϕ0 + tϕ1. Then this induces
a homotopy f : I → C(S1, S1), since ϕt(1) = deg(f0) = deg(f1) ∈ Z.

3 Let n := deg(f1) and m := deg(f2). Obviously, gn ◦ gm = gnm. By 1 and 2
f1 ∼ gn and f2 ∼ gm, hence f1◦f2 ∼ gn◦gm = gnm and thus deg(f1◦f2) = nm.

2.18 Remarks. [9, 2.2.5]

(1) deg(id) = 1: id = g1; f ∼ 0 ⇒deg(f) = 0: f ∼ g0; deg(g−1 : z 7→ z) = −1 by
2.17 .

(3) f homeomorphism ⇒deg(f) ∈ {±1}, since deg(f) is invertible in Z.

(4) incl : S1 ↪→ C \ {0} is not 0-homotopic, since idS1 is not: deg(id) = 1 and
2.17 . We can use [Sn, X] to detect holes in X.
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2. Homotopy 2.24

(5) The two inclusions of S1 ↪→ S1 × S1 are not homotopic: pr1 ◦ inc1 = id,
pr1 ◦ inc2 ∼ 0.

2.19 Lemma. [9, 2.2.6] S1 is not contractible.

Proof. deg(id) = 1.

2.20 Definition. [9, 2.3.1] A subspace A ⊆ X is called retract iff there exists
an r : X → A with r|A = idA.

Being a retract is a transitive relation. Retracts in Hausdorff spaces are closed
(A = {x ∈ X : r(x) = x})

2.21 Lemma. [9, 2.3.2]

(1) A subspace A ⊆ X is a retract of X iff every function f : A → Y can be
extended to f̃ : X → Y .

(2) Let A ⊆ X be closed. Then a function f : A → Y can be extended to X iff
Y is a retract of Y ∪f X.

Proof. We prove that idA can be extended iff any f : A→ Y can be extended. The
extensions f̃ of f : A→ Y correspond to retractions r = idY ∪f̃ of Y ⊆ Y ∪f X:

1 A � n

��========
idA //

f

��

A

f

��

2 A� _

��

f // Y
_�

�� idY

��

X

r

@@

f̃

��

X //

f̃ ++

Y ∪f X
r

##
Y Y

2.22 Lemma. [9, 2.2.7] There is no retraction of D2 to S1 ↪→ D2.

Proof. Otherwise, let r : D2 → S1 be a retraction to ι : S1 ↪→ D2. Then id =
r ◦ ι ∼ r ◦ 0 = 0, a contradiction to 2.17.1 .

2.23 Lemma. Brouwer’s fixed point theorem. [9, 2.2.8] Every continuous
mapping f : D2 → D2 has a fixed point.

Proof.
Assume f(x) 6= x and let r(x) the unique
intersection point of the ray from f(x) to
x with S1. Then r is a retraction, a con-
tradiction to 2.22 .

x

fHxL

rHxL

2.24 Lemma. Fundamental theorem of algebra. [9, 2.2.9] Every not-constant
polynomial has a root.
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2.30 2. Homotopy

Proof. Let p(x) = a0 + · · · + an−1x
n−1 + xn be a polynomial without root and

n ≥ 1, s := |a0|+ · · ·+ |an−1|+ 1 ≥ 1 and z ∈ S1. Then

|p(sz)− (sz)n| ≤ |a0|+ s|a1|+ · · ·+ sn−1|an−1|
≤ sn−1(|a0|+ · · ·+ |an−1|) < sn = |(sz)n|.

Hence 0 /∈ p(sz), (sz)n. Thus z 7→ sn zn, S1 → C\{0} is homotopic to z 7→ p(sz) and
consequently 0-homotopic. Hence 0 ∼ gn : z 7→ zn, a contradiction to 2.17 .

2.25 Definition.
[9, 2.2.10]
The degree of f : S1 → R2

with respect to z0 /∈ f(S1) is
the degree of x 7→ f(x)−z0

|f(x)−z0| and
will be denoted by U(f, z0) the
turning (winding) number
of f around z0.

+2+10

-1 -1

+1

0

2.26 Lemma. [9, 2.2.11] If z0 and z1 are in the same component of C\ f(S1) then
U(f, z0) = U(f, z1).

Proof. Let t 7→ zt be a path in C \ f(S1). Then t 7→ (x 7→ f(x)−zt
|f(x)−zt| ) is a homotopy

and hence U(f, z0) = U(f, z1).

2.27 Lemma. [9, 2.2.12] There is exactly one unbounded component of C \ f(S1)
and for z in this component we have U(f, z) = 0.

Proof. For x′ outside a sufficiently large disk containing f(S1) (this is connected
and contained in the (unique) unbounded component) the mapping

t 7→
(
x 7→ tf(x)− x′

|tf(x)− x′|

)
is a homotopy showing that x 7→ f(x)−x′

|f(x)−x′| is 0-homotopic and hence U(f, x′) = 0
and U(f, ) is zero on the unbounded component.

By Jordan’s curve theorem there are exactly two components for an embedding
f : S1 → C. And one has U(f, z) ∈ {±1} for z in the bounded component.

2.30 Theorem. [9, 2.3.3] A mapping f : X → Y is 0-homotopic iff there exists an
extension f̃ : CX → Y with f̃ |X = f

Proof. We prove that homotopies h : X × I → Y with constant h0 correspond to
extensions h̃1 : CX → Y of h1:

X × {1}
kK

yysssssssss
X

f

��

X × I // //

h
**

CX

%%
X × {0}
3 S

eeKKKKKKKKK

const
// Y

34 andreas.kriegl@univie.ac.at c© 11. Jänner 2012



2. Homotopy 2.31

2.28 Theorem of Borsuk and Ulam. [9, 2.2.13] For every continuous mapping
f : S2 → R2 there is a z ∈ S2 with f(z) = f(−z).

Proof. Suppose f(x) 6= f(−x). Consider f1 : S2 → S1, x 7→ f(x)−f(−x)
|f(x)−f(−x)| and

f2 : D2 → S1, x 7→ f1(x,
√

1− |x|2). Then g := f2|S1 ∼ 0 via f2. Since f1 is odd,
so is g. Let ϕ be the lift of g(1)−1g and hence ϕ(1) = deg(g). For all t we have
g(exp(2πi(t+ 1

2 ))) = g(− exp(2πit)) = −g(exp(2πit)) and hence

exp(2πiϕ(t+
1
2

)) = g(1)−1g(exp(2πi(t+
1
2

))) = −g(1)−1g(exp(2πit))

= − exp(2πiϕ(t)) = exp(2πi(ϕ(t) +
1
2

)).

Hence k := ϕ(t + 1
2 ) − ϕ(t) − 1

2 ∈ Z and independent on t. For t = 0 we get
ϕ( 1

2 ) = k + 1
2 and for t = 1

2 we get deg(g) = ϕ(1) = ϕ( 1
2 ) + 1

2 + k = 2k + 1 6= 0, a
contradiction.

2.29 Ham-Sandwich-Theorem. [9, 2.2.14] Let A0, A1, A2 be bounded measurable
subsets of R2. Then there is a plane which cuts A0, A1 and A2 in exactly equal parts.

Proof. We denote the halfspaces with Ha,d := {x ∈ R3 : 〈x, a〉 ≤ d} and the
volume of the trace of Aj on this halfspace with µj(a, d) := µ(Aj ∩ Ha,d). Then
µj : S2 × R→ R is a continuous function with µj(−a,−d) + µj(a, d) = µ(Aj). Let
da be the middle point of the closed interval Ia := {d : µ0(a, d) = µ(A0)/2}. For d
in this set we have µ0(a, d) = µ(A0)

2 = µ0(−a,−d) and hence d−a = −da.
Moreover, a 7→ da is continuous: let d− := min Ia and d+ := max Ia. Then
µ0(a0, d) < µ(A0)/2 for d < d− and by continuity of µ0 there exists a δ > 0 such
that µ0(a, d− − ε) < µ(A0)/2 for all |a − a0| < δ and analogously µ0(a, d+ + ε) >
µ(A0)/2 for all |a − a0| < δ. Thus Ia ⊆ [d− − ε, d+ + ε]. In case d− = d+ we get
|da − da0 | ≤ ε. Otherwise d 7→ µ(a0, d) = µ(A0)/2 is constant on [d−, d+] and thus
µ(A0 ∩ (Ha,d+ \ Ha,d−)) = 0. Thus we may assume that δ > 0 is so small, that
µ(a, d) = µ(A0)/2 for all |a − a0| < δ and all d− + ε < d < d+ − ε. Then again
|da − da0 | ≤ ε.
Now let f : S2 → R2 be given by f(a) := (µ1(a, da), µ2(a, da)). By 2.28 there
exists a point b ∈ S2 with f(b) = f(−b). Since d−a = −da we have that f(−b) is
the volume of A1 and A2 on the complement of Ha,da .

2.31 Definition. [9, 2.3.4] A pair (X,A) is said to have the general homotopy
extension property (HEP) (equiv. is a cofibration) iff A is closed in X and
we have

A
� � //

_�

ins0

��

X
_�

ins0

�� H0

��

A× I � � //

h ..

X × I
H

""
Y

A

X

I h

H0

H

or, equivalently,

A
� � //

ȟ
��

X

H0

��
Ȟ

{{
C(I, Y )

ev0
// Y

This is dual to the notion of
fibration (mappings with
the homotopy lifting pro-
perty):

A Xoooo

Y × I

h

OO

H

<<

Y? _

ins0

oo

H0

OO
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2.35 2. Homotopy

2.32 Theorem. [9, 2.3.5] (X,A) has HEP ⇔ X×{0}∪A×I is a retract of X×I.

Proof.
With L := X × {0} ∪ A × I ⊆ X × I we
have:

(X,A) has HEP;
:⇐⇒ any f : L→ Y extends to X × I;

⇐
2.21

====⇒ L ⊆ X × I is a retract.

A

X

I

2.33 Remarks. [9, 2.3.6]

(1) The pair (Dn, Sn−1) has the HEP : Radial project from the axis at some
point above the cylinder is a retraction.

(2) If (X,A) has HEP then (Y ∪f X,Y ) has HEP for any f : A→ Y :

A
f //

� _

��

Y � _

��

h // C(I, Z)

ev0

��
X //

55

Y ∪f X
H0

//

99

Z

(3) If Y is obtained from X by gluing cells, then (Y,X) has HEP : ⇐ 1 , 2 .

(4) The pair (N∞, {∞}) does not have HEP.
Otherwise, for x 6=∞ the map t 7→ r(x, t),
I → L, maps 0 7→ (x, 0) ⇒ r({x} × I) ⊆
L∩({x}×I) = {(x, 0)}, but r(x, 1) is near
r(∞, 1) = (∞, 1) for x near ∞.

¥ 01234

2.34 Remark. [9, 2.3.7] Let (X,A) has HEP.

(1) If f ∼ g : A→ Y and f extends to X then so does g : By Definition of HEP.

(2) If f : X → Y is 0-homotopic on A, then there exists a mapping g homotopic
to f , which is constant on A : Consider the homotopy on A × I and f on
X × {0}.

(3) If A = {x0} and Y is path-connected, then every mapping X → Y is homo-
topic to a base-point preserving one : Consider f on X × {0} and a path w
on {x0} × I between f(x0) and y0.

(4) There exists a continuous u : X → I with A = u−1(0) : Define u(x) :=
sup{t− pr2(r(x, t)) : t ∈ I}. Then u : X → I is continuous and u(x) = 0⇔
t ≤ pr2(r(x, t)) ⇒ pr2(r(x, t)) ≥ t > 0 for t > 0, thus r(x, t) ∈ A × I for
t > 0 and hence also (x, 0) = r(x, 0) ∈ A× I, i.e. x ∈ A.

(5) For closed subsets A of metric spaces Y there exists a function u : Y → I as
in 4 : Define u(y) := d(y,A) = inf{d(y, a) : a ∈ A}.

2.35 Theorem. [9, 2.3.8] If (X,A) has HEP, then so has (X × I,X × İ ∪A× I).
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Proof.
We use 2.32 to show that X × I × I has L :=
X×I×{0}∪(X× İ∪A×I)×I as retract. For this
we consider planes E through the axisX×(1/2, 2).
For planes intersecting the bottom X×I×{0} we
take the retraction r of the intersection E ∩ (X ×
I×I) ∼= X×I (via horizontal projection) onto the
intersection E∩L ∼= X×{0}∪A×I. For the other
planes meeting the sides we take the retraction r
of the intersection E∩(X×I×I) ∼= X× [0, t] (via
vertical projection) onto the intersection E ∩L ∼=
X × {0} ∩ A× [0, t]. For this we have to use that
the retraction r : (x, t) 7→ (r1(x, t), r2(x, t)) given
by 2.32 can be chosen such that r2(x, t) ≤ t by
replaceing r2(x, t) by min{t, r2(x, t)}.

Homotopy equivalences

2.36 Definition. [9, 2.4.1] [9, 2.4.2] [9, 2.4.3]

(1) A homotopy equivalence is a mapping having up to homotopy an inverse.
It is enough to assume a homotopy left inverse l and a homotopy right inverse
r, i.e. [l]◦ [f ] = [id] and [f ]◦ [r] = [id], since then [f ]◦ [l] = [id]◦ [f ]◦ [l] = [f ]◦
[l]◦ [f ]◦ [r] = [f ]◦ [id]◦ [r] = [f ]◦ [r] = [id]. Two spaces are called homotopy
equivalent (and we write ∼) iff there exists a homotopy equivalence.

(2) A continuous mapping between pairs is called homotopy equivalence of
pairs, iff there is a mapping of pairs in the opposite direction which is inverse
up to homotopy of pairs.

(3) A subspace A ⊆ X is called deformation retract (DR) iff there is a
homotopy ht : X → X with h0 = idX and h1 : X → A ⊆ X being a
retraction to A ↪→ X.

(4) The subspace A ⊆ X is called strict deformation retract (SDR) iff,
in addition to 3 , ht is a homotopy rel. A and there exists a continuous
u : X → I with A = u−1(0).

(5) A subspaceA ⊆ X is called neighborhood deformation retract (NDR)
iff there exists a continuous u : X → I with A = u−1(0) and a homotopy
ht : X → X relative A with h0 = idX and h1(x) ∈ A for u(x) < 1.
Note that the SDRs are exactly the NDRs for which u can be choosen with
u(x) < 1 for all x ∈ X (replace u by u

2 ).

2.39 Theorem. [9, 2.4.4] For (X,A) with HEP the following is equivalent:

(1) A ↪→ X is a homotopy-equivalence;

(2) A is a DR of X;

(3) A is a SDR of X.

Proof. (3⇒2) is obvious.
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(2⇒1) is always true. In fact let ht be a deformation from idX to a retraction
h1 : X → A ⊆ X. Then h1 is a homotopy inverse to ι : A ↪→ X, since h1 ◦ ι = idA
and ι ◦ h1 = h1 ∼ h0 = idX .

(1⇒2) Let g be a homotopy inverse to ι : A ↪→ X. Since g ◦ ι ∼ idA and g ◦ ι
extends to g : X → A we conclude from 2.34.1 that idA : A→ A has an extension
r : X → A ⊆ X, i.e. a retraction. Moreover, idX ∼ ι ◦ g = r ◦ ι ◦ g ∼ r ◦ idX = r.

(2⇒3) Let ht : X → X be a deformation from h0 = idX to a retraction h1 = r :
X → A ⊆ X and let Ht : W := X × İ ∪A× I → X be given by

Ht(x, s) :=

{
hst(r(x)) für s = 1 (the back side)
hst(x) elsewhere, i.e. for x ∈ A or s = 0 (front) or even t = 1 (top).

Because of r(x) = x for x ∈ A the definition coincides on the intersection. Since
the expression for H1 works on X × I and (X × I,W ) has HEP by 2.35 we can
extend H0 to X × I by 2.34.1 . This is the required deformation idX ∼ r rel. A.

Since (X,A) has HEP we have A = u−1(0) for a u : X → I by 2.34.4 .

2.40 Remarks. [9, 2.4.5]

(1) X is contractible iff it is homotopy-equivalent to a point : In fact, X is con-
tractible ⇔ idX ∼ const∗ ⇔ {∗} ⊆ X is a DR ⇔ {∗} ∼ X.

(2) Every set which is star-shaped with respect to some point, has this point as
SDR. Furthermore, Sn−1 ⊆ Rn \ {0} is SDR : The radial homotopy from
2.6.2 is the strict deformation.

(3) Composition of (S)DRs are (S)DRs :

h(t, x) :=

{
h1(2t, x) for t ≤ 1

2

h2(h1(1, x), 2t− 1) for t ≥ 1
2

and u := max{u1, u2 ◦ h1
1}.

(4) If {y} is an (S)DR of Y then so is X×{y} of X×Y and of X∨Y ⊆ X×Y :
Use ht(x, y) := (x, ht(y)) and u(x, y) := u(y).

(5a) If (X,A) is an NDR and (Y,B) is an NDR (SDR), then (X×Y,X×B∪A×Y )
is an NDR (SDR) : Let

ht(x, y) :=


(
ht(x), h

t
u(x)
u(y)

(y)
)

for u(x) ≤ u(y)(
h
t
u(y)
u(x)

(x), ht(y)
)

for u(x) ≥ u(y)

and u(x, y) = min{u(x), u(y)}.

(6) The complement of a k-dimensional affine subspace of Rn has an Sn−k−1 as
SDR : Rn \ Rk = Rk × (Rn−k \ {0}) ∼ {0} × Sn−k−1 by 2 , 4 and 3 .

(5) X × {0} is an SDR of X × I and the apex X × {0} ∈ C(X) is an SDR of
CX : ⇐ 2 , 4 and 2.12.4 .

(7) The following spaces have S1 as DR: X × S1 for every contractible X and
the Möbius strip : By 1 and using I×{0} ⊆ I× [−1, 1] for the Möbius strip.

(8) Every handle-body of genus g has S1 ∨ · · · ∨ S1 as SDR.
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(9) The infinite comb (see 2.6.4 ) has (+∞, 1) as DR but not as SDR.

2.41 Proposition. [9, 2.4.6] If A is an NDR (SDR) in X and f : A → Y is
continuous, then Y is an NDR (SDR) in Y ∪f X.

Proof.

A
f //

_�

��

Y
_�

��

id

%%KKKKKKKKKKKK I ×A
I×f //

_�

��

I × Y
_�

��

pr2

''OOOOOOOOOOOOO

X //

ht ##FFFFFFFFFF Y ∪f X

h̃t
%%

Y
_�

��

I ×X //

h
&&MMMMMMMMMMMMM I × (Y ∪f X)

h̃

''

Y
_�

��
X // Y ∪f X X // Y ∪f X

Let u : Y ∪f X → I be given by u(y) := 0 for y ∈ Y and u([x]) := u(x) for x ∈ X.

2.42 Corollary. [9, 2.4.7] If Y is built from X by gluing simultaneously cells, then
Y is a SDR in Y \ P , where P is given by picking in every cell a single point.

Proof. Use 2.40.2 and 2.41 .

2.43 Example. [9, 2.4.8] The pointed compact surfaces have S1∨· · ·∨S1 as SDR.

Proof. By 1.101 they are S1 ∨ · · · ∨ S1 ∪f (D2 \ {∗}). Now use 2.41 .

2.44 Theorem. [9, 2.4.9] For a pair (X,A) and L := X × {0} ∪ A × I ⊆ X × I
the following statements are equivalent:

(1) (X,A) is NDR;

(2) (X × I, L) is SDR;

(3) L is a retract of X × I;

(4) (X,A) has HEP.

Proof.

(1⇒2) By 2.40.5a , since (X,A) is NDR and (I, {0}) is SDR.

(2⇒3) Take r := h1.

(3⇔4) is 2.32 .

(3⇒1) Let r = (r1, r2) be a retraction of L ↪→ X × I. Define u(x) := sup{t −
r2(x, t) : t ∈ I} and ht(x) := r1(x, t). Then A = u−1(0) as in 2.34.4 . Furthermore,
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h0(x) = r1(x, 0) = x, ht(a) = r1(a, t) = a for all a ∈ A, and u(x) < 1⇒ r2(x, 1) >
0⇒ h1(x) = r1(x, 1) ∈ A.

2.44a Dependencies for closed subspaces A ↪→ X.

SDR

!)JJJJJJJJJ

JJJJJJJJJ

v~ uuuuuuuu

uuuuuuuu

DR

x� xxxxxxxx

xxxxxxxx

�'GGGGGGGGG

GGGGGGGGG NDR ks
2.44

+3 HEP

2.34.4

��
Retr. A ∼ X A = u−1(0)

2.44b Counter-Examples.
Prop. L ⊆ E {(∞, 1)} ⊆ E {∞} ⊆ N∞ S1 ⊆ D2 {0} ⊆

∏
I I

SDR – – – – –
NDR=HEP – – – + –

DR – + – – +
Retract + + + – +
A ∼ X + + – – +

A = u−1(0) + + + + –
Here

• (N∞,∞) ∼= ({ 1
n : 0 6= n ∈ N} ∪ {0}, 0),

• E := N∞ × I ∪ [0,+∞]× {0} is the infinite comb,

• and L := {∞} × I ∪ [0,+∞]× {0] ⊆ E.

2.45 Definition. [9, 2.4.10] The mapping cylinder Mf of a mapping f : X → Y
is given by Y ∪f (X × I), where f is considered as mapping X × {1} ∼= X → Y .

We have the diagram

X
f //

p�
i

  BBBBBBB Y
nN

~~}}}}}}}

Mf

r

>>}}}}}}}}

where f = r◦i and i is a closed embedding
with HEP and Y →Mf a SDR (along the
generators X × I) with retraction r (by
2.40.5 and 2.41 ).

To see the HEP, construct a retraction
Mf ×I →Mf ×{0}∪X×I by projecting
radially in the plane {x}×I×I from {x}×
{1} × {2} and use 2.32 .

2.46 Corollary. [9, 2.4.12] Two spaces are homotopy equivalent iff there exists a
third one which contains both as SDRs.

Proof. (⇒) Use the mapping cylinder as third space. Since f is a homotopy equi-
valence, so is i : X →Mf by 2.45 and by the HEP it is a SDR by 2.39 .

(⇐) Use that SDRs are always homotopy equivalences.
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2.47 Proposition. [9, 2.4.13] Assume (X,A) has HEP and fj : X ⊇ A → Y are
homotopic. Then Y ∪f0 X and Y ∪f1 X are homotopy equivalent rel. Y .

Proof. Consider the homotopy f : A × I → Y and the space Z := Y ∪f (X × I).
We show that Y ∪fjX are SDRs of Z and hence are homotopy equivalent by 2.46 :

A
fj //

q�
insj

##FFFFFFFFF_�

��

Y

��

A× I
f

77oooooooooooo

� _

��

X
p�

!!DDDDDDDDD
// Y ∪fj X

2.41SDR

��
L

88qqqqqqqqqqqq
_�

2.44SDR

��

Y ∪f (X × I)

X × I
f

88ppppppppppp

Where we use that the composite of two push-outs is a push-out, and if the compo-
site of push-out and a commuting square is a push-out then so is the second square,
cf. 1.47 .

2.48 Example. [9, 2.4.14] The dunce hat D, i.e. a triangle with sides a, a, a−1

identified, is contractible: By 1.101 , 1.94 and 2.47 we have D ∼= S1 ∪f D2 ∼
S1 ∪id D

2 ∼= D2.

a

aa

2.49 Proposition. [9, 2.4.15] Let A be contractible and let (X,A) have the HEP.
Then the projection X → X/A is a homotopy equivalence.
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Proof. Consider
A

ft

��

� � // X

Ft

��

// // X/A

R̃

}}
F̃t
��

A
� � // X // // X/A

Then R̃ given by factoring F1 is the desired homotopy inverse to X → X/A, since
F0 = id and F1(A) = {∗}.
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2. Homotopy 3.6

3. Simplicial Complexes

Basic concepts

3.1 Remark (Points in general position). [9, 3.1.1] A finite set of points
x0, . . . , xq in Rn is said to be in general position if one of the following equivalent
conditions is satisfied:

1. The affine subspace {
∑
i λixi :

∑
i λi = 1} generated by the xi has dimension

q;

2. No strict subset of {x0, . . . , xq} generates the same affine subspace;

3. The vectors xi − x0 for i > 0 are linear independent;

4. The representation
∑
i λixi with

∑
i λi = 1 is unique.

3.2 Definition (Simplex). [9, 3.1.2] A simplex of dimension q (or short: a q-
simplex) is the set

σ := 〈x0, . . . , xq〉 :=
{∑

i

λixi :
∑
i

λi = 1,∀i : λi > 0
}

for points {x0, . . . , xq} in general position. Its closure in Rn is the set

σ̄ :=
{∑

i

λixi :
∑
i

λi = 1,∀i : λi ≥ 0
}
.

The points xi are then called the vertices of σ. Remark that as extremal points
of σ̄ they are uniquely determined. The set σ̇ := σ̄ \ σ is called boundary of σ.

x0

<x0>

x0 x1

<x0 ,x1>

x0 x1

x2

<x0 ,x1 ,x2>

x0

x1

x2

x3

<x0 ,x1 ,x2 ,x3>

3.3 Lemma. [9, 3.1.3] Let σ be a q-simplex. Then (σ̄, σ̇) ∼= (Dq, Sq−1).

Proof. Use 1.10 for the affine subspace generated by σ.

3.4 Definition (Faces). [9, 3.1.4] Let σ and τ be simplices in Rn. Then τ is called
face of σ (τ ≤ σ) iff the vertices of τ form a subset of those of σ.

3.5 Remark. [9, 3.1.5]

(1) Every q-simplex has 2q+1 many faces: In fact this is the number of subsets
of {x0, . . . , xq}

(2) The relation of being a face is transitive.

(3) The closure of a simplex σ is the disjoint union of all its faces σ =
⋃
τ≤σ τ :

Remove all summands λixi in
∑
i λixi for which λi = 0.

3.6 Definition (Simplicial Complex). [9, 3.1.6] A simplicial complex K is a
finite set of simplices in some Rn with the following properties:
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3.11 3. Simplicial Complexes

1. σ ∈ K, τ ≤ σ ⇒τ ∈ K.

2. σ, τ ∈ K, σ 6= τ ⇒σ ∩ τ = ∅.

The 0-simplices {x0} (or their elements x0) are called vertices and the 1-simplices
are called edges of K. The number max{dimσ : σ ∈ K} is called dimension of
K.

3.7 Definition (Triangulation). [9, 3.1.7] For a simplicial complex K the sub-
space |K| :=

⋃
σ∈K σ is called the underlying topological space. Every space

which is the underlying space of a simplicial complex is called polyhedra. A cor-
responding simplicial complex is called a triangulation of the space.

3.8 Remark. [9, 3.1.8] By 3.6 we have |K| =
⋃
σ∈K σ̄, and σ̄∩ τ̄ is a either empty

or the closure of a common face. Every polyhedra is compact and metrizable.

3.9 Remarks. [9, 3.1.9]

1. Regular polyhedra are triangulations of a 2-sphere.

2. There is a triangulation of the Möbius strip by 5 triangles.

1

2

3

4

5

6 1

2

3

4

5

5

1

2

3. There is a (minimal) triangulation of the projective plane by 10 triangles.

4. One can show, that every compact surface, every compact 3-dimensional
manifold and every compact differentiable manifold has a triangulation.

5. It is not known whether every compact manifold has a triangulation.

6. Every ball (and every sphere) has a triangulation given by an n-Simplex
with all its faces.

7. A countable union of circles tangent at some point is not a polyhedra, since
it consists of infinite many 1-simplices.

3.11 Definition (Carrier Simplex). [9, 3.1.10] For every x ∈ |K| exists a unique
simplex σ ∈ K with x ∈ σ. It is called the carrier simplex of x and denoted
carrK(x).
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3. Simplicial Complexes 3.18

3.12 Lemma. [9, 3.1.11] Every point x ∈ |K| has a unique representation x =∑
i λixi, with

∑
i λi = 1 and λi > 0 and vertices {xi} of K. The xi are the vertices

of the carrier simplex carrK(x) of x.

Conversely, any point x =
∑
o λixi, with

∑
i λi = 1 and λi > 0 and xi generating

a simplex σ ∈ K, belongs to |K|.

3.13 Definition. [9, 3.1.12] A subcomplex is a subset L ⊆ K, that is itself a
simplicial complex. This is exactly the case if τ ≤ σ ∈ L ⇒ τ ∈ L since (2) is
obvious.

3.14 Lemma. [9, 3.1.13] A subset L ⊆ K is a subcomplex iff |L| is closed in |K|.

Proof. (⇒) since |L| is compact by 3.8 .
(⇐) τ ≤ σ ∈ L ⇒ τ ⊆ σ̄ ⊆ |L| ⇒ τ ∈ L. Use 3.5.3 and 3.8 .

3.15 Definition (Components of a Complex). [9, 3.1.14] Two simplices σ and
τ are called connectible in K iff there are simplices σ0 = σ, . . . , σr = τ with
σ̄j ∩ σ̄j+1 6= ∅. The equivalence classes with respect to being connectible are called
the components of K. If there is only one component then K is called connected.

3.16 Lemma. [9, 3.1.15] The components of K are subcomplexes and their under-
lying spaces are the path-components (connected components) of |K|.

Proof. Since σ is a closed convex subset of some Rn, it is path connected and
hence the underlying subspace of a component is (path-)connected. Conversely, if
two simplices σ and τ belong to the same component of the underlying space, then
there is a curve c connecting σ with τ . This curve meets finitely many simplices
σ0 = σ, . . . , σN = τ and we may assume that it meets σi before σj for i < j.
By induction we show that all σi belong to the same component of K. In fact if
σ0, . . . , σi−1 does so, then let t0 := min{t ∈ [0, 1] : c(t) ∈ σi}. Then c(t) ∈

⋃
j<i σj

for t < t0 and hence c(t0) ∈
⋃
i<j σj ∩ σi. Thus σi is connected with σj for some

j < i.

3.17 Definition (Simplicial Mapping). [9, 3.1.16] A mapping ϕ : K → L
between simplicial complexes is called simplicial mapping iff

1. ϕ maps vertices to vertices (and we write ϕ({x}) =: {ϕ(x)});

2. And if σ is generated by vertices x0, . . . , xq then ϕ(σ) is generated by the
vertices ϕ(x0), . . . , ϕ(xq), i.e. ϕ(〈x0, . . . , xq〉) = 〈ϕ(x0), . . . , ϕ(xq)〉.
Attention: It is not assumed, that the ϕ(xi) are pairwise distinct.

3.18 Lemma. [9, 3.1.17]

1. A simplicial mapping is uniquely determined by its action on the vertices.

2. If σ ≤ τ ∈ K then ϕ(σ) ≤ ϕ(τ) ∈ L.

3. dim(ϕσ) ≤ dimσ.

Proof. This follows immediately, since ϕ(〈x0, . . . , xk〉) = 〈{ϕ(xi) : 0 ≤ i ≤ k}〉.
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3.19 Definition (Underlying continuous Map). [9, 3.1.18] Let ϕ : K → L be
simplicial. Then

|ϕ|
(∑

i

λixi

)
:=
∑
i

λiϕ(xi) for xi ∈ K,
∑
i

λi = 1 and λi ≥ 0

defines by 3.12 a continuous map from |K| → |L| (which is affine on every closed
simplex σ̄).

3.20 Remark. [9, 3.1.19] There are only finitely many simplicial mappings from
K to L. For every simplicial map ϕ the map |ϕ| is not dimension increasing.

3.21 Lemma. [9, 3.1.21]

1. A map ϕ : K → L is an simplicial isomorphism (i.e. has an inverse, which
is simplicial) iff it is simplicial and bijective.

2. For every simplicial isomorphism ϕ the mapping |ϕ| is a homeomorphism.

Proof. ( 1 , ⇐) We have to show that the inverse of a bijective simplicial mapping
is simplicial.

Let ξ = {x} be a vertex of L and ϕ(σ) = γ. We have to show that σ is a 0-simplex.
Let x0, . . . , xq be the vertices of σ. By 3.17.2 the ϕ(x0), . . . , ϕ(xq) generate the
simplex ξ = ϕ(σ) and hence have to be equal to the vertex x of ξ. Since ϕ is injective
q = 0 and σ = {x0}.

Now let τ = ϕ(σ) be a simplex in L with vertices y0, . . . , yq. Let x0, . . . , xp be the
vertices of σ. Since ϕ is simplicial and injective the images ϕ(x0), . . . , ϕ(xp) are
distinct and generate the simplex ϕ(σ) by 3.17.2 hence are exactly the vertices
y0, . . . , yq of τ . Thus p = q and w.l.o.g. ϕ(xj) = yj for all j. So σ is generated by
the ϕ−1(yj) = xj .

Simplicial approximation

3.22 Definition (Simplicial Approximation). [9, 3.2.4] Let K and L be two
simplicial complexes, f : |K| → |L| be continuous. Then a simplicial mapping
ϕ : K → L is called simplicial approximation for f iff for all x ∈ |K| we have
|ϕ|(x) ∈ carrL(f(x)), i.e. f(x) ∈ σ ∈ L⇒ |ϕ|(x) ∈ σ̄. This can be expressed shortly
by ∀σ ∈ L : |ϕ|(f−1(σ)) ⊆ σ̄. In particular, for every x ∈ |K| there is then a simplex
σ ∈ L (namely σ := carrL(f(x))) with f(x), |ϕ|(x) ∈ σ. Note that |ϕ|(σ̄) = ϕ(σ).

3.23 Lemma. [9, 3.2.5] Let ϕ be a simplicial approximation of f , then |ϕ| ∼ f .

Proof. Connect |ϕ|(x) to f(x) by the segment in carrL f(x)

3.24 Example. [9, 3.2.6]

1. Let X := |σ̇2|. Then X ∼= S1. If ϕ : K → K is simplicial, then either ϕ is
bijective or not surjective, so it has degree in {±1, 0} by 2.18.3 and 2.6.7 .
Thus every continuous map f : X → X with |deg(f)| > 1 has no simplicial
approximation.
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2. For f : t 7→ 4t(1− t) from [0, 1]→ [0, 1] there is no simplicial approximation
ϕ : K → K := {〈0〉, 〈1〉, 〈0, 1〉}: In fact, carr(j) = {j} for j ∈ {0, 1} and
carr( 1

2 ) = 〈0, 1〉 hence any such ϕ must satisfy ϕ(0) = ϕ(1) = 0 and hence
|ϕ|( 1

2 ) = 0 /∈ {1}.

In order to get simplicial approximations we have to refine the triangulation of |K|.
This can be done with the following barycentric refinement.

3.25 Definition (Barycentric Refinement). [9, 3.2.1] The barycenter σ̂ of a
q-simplex σ with vertices xi is given by

σ̂ =
1

q + 1

∑
i

xi.

For every simplicial complex K the barycentric refinement K ′ is given by all
simplices having as vertices the barycenter of strictly increasing sequences of faces
of a simplex in K, i.e.

K ′ := {〈σ̂0, . . . , σ̂q〉 : σ0 < · · · < σq ∈ K}.

3.26 Theorem. [9, 3.2.2] For every simplicial complex K the barycentric refi-
nement K ′ is a simplicial complex of the same dimension d and the same un-
derlying space but with max{d(σ′) : σ′ ∈ K ′} ≤ d

d+1 max{d(σ) : σ ∈ K}. Here
d(σ) := sup{|x− y| : x, y ∈ σ} denotes the diameter of σ.

Proof. If σ0 < · · · < σq, then the barycenter σ̂0, . . . , σ̂q all lie in σ̄q and are in
general position: In fact, let σi = 〈x0, . . . , xni〉 with i 7→ ni strictly increasing and

x =
q∑
i=0

λiσ̂i =
∑
i

λi
1

ni + 1

ni∑
j=0

xj =
∑
j

xj
∑
i

ni≥j

λi
1

ni + 1︸ ︷︷ ︸
=:µj

with
∑
i

λi = 1.

Then ∑
j

µj =
∑
j

∑
i

ni≥j

λi
1

ni + 1
=
∑
i

∑
j

ni≥j

λi
1

ni + 1
=
∑
i

λi = 1.

Since the xi are in general position the µj are uniquely determined and thus also

the λi = (ni + 1)
(
µni −

∑
i′<i λi′

1
ni′+1

)
.

We show now by induction on q := dim(σ) that for σ ∈ K the set {σ′ ∈ K ′ : σ′ ⊆ σ}
is a disjoint partition of σ: For (q = 0) this is obvious. For (q > 0) and x ∈ σ\{σ̂} the
line through σ̂ and x meets σ̇ in some point yx. By induction hypothesis ∃τ ′ ∈ K ′ :
yx ∈ τ ′. Thus yx is a positive convex combination of τ̂0, . . . , τ̂j with τ0 < · · · < τj .
Hence x is a positive convex combination of τ̂0, . . . , τ̂j , σ̂.
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Finally, let x′, y′ be two vertices of some σ′ ∈ K ′, i.e. x′ = 1
r+1 (x0 + · · ·+ xr) and

y′ = 1
s+1 (x0 + · · ·+ xs) with r < s ≤ q ≤ d for some simplex σ = 〈x0, . . . , xq〉 ∈ K.

Then

|x′ − y′| ≤ 1
r + 1

∑
i

|xi − y′| ≤ max{|xi − y′| : i}

|xi − y′| ≤
1

s+ 1

∑
j 6=i

|xi − xj | ≤
s

s+ 1
d(σ) ≤ d

d+ 1
d(σ).

3.27 Corollary. [9, 3.2.3] For every simplicial complex K and every ε > 0 there
is an iterated barycentric refinement K(q) with d(σ) < ε for all σ ∈ K(q).

Proof.
(

d
d+1

)q
→ 0 for q →∞.

3.28 Definition. Star of a Vertex. [9, 3.2.8] Let ξ = {x} be a vertex of K. Then
the star of ξ in K is defined as

stK(ξ) :=
⋃

ξ≤σ∈K

σ =
{
y ∈ |K| : x ∈ carrK(y)

}
,

i.e. y ∈ stK(ξ)⇔ ∃(!)σ : ξ ≤ σ and y ∈ σ ⇔ ξ = {x} ≤ carrK(y)⇔ x ∈ carrK(y).

x0

3.29 Lemma. [9, 3.2.9] The family of stars of vertices of K form an open covering
of |K|. For every open covering there is a refinement by the stars of some iterated
barycentric refinement K(q) of K.

Proof. For vertices ξ = {x} of K let Kx := {σ ∈ K : x is not vertex of σ}. Then
Kx is a subcomplex and hence stK(ξ) = |K| \ |Kx| is open.

If σ ∈ K and x is a vertex of σ then obviously σ ⊆ stK({x}) and hence the stars
form a covering.

By the Lebesgue-covering lemma (see [2, 3.3.3] or [3, 5.1.5]), there is an δ > 0
such that every set of diameter less then δ is contained in some U ∈ U . Choose
by 3.26 a barycentric refinement K(q), such that d(σ) < δ

2 for all σ ∈ K(q). For
every y ∈ stK(q)({x}) we have d(y, x) ≤ max{d(σ) : σ} hence d(stK(q)({x})) ≤
2 max{d(σ) : σ} < δ, and thus the stars form a refinement of U .

3.30 Corollary. Simplicial Approximation. [9, 3.2.7] For every continuous map
f : |K| → |L| there a simplicial approximation ϕ : K(q) → L of f for some iterated
barycentric refinement K(q).

Proof. Let q be chosen so large, that by 3.29 the stars of K(q) form a refine-
ment of the open covering {f−1(stL(η)) : η = {y} ∈ L}. For sake of simplicity
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we write K instead of K(q). Thus for every vertex ξ ∈ K we may choose a vertex
ϕ(ξ) ∈ L with f(stK(ξ)) ⊆ stL(ϕ(ξ)). For σ ∈ K with vertices x0, . . . , xp de-
fine ϕ(σ) to be the simplex generated by the ϕ(xi). We have to show that this
simplex belongs to L. Let x ∈ σ be any point in σ. Since σ ⊆

⋂
i stK({xi})

we get f(x) ∈ f(σ) ⊆ f(
⋂
i stK({xi})) ⊆

⋂
i f(stK({xi})) ⊆

⋂
i stL(ϕ({xi})).

Thus f(x) ∈ stL(ϕ({xi})), i.e. ϕ({xi}) ≤ carrL(f(x)) =: τ ∈ L, for all i. Hence
|ϕ|(x) ∈ ϕ(σ) := 〈ϕ(x0), . . . , ϕ(xp)〉 ≤ τ ∈ L and ϕ is a simplicial approximation of
f .

3.31 Corollary. [9, 3.2.10] Let X and Y be polyhedra. Then [X,Y ] is countable.

3.32 Remark. [9, 3.2.11]

We obtain a simplicial approximation χ : K ′ → K of id : |K ′| → |K| by choosing
for every vertex σ̂ ∈ K ′ a vertex χ(σ̂) of σ. Let σ̂0, . . . , σ̂p be the vertices of some
simplex σ′ ∈ K ′ with σ0 < · · · < σp and hence σ′ ⊆ σp. Then the χ(σ̂j) are vertices
of σj ≤ σp and hence they generate a face of σp ∈ K. Thus χ extends to a simplicial
map.

Let x ∈ σ′. Then |χ|(x) ∈ χ(σ′) ⊆ σp = carrK(x), hence χ is a simplicial approxi-
mation of id.

Let σ be any q-simplex of K. Then there exists a unique simplex σ′ ⊆ σ which is
mapped to σ and all other σ′ ⊆ σ are mapped to true faces of σ.

Proof. We use induction on q. For q = 0 this
is obvious, since χ is the identity. If q > 0 and
x := χ(σ̂) let τ be the face of σ opposite to x. By
induction hypothesis there is a unique τ ′ ⊆ τ of
K ′ which is mapped to τ . But then the simplex
σ′ generated by τ ′ and σ̂ is the unique simplex
mapped to σ: In fact, any simplex contained in
σ with vertices σ̂0, . . . , σ̂r that is mapped via χ
to σ has to satisfy σ0 < · · · < σr ≤ σ. Hence r ≤
dim(σ), and consequently r = dim(σ) and σr = σ.
Since χ(σ̂) = x we have that χ(σ̂0), . . . , χ(σ̂r−1)
generate τ and thus τ ′ is the simplex with vertices
σ̂0, . . . , σ̂r−1. Τ’

Σ
`

Σ’

x= ΧHΣ
` L

Τ

Freeing by deformations

3.33 Proposition. [9, 3.3.2] Let K be a simplicial complex and n > dimK. Then
every f : |K| → Sn is 0-homotopic. In particular, this is true for K := σ̇k+1 with
n > k = dimK.

Proof. By 3.30 there exists a simplicial approximation ϕ of f : |K| → |σ̇n+1| for
some iterated barycentric subdivision. Then |ϕ| : |K| → |σ̇n+1| cannot be surjective
(since n > dimK) and hence f ∼ |ϕ| is 0-homotopic since σ̇n+1\{∗} is contractible.

3.34 Theorem. Freeing of a point. [9, 3.3.3] Let (K,L) be a simplicial pair
and en be an n-cell with n > dimK. Then every f0 : (|K|, |L|) → (en, en \ {0}) is
homotopic relative |L| to a mapping f1 : |K| → en \ {0}.
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Proof. We first show this result for (|K|, |L|) = (Dk, Sk−1). By 2.40.6 we have
en \ {0} ∼ Sn−1. Hence f0|Sk−1 : Sk−1 → en \ {0} is 0-homotopic by 3.33 . By
2.30 this homotopy gives an extension f1 : Dk = C(Sk−1) → en \ {0}. Consider

a mapping h : (Dk × I). → en which is this extension on the top, and is f0 on the
bottom and on Sk−1 × {t} for all t ∈ I. Since en is contractible this mapping h is
0-homotopic by 2.6.6 and hence extends to C((Dk× I).) ∼= Dk× I by 2.30 . This
extension is the desired homotopy.

For the general case we proceed by induction on the number of cells in K \ L.
For K = L the homotopy is constant f0. So let K ⊃ L and take σ ∈ K \ L of
maximal dimension. Then M := K \ {σ} ⊇ L is a simplicial complex. Obviously
|M | ∪ σ̄ = |K| and |M | ∩ σ̄ = σ̇. Consider the diagram

|K|

(3)

��
|M |

. �

=={{{{{{{
(1) // en σ̄

/ O

__???????
(2)oo

|L|
?�

OO

σ̇
�/

HEP

??��������
P0

aaCCCCCCCC
(1′)

OO

By induction hypothesis we have the required homotopy (1) relative |L| on |M |.
Since (σ̄, σ̇) has HEP by 2.33.1 , we may extend its restriction (1’) to σ̇ to a
homotopy (2) on σ̄ with initial value f0. The union of these two homotopies (1) and
(2) gives a homotopy ht rel. |L| indicated by arrow (3) which satisfies h0 = f0 and
h1(|M |) ⊆ en\{0}. By the special case treated above, there is a homotopy gt relative
σ̇ with g0 = h1|σ̄ : (σ̄, σ̇)→ (en, en\{0}) and g1(σ̄) ⊆ en\{0}. Let f1 := h1||M |∪g1.
Then f1(|K|) ⊆ en \ {0} and f0 = h0 ∼ h1 = h1||M | ∪ g0 ∼ h1||M | ∪ g1 = f1 relative
|L|.

3.35 Theorem. Freeing of a cell. [9, 3.3.4] Let Z be obtained from gluing an
n-cell en to a space Y and k < n. Then every f : (Dk, Sk−1)→ (Z, Y ) is homotopic
relative Sk−1 to a mapping f1 : Dk → Y .

Dk

Sk-1 Sk-1

f

Y

Z

Proof. We consider a triangulation K of Dk such that Sk−1 corresponds to a
subcomplex L. For 0 ∈ en ⊆ Z we consider the subcomplexes

K0 :=
{
σ ∈ K : f(σ̄) ⊆ Z \ {0}

}
=
{
σ ∈ K : σ̄ ⊆ f−1(Z \ {0})

}
⊇ L and

K1 :=
{
σ ∈ K : f(σ̄) ⊆ en

}
=
{
σ ∈ K : σ̄ ⊆ f−1(en)

}
By passing to a appropriate iteration (again denoted K) of barycentric subdivisions,
we may assume that K = K0 ∪K1 by 3.29 .
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Now consider the diagram

Y
� � // Z

Z \ {0}

∼

∼
, �

;;vvvvvvvvvr

2.42
dd

en
7 W

jjUUUUUUUUUUUUUUUUUUUUUU

Y
, �

::vvvvvvvvv

id

OO

Dk

f

OO

(2)

cc

en \ {0} ∼
7 W

iiTTTTTTTTTTTTTTT , �

::tttttttttt
{0}

0 P

aaDDDDDDDD

|K|

Sk−1

f

OO

|K0|
- 

;;wwwwwwww

f

OO

|K1|
7 W

TTTTTTTTTT

jjTTTTTTTTTT

f

OO

(1)

3.34

[[

|L|
, �

::vvvvvvvvv
|K0 ∩K1|

, �

::ttttttttt7 W

iiTTTTTTTTTTTTTTTT

f

OO

By 3.34 there exists a mapping (1) homotopic to f ||K1| relative |K1 ∩K0|. Gluing
the homotopy with the f ||K0| gives a homotopy relative |K0| to a mapping (2).
Composing with the retraction r (homotopic to id relative Y ) from 2.42 gives the
desired mapping f1 : Dk → Y homotopic to f relative |L|. Remark that the triangle
on top, as those above (1) and (2) commute only up to homotopy.
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4.2 3. Simplicial Complexes

4. CW-Spaces

Basics

4.1 Definition. [9, 4.1.3] A CW-complex is a Hausdorff space X together with
a partition X into cells e, such that the following properties hold:

(C1) For every n-cell e ∈ X there exists a continuous so-called characteristic
map χe : Dn → X, which restricts to a homeomorphism from

◦
Dn onto e

and which maps Sn−1 into the n − 1-skeleton Xn−1 of X, which is defined
to be the union of all cells of dimension less than n in X .

(C2) The closure ē of every cell meets only finitely many cells.

(W) X carries the final topology with respect to ē for all cells e ∈ X .

A CW-space is a Hausdorff-space X, which admits a CW-complex X (which is
called CW-decomposition of X).

Remark that if X is finite (X is then called finite CW-complex), then the conditions
(C2) and (W ) are automatically satisfied.

If X = Xn 6= Xn−1 then the CW-complex is said to be of dimension n. If X 6= Xn

for all n, then it is said to be of infinite dimension.

Remark that, since the image χ(Dn) of the n-ball under a characteristic map is
compact, it coincides with ē and χ : Dn → ē is a quotient mapping. So ė := ē \ e =
χ(Dn)\χ(

◦
Dn) ⊆ χ(Dn \

◦
Dn) = χ(Sn−1) and conversely χ(Sn−1) ⊂ χ(Dn) ⊆ ē and

χ(Sn−1) ⊆ Xn−1 ⊆ X \ e, thus ė = χ(Sn−1) and χ is a relative homeomorphism
(Dn, Sn−1)→ (ē, ė).

◦
Dn � � //
��
∼=
����

Dn

χe

����

Sn−1? _oo

����
e � � // e ė? _oo

4.2 Example. [9, 4.1.4] For every simplicial complex K the underlying space |K|
is a finite CW-complex, the cells being the simplices of K and the characteristic
maps the inclusions e ⊆ |K|.

The sphere Sn is a CW-complex with one 0-cell e0 and one n-cell en, in particular
the boundary ė = ē \ e of an n-cell, needn’t be a sphere in contrast to the situation
for simplicial complexes.

The one point union of spheres is a CW-space with one 0-cell and for each sphere
a cell of the same dimension.

S1∨S2 can be made in a different way into a CW-complex by taking a point e0 ∈ S1

different from the base point. Then S1 = e0 ∪ e1 and S1 ∨ S2 = e0 ∪ e1 ∪ e2. But
the boundary ė2 of the two-cell is not a union of cells.

The compact surfaces of genus g are all CW-complexes with one 0-cell and one
2-cell and 2g 1-cells (in the orientable case) and g 1-cells (in the non-orientable
case), see 1.101 .

The projective spaces Pn are CW-complexes with one cell of each dimension from
0 to n, see 1.97 .

52 andreas.kriegl@univie.ac.at c© 11. Jänner 2012



4. CW-Spaces 4.7

4.3 Definition. [9, 4.1.5] For a subset Y of a CW-decomposition X of a space X
the underlying space Y :=

⋃
{e : e ∈ Y} is called CW-subspace and Y is called

CW-subcomplex, iff Y is a CW-decomposition of Y with the trace topology. In
this situation (X,Y ) is called CW-pair.

Let us first characterize finite CW-subcomplexes:

4.4 Lemma. Let Y be a finite subset of a CW-decomposition X of a space X. Then
Y forms a CW-subcomplex iff Y :=

⋃
{e : e ∈ Y} is closed. Cf. 3.14 .

Proof. (⇒) If Y is a CW-subcomplex, then for every cell e ∈ Y, there is a charac-
teristic map χ : Dn � ēY . Hence ēY is compact and thus coincides with the closure
of e in X, so the finite union Y =

⋃
{ē : e ∈ Y} is closed.

(⇐) Since Y is closed the characteristic maps for e ∈ Y ⊆ X have values in Y
and hence are also characteristic maps with respect to Y. The other properties are
obvious.

4.5 Lemma. [9, 4.1.9] Every compact subset of a CW-complex is contained in some
finite subcomplex. In particular a CW-complex is compact iff it is finite.

Proof. Let X be a CW-complex. We first show by induction on the dimension
of X that the closure ē of every cell is contained in a finite subcomplex. Assume
this is true for all cells of dimension less than n and let e be an n-cell. By (C2)
the boundary ė meets only finitely many cells, each of dimension less than n. By
induction hypotheses each of these cells is contained in some finite subcomplex Xi.
Then union of these complexes is again a complex, by 4.4 . If we add e itself to
this complex, we get the desired finite complex.

Let now K be compact. For every e ∈ X with e ∩K 6= ∅ choose a point xe in the
intersection. Every subset A ⊆ K0 := {xe : e∩K 6= ∅} ⊆ K is closed, since it meets
any ē only in finitely many points by (C2). Hence K0 is a discrete compact subset,
and hence finite, i.e. K meets only finitely many cells. Since every ē is contained
in a finite subcomplex, we have that K is contained in the finite union of these
subcomplexes.

The last statement of the lemma is now obvious.

4.6 Corollary. Every CW-complex carries the final topology with respect to its
finite subcomplexes and also with respect to its skeletons.

Proof. Since the closure ē of every cell e is contained in a finite subcomplex by
4.5 and every finite subcomplex is contained in some skeleton Xn, these families

are confinal to {ē : e ∈ X}. Furthermore, the inclusion of each of its spaces into
X is continuous (for the final topology on X induced by the ē by property (W)).
Hence these families induce the same topology. (Let F1 and F2 be two families of
mappings into a space X, and assume F2 is confinal to F1, i.e. for every f1 ∈ F1

there is some f2 ∈ F2 and a map h such that f1 = f2 ◦ h. Let Xj denote the
space X with the final topology induced by Fj . Then the identity from X1 → X2

is continuous, since for every f1 ∈ F1 we can write id ◦f1 = f2 ◦ h)

Now we are able to extend 4.4 to infinite subcomplexes.

4.7 Proposition. Let X a CW-decomposition of X and let Y be a subset of Xand
Y :=

⋃
{e : e ∈ Y}. Then the following statements are equivalent:
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4.9 4. CW-Spaces

1. Y is a CW-decomposition of Y with the trace topology;

2. Y is closed in X;

3. For every cell e ∈ Y we have ē ⊆ Y .

Proof. (2⇒3) is obvious.
(1⇒3) follows, since the closure ēY in Y is compact and hence equals ē := ēX .

For the converse directions we show first:
(3) ⇒ If A ⊆ Y has closed trace on ē := ēX for each e ∈ Y, then A is closed in X.
By 4.6 it suffices to show that the trace on every finite CW-subcomplex X0 ⊆ X is
closed. Since there are only finitely many cells ei in X0∩Y and for these ēi ⊆ X0∩Y
by 4.4 and (3), we get

X0 ∩A = X0 ∩ Y ∩A =
(⋃

ēi

)
∩A =

⋃
(ēi ∩A),

which is closed.

(3⇒2) by taking A = Y in the previous claim.

(3⇒1) The previous claim shows the condition (W) for Y. The other conditions for
being a CW-complex are obvious since ēX = ēY .

4.8 Corollary. [9, 4.1.6] Intersections and unions of CW-complexes are CW-
complexes. Connected components and topological disjoint unions of CW-complexes
are CW-complexes. If E ⊆ X is family of n-cells, then Xn−1∪

⋃
E is a CW-complex.

Each n-cell e is open in Xn.

Proof. For intersections this follows from (1⇔2) in 4.7 . For unions this follows
from (1⇔ 3) in 4.7 . That Xn−1∪

⋃
E is a CW-complex follows also from (1⇔ 3)

in 4.7 . Since Xn \ e = Xn−1 ∪
⋃
{e1 6= e : e1 an n-cell in Xn} is a CW-complex,

it is closed by 4.7.2 and hence e is open in Xn.

The statement on components and topological sums follows, since e is connected
and by 4.7 (1⇔3).

Constructions of CW-spaces

4.9 Proposition. [9, 4.2.9] Let X and Y be two CW-complexes. Then X ×Y with
cells e× f for e ∈ X and f ∈ Y satisfies all properties of a CW-complex, with the
possible exception of (W ). If X or Y is in addition locally compact, then X × Y is
a CW-complex.

Proof. Take the product of the characteristic maps in order to obtain a characte-
ristic map for the product cell.

In order to get the property (W) we have to show that the map
⊔
e,f ē× f̄ → X×Y

is a quotient map. Since it can be rewritten as⊔
e

ē×
⊔
f

f̄ →
⊔
e

ē× Y → X × Y

this follows from 1.33 using compactness of ē and locally compactness of Y .
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4.10 Proposition. Let (X,A) be a CW-pair. Then A ∪Xn is obtained from A ∪
Xn−1 by gluing all n-cells in Xn \A via the characteristic mappings.

Proof. Let E be the set of all n-cells of X \A and let characteristic mappings χe :
Dn → ē for every e ∈ E be chosen. Let χ :=

⊔
e∈E χ

e :
⊔
e∈E D

n →
⋃
e∈E e ⊆ Xn

and f := χ|F
e S

n−1 . We have to show that the rectangle in

Sn−1 � � //
K k

xxrrrrrrrrrr
Dn

M m

{{wwwwwwww

χe

��																	

ge

��

⊔
e S

n−1 � � //

f

��

⊔
eD

n

χ

��

666

��666666666666

A ∪Xn−1

gn−1

**VVVVVVVVVVVVVVVVVV
� � // A ∪Xn

g!

$$
Z

is a push-out. So let gn−1 : A ∪Xn−1 → Z and ge : Dn → Z be given, such that
gn−1 ◦ χe|Sn−1 = ge|Sn−1 . Then g : A ∪ Xn → Z given by g|A∪Xn−1 = gn−1 and
g|e = ge ◦ (χe| ◦Dn)−1 is the unique mapping making everything commutative. It
is continuous, since on ē it equals gn−1 if e ⊆ A ∪ Xn−1 and composed with the
quotient-mapping χe : Dn → ē it equals ge for the remaining e.

Now we give an inductive description of CW-spaces.

4.11 Theorem. [9, 4.2.2] A space X is a CW-complex iff there are spaces Xn,
with X0 discrete, Xn is formed from Xn−1 by gluing n-cells and X is the limit of
the Xn with respect to the natural inclusions Xn ↪→ Xn+1.

Proof. (⇒) We take Xn to be the n-skeleton. Then X carries the final topology
with respect to the closed subspaces Xn and X0 is discrete by 4.6 . Taking A := ∅
in 4.10 we get that Xn can be obtained from Xn−1 by gluing all the n-cells via
their corresponding characteristic maps restricted to the boundary spheres.

(⇐) We first show by induction that Xn is a CW-complex, with n − 1-skeleton
Xn−1 and the cells which have been glued to Xn−1 as n-cells.
For X0 being a discrete space this is obvious. Since
Xn is obtained from Xn−1 by gluing n-cells we have
that Xn is Hausdorff by 1.92 and is as set the dis-
joint union of the closed subspace Xn−1, which is a
CW-complex by induction hypothesis, and the homeo-
morphic image

⋃
e e of

⊔
eD

n \
⊔
e S

n−1 =
⊔
e

◦
Dn.

⊔
e S

n−1 � � //

f

��

⊔
eD

n

p

��
Xn−1 � � // Xn

As characteristic mappings for the n-cells e we may use p|Dn , since it induces a
homeomorphism

◦
Dn → e and it maps Sn−1 to f(Sn−1) ⊆ Xn−1, which is com-

pact and hence contained in a finite subcomplex of Xn−1. The condition (W) fol-
lows, since Xn carries by construction the final topology with respect to Xn−1 and
p :
⊔
Dn → Xn, and

⊔
Dn carries the final topology with respect to the inclusion

of the summands Dn ⊆
⊔
eD

n.

The inductive limit X := lim−→n
Xn now obviously satisfies all axioms of a CW-

complex only Hausdorffness is to be checked. So let x, y be different points in X.
We they lie in some Xn and we find open disjoint neighborhoods Un and V n

in Xn. We construct open disjoint neighborhoods Uk and V k in Xk with k ≥ n
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inductively. In fact, take Uk := Uk−1∪p
(
r−1(Uk−1)

)
, where r :

⊔
Dk\{0} →

⊔
Xk

is the retraction from 2.42 . Then Uk is the image of the open and saturated
set Uk−1 t r−1(Uk−1) ⊆ Xk−1

⊔
Dk and hence open, and Uk ∩ Xk−1 = Uk−1.

Proceeding the same way with V k gives the required disjoint open sets U :=
⋃
Uk

and V :=
⋃
V k.

Example. In general gluing a CW-pair to a CW-space does not give a CW-space.
Consider for example a surjective map f : S1 → S2. Then the boundary ė = S2 of
e := (D2)o is not contained in any 1-dimensional CW-complex.

So we define

4.12 Definition. [9, 4.2.4] A continuous map f : X → Y between CW-complexes
is called cellular iff it maps Xn into Y n for all n.

4.13 Lemma. Let f : X ⊇ A → Y be given and let Y ′ ⊆ Y and X ′ ⊆ X
be two closed subspaces, such that f(A ∩ X ′) ⊆ Y ′. Then the canonical mapping
Y ′ ∪f ′ X ′ → Y ∪f X is a closed embedding, where f ′ := f |A′ with A′ := A ∩X ′.

Proof.

Consider the commutative diagram:

A′
� � //

f ′

��

� p

  AAAAAAA X ′ � s

&&MMMMMMMMMMMM

p′

��

A
� � //

f

��

X

p

��

Y ′
� � //
� o

��????????
Y ′ ∪f ′ X ′

&&
Y

� � // Y ∪f X

The dashed arrow ι exists by the
push-out property of the upper left
square.
Since Y ′ ∪f ′ X ′ = Y ′ t (X ′ \A′) as
sets, we get that ι is the inclusion
Y ′t (X ′ \A′) ⊆ Y t (X \X ∩A) =
Y t (X \ A) and hence injective.
Now let B ⊆ Y ′ ∪f ′ X ′ be closed,
i.e. B = B1 t B2 with B1 ⊆ Y ′

closed and B2 ⊆ X ′ \A′ such that
p−1(B) = B2∪(f ′)−1(B1) is closed
in X ′.

In order to show that ι(B) = B1 tB2 ⊆ Y ′ ∪ (X ′ \A′) ⊆ Y ∪ (X \A) is closed we
only have to show that B2 ∪ f−1(B1) is closed in X, which follows from

B2 ∪ f−1(B1) = B2 ∪
(

(f ′)−1(B1) ∪ f−1(B1)
)

=
(
B2 ∪ (f ′)−1(B1)

)
∪ f−1(B1),

since B2 ∪ (f ′)−1(B1) ⊆ X ′ ⊆ X is closed and f−1(B1) ⊆ A ⊆ X is closed.

4.14 Theorem. [9, 4.2.5] Let (X,A) be a CW-pair and f : A → Y a cellular
mapping into a CW-complex Y . Then (Y ∪f X,Y ) is a CW-pair with the cells of
Y and of X \A as cells.

Proof. We consider the spaces Zn := Y n ∪fn Xn, where fn := f |An . Note that
An = A ∩ Xn. By 4.13 the Zn form an increasing sequence of closed subspaces
of the Hausdorff space Z := Y ∪f X. Obviously Z0 is discrete and Z carries the
final topology induced by all Zn. So by 4.11 it remains to show that Zn can be
obtained from Zn−1 by gluing all n-cells of Y n and of Xn \An. For this we consider
the following commutative diagram:
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tSn−1 � � //

��

tDn

��

0000000000000000

��0
000000

Y n−1 � � //
� s

&&MMMMMMMMMM Y n � v

))SSSSSSSSSSSSSSSSSS

1

��

An−1

fn−1
::uuuuuuuuu

� � //
 m

��777777777777777
An

fn
qqqqqq

88qqqqq

� n

<<<<<<<<

��<<<<<<<<

Zn−1 � � //

%%KKKKKKKKKK Zn

4

||
W

Xn−1 � � //
0�

@@����������������
An ∪Xn−1 � � //

2

99

Xn

OO

3

bb

tSn−1

ffMMMMMMMMMM

OO

� � // tDn

OO2222222

YY2222222

By 4.10 the following
spaces are push-outs of
the arrows leading into
them: Y n, Xn, Zn and
An ∪Xn−1.
We have to show
that Zn is the
push-out of the in-
clusion Zn−1 → Zn

and the union of
the two mappings
tDn → Y n → Zn and
tDn → Xn → Zn.
So let mappings on all
the Dn and on Zn−1

into a space W be gi-
ven whose composites
with the arrows from
Sn−1 into these spaces
are the same.

Then (1), (2), (3), and (4) exist uniquely by the push-out property of the corre-
sponding domains Y n, An ∪Xn−1, Xn and Zn. The map (4) is then the required
unique mapping from Zn →W .

4.15 Corollary. [9, 4.2.6] Let (X,A) be a CW-pair with A 6= ∅. Then X/A is a
CW-space with A as one 0-cell and the image of all cells in X \A.

Proof. X/A = {∗} ∪f X by 1.47 , where f : A → {∗} is constant, Now apply
4.14 .

4.16 Corollary. [9, 4.2.8] Let X be a CW-complex. Then Xn/Xn−1 is a join of
spheres of dimension n, for each n-cell one.

Proof. By 4.15 Xn/Xn−1 is a CW-space consisting of one 0-cell and all the n-
cells of X. The characteristic mappings for the n-cells into the 0-cell have to be
constant and hence Xn/Xn−1 ∼=

∨
e S

n by 1.103.1 .

4.17 Corollary. [9, 4.2.7] Let Xi be CW-spaces with base-point xi ∈ X0
i . Then the

join
∨
iXi is a CW-space.

Proof.
∨
iXi = (tiXi)/{xi : i} is a CW-space by 4.8 and 4.14 .

Homotopy properties

4.19 Theorem. [9, 4.3.2] For every CW-subspace A of a CW-space X we can find a
continuous function u : X → I s.t. A = u−1(0) and A ↪→ U(A) := u−1({t : t < 1})
is a SDR. These neighborhoods can be chosen coherently, i.e. U(A ∩ B) = U(A) ∩
U(B). In particular, A ↪→ X is an NDR.

Proof. Let X−1 := ∅. By 4.11 A ∪ Xn is obtained by glueing the n-cells in
X \ A to A ∪Xn−1. By 2.42 A ∪Xn−1 is an SDR in A ∪Xn \

⊔
e{0e}. Let the
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corresponding homotopy be denoted by hnt and the (radial) retraction by rn := hn1 .
Note that rn ◦ hnt = rn.

We first define a function u : X → [0, 1] by recursive extension as follows: u|A∪X−1 =
0 and let un := u|A∪Xn be given by un|A∪Xn−1 = un−1 and

un|ē(χe(x)) =

{
1− ‖x‖

(
1− un−1

(
χe
(
x
‖x‖
)))

für 0 6= x ∈ Dn

1 für 0 = 0e ∈ Dn

Then un is a well-defined continuous map with (un)−1(0) = A and by 4.6 the
same holds for u.

Let U(A) := {x ∈ X : u(x) < 1} and Un := U(A) ∩ (A ∪ Xn) = {x ∈ A ∪ Xn :
un(x) < 1}. Note that the homotopy hnt on A∪Xn\

⊔
e{0e} restricts to a homotopy

on Un, since with every point x ∈ Un the whole path {hnt (x) : t ∈ I} belongs to
Un.

By induction on n we construct now homotopies Hn
t : Un → Un, by

Hn
t :=


id for t ≤ 1

n+1 ,

hns for 1
n+1 ≤ t ≤

1
n where s := n

(
t(n+ 1)− 1

)
∈ [0, 1],

Hn−1
t ◦ rn for t ≥ 1

n .

Then Hn
t is well-defined and Hn

t |Un−1 = Hn−1
t , since Hn−1

t = id for t ≤ 1
n and

rn|A∩Xn−1 = id. The union Ht :=
⋃
n∈N H

n
t is the required deformation relative

A and satisfies also H1 ◦ Ht = H1 since rn|Un−1 = id and hence Hn
1 ◦ Hn

t =
Hn−1

1 ◦ rn ◦Hn
t = Hn−1

1 ◦ rn = Hn
1 .

In oder to show that A ↪→ X is an NDR we consider a new homotopy h̃t(x) :=
ht max(0,min(1,2−3u(x)))(x). Then

h̃t(x) =

{
x for x ∈ A or u(x) ≥ 2

3

h1(x) for t = 1 and u(x) ≤ 1
3

Thus h̃t extends by id to a homotopy of X and with ũ(x) := min{1, 3u(x)} we get
the NDR property.

4.20 Corollary. [9, 4.3.3] Every point x in a CW-complex X has an open neigh-
borhood, of which it is a SDR.

Proof. Let first e be an n-cell. Let A := Xn. By restricting the homotopy Ht from
4.19 to r−1(e) (possible, since r ◦Ht = r), where r := H1 : U(A)→ A denotes the

retraction, we obtain that e is the SDR of a neighborhood. Since every point in a
cell e is a SDR of the cell, we obtain the required result by transitivity 2.40.3 .

4.21 Theorem. Cellular Approximation. [9, 4.3.4] For every continuous map-
ping f0 : X → Y between CW-complexes there exists a homotopic cellular mapping.
If f0|A is cellular for some CW -subspace A, then the homotopy can be chosen to be
relative A.

Proof. Again we recursively extend the constant homotopy on A to a homotopy
hnt : A∪Xn → Y with hn1 being cellular. For the induction step we use for each n-cell
e ∈ X \ A a characteristic mapping χ : Dn → ē. By induction hypothesis we get a
mapping ϕ0 : (Dn×0)∪(Sn−1×I)→ Y given by f0◦χ on the bottom and hn−1

t ◦χ on
the mantle Ḋn×I with hn−1

1 ◦χ : Sn−1 → Xn−1 → Y n−1 ⊆ Y n Since this domain is
a retract in Dn×I by 2.33.1 and 2.32 we can extend it to a mapping ϕ0 on Dn×I.
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The image ϕ0(Dn × {1}) is compact and hence contained in a finite CW-complex.
Let en1 , . . . , enr be the cells of this complex of dimensions nr ≥ · · · ≥ n1 > n. Then
ϕ0|Dn×{1} : (Dn×{1}, Sn−1×{1})→ (Y n∪en1 ∪· · ·∪enr , Y n) is well defined. Ap-
plying 3.35 now r-times we can deform ϕ0|Dn×{1} successively relative Sn−1×{1}
so, that its image avoids enr ∪ · · · ∪ en1 . Let ϕt be the corresponding homotopy.
We can extend ϕ1 via ϕ0 to a continuous mapping on the
boundary (Dn × I)., which is homotopic to ϕ0|(Dn×I).
relative Dn × {0} ∪ Sn−1 × I via ϕt. The pair (Dn ×
I, (Dn × I).) ∼= (Dn+1, Sn) is a CW-pair and hence has
the HEP by 4.19 and ϕ0 lives on Dn × I, so ϕt can be
extended to Dn × I as well by 2.34.1 . Now ϕt factors
over the quotient mapping χ to a homotopy hnt |ē. The
union of the hnt |e gives the required hnt .

Sn−1 � � //

χ

����

ϕ0

""DDDDDDDD Dn

χ

����

ϕt

~~||||||||

Y

ė �� //
hn−1
t

<<yyyyyyyyy
ē

hnt |ē

aa

4.22 Corollary. [9, 4.3.5] Let f0, f1 : X → Y be homotopic and cellular. Then
there exists a homotopy H : X × I → Y such that Ht(Xn) ⊆ Y n+1 for all n.

Note that the inclusions of the endpoints in I are homotopic and cellular, but every
homotopy has to map that point into the 1-skeleton.

Proof. Consider the CW-pair (X×I,X×İ) and the given homotopy f : X×I → Y .
Since by assumption its boundary value f |X×İ is cellular,by 4.21 we can find
another mapping H : X × I → Y , which is cellular and homotopic to f relative
X × İ. Thus H is the required homotopy, since for 0 < t < 1 and every n-cell en of
X the image H(en × {t}) is contained in H(en × e1) ⊆ Y n+1.
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5.4 4. CW-Spaces

5. Fundamental Group

Basic properties of the fundamental group

5.1 Definition. [9, 5.1.1] A path is a continuous mapping u : I → X. The con-
catenation u0 · u1 of two paths u0 and u1 is defined by

(u0 · u1)(t) :=

{
u0(2t) for t ≤ 1

2

u1(2t− 1) for t ≥ 1
2

.

It is continuous provided u0(1) = u1(0). The inverse path u−1 : I → X is given
by u−1(t) := u(1− t).

Note that concatenation is not associative and the constant path is not a neutral
element. The corresponding identities hold only up to reparametrizations.

5.2 Lemma. Reparametrization. [9, 5.1.5] Let u : I → X be a path and f : I → I

be the identity on İ. Then u ∼ u ◦ f rel. İ.

Proof. A homotopy is given by h(t, s) := u(ts+ (1− t)f(s)), see 2.4 .

5.3 Lemma. [9, 5.1.6]

1. Let u, v and w be paths with u(1) = v(0) and v(1) = w(0), then (u · v) ·w ∼
u · (v · w) rel. İ.

2. Let u be path with x := u(0), y := u(1) then constx ·u ∼ u ∼ u · consty rel.
İ.

3. Let u be a path with x := u(0) and y := u(1). Then u · u−1 ∼ constx and
u−1 · u ∼ consty rel. İ.

Proof. In (1) and (2) we only have to reparametrize. In (3) we consider the homo-
topy, which has constant value on each circle with center (1

2 , 0).

0
����

1

2
����

3

4

1
0

1�2

1�4

1

0
����

1

2

1
0

1

u u

uHtL
uH0L

x0

0
����

1

2

1
0

1

5.4 Definition. [9, 5.1.7] Let (X,x0) be a pointed space. Then the fundamental
group (or first homotopy group) is defined by

π1(X,x0) := [(I, İ), (X,x0)] ∼= [(S1, {1}), (X, {x0})],

where multiplication is given by [u] · [w] := [u · w], the neutral element is 1x0 :=
[constx0 ] and the inverse to [u] is [u−1]. Both are well-defined by 5.3 .
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5.5 Lemma. [9, 5.1.8] Let u : I → X be a path from x0 to x1.
Then conj[u] : π1(X,x0)→ π1(X,x1) is a group isomorphism, where conj[u] : [v] 7→
[u−1][v][u] := [u−1 · v · u].

5.6 Lemma. [9, 5.1.10] Let h : I2 → I2 be like follows:

H0,0L

H0,0L

H1,0L

H0,1L H1,1L

H1,1L

(j, t) 7→ (j, j) for t ≤ 1
2 , j ∈ {0, 1}

(t, 0) 7→ (2t, 0) for t ≤ 1
2

(t, 0) 7→ (1, 2t− 1) for t ≥ 1
2

(t, 1) 7→ (0, 2t) for t ≤ 1
2

(t, 1) 7→ (2t− 1, 1) for t ≥ 1
2

and a piecewise affine homeomorphism on the interior, e.g.

h(t, s) :=

(1− 2t)(0, 0) + 2t
(
s(0, 1) + (1− s)(1, 0)

)
for t ≤ 1/2

(2− 2t)
(
s(0, 1) + (1− s)(1, 0)

)
+ (2t− 1)(1, 1) for t ≥ 1/2

For continuous f : (I2). → X and uj(s) := f(s, j) resp. vj(t) := f(j, t) its values
on the 4 edges the following statements are equivalent

1. There exists a continuous extension of f to I2;

2. f is 0-homotopic;

3. There exists a continuous extension of f ◦ h to I2;

4. uo · v1 ∼ v0 · u1 rel. İ.

Proof.

(1⇔ 2) was shown in 2.30 .
(3 ⇔ 4) f ◦ h : (I2). → X is the boundary data
for the homotopy required in (4).
(1⇒3) Take f̃ ◦ h := f̃ ◦ h.
(3⇒1) Since f̃ ◦ h is constant on h−1(s, t) for all
(s, t) ∈ (I2)., it factors over the quotient mapping
h to a continuous extension f̃ : I2 → X.

(I2). h // //
_�

��

(I2).
_�

�� f

��

I2 h // //

f̃◦h ,,

I2

f̃

""
X

5.7 Corollary. Let X be a topological group (monoid) then π1(X, 1) is abelian,
where 1 denotes the neutral element.

Proof. Consider the map (t, s) 7→ u(t) · v(s).

5.8 Proposition. [9, 5.1.12] Let V : π1(X,x0) = [(S1, 1), (X,x0)]→ [S1, X] be the
mapping forgetting the base-points. Then

1. [u] is in the image of V iff u(1) can be connected by a path with x0.

2. V is surjective iff X is path connected.

3. V (α) = V (β) iff there exists a γ ∈ π1(X,x0) with β = γ−1 · α · γ.

4. V is injective iff π1(X,x0) is abelian.

5. The ‘kernel’ V −1([constx0 ]) of V is trivial.
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Warning: Since V is not a group-homomorphism, 5 does not contradict 4 .

Proof. (1) [u] is in the image of V if u is homotopic to a base point preserving
closed path. The homotopy at the base-point gives a path connecting u(1) with x0.
Conversely any path v from c(1) to x0 can be used to give a homotopy between u

and the base point preserving path v−1 · u · v, cf. 2.34.3 , since (S1, 1) has HEP by
4.19 .

(1⇒2) is obvious.

(3) Let α = [u] and β = [v]. Then V (α) = V (β) iff u is homotopic to v.
(⇒) Let h be such a homotopy and w(t) := h(t, 1). Then by 5.6 (1⇒4) we have
w · v ∼ u · w rel. İ, i.e. γ · β = α · γ and hence β = γ−1 · α · γ for γ := [w].
(⇐) Let β = γ−1 · α · γ and γ = [w]. Then γ · β = α · γ and hence w · u ∼ v ·w rel.
İ. Then by 5.6 (1⇐4) we have u ∼ v, i.e. V (α) = V (β).

(3⇒4)
(⇒) Let α, γ ∈ π1(X) and β := γ−1 · α · γ. By (3) we have V (α) = V (β) and since
V is assumed to be injective we get α = β, i.e. γ · α = α · γ.
(⇐) Conversely, if V (α) = V (β), then by (3) there exists a γ with β = γ−1 · α · γ
and γ−1 · α · γ = α, provided α and γ commute.

(3⇒5) Let V (α) = [constx0 ] = V (constx0). By (3) there exists a γ with α =
γ−1 · [constx0 ] · γ = γ−1 · γ = 1.

5.9 Corollary. [9, 5.1.13] Let X be path connected. Then the following statements
are equivalent:

1. π1(X,x0) ∼= 1 for some (any) x0 ∈ X, i.e. every u : S1 → X is 0-homotopic
rel. İ by 5.3 ;

2. [S1, X] = {0}, i.e. every u : S1 → X is 0-homotopic;

3. Any two paths which agree on the endpoints are homotopic rel. İ.

A path connected space satisfying these equivalent conditions is called simply connec-
ted.

Proof. (1⇒2) since V : π1(X,x0)→ [S1, X] is onto by 5.8.2 .

(2⇒3) From 5.6 (2⇒4) with vj := constxj follows u · constx0 ∼ constx1 ·v rel. İ
and hence u ∼ v rel. İ by 5.3.2 .

(3⇒1) is obvious, since u ∼ constx0

Corollary. Let X be contractible, then X is simply connected.

Proof. By 2.6.6 we get that [S1, X] = {0} provided X is contractible.

5.10 Example. [9, 5.1.9] Let X be a CW-complex without 1-cells, e.g. X = Sn for
n > 1. Then π1(X,x0) = {1} for all x0 ∈ X0.
In fact every u : (I, İ)→ (X,x0) is by 4.21 homotopic rel. İ to a cellular mapping
v, i.e. v(I) ⊆ X1 = X0, hence v is constant.

Note that such an X is path connected iff it has exactly one 0-cell.
(⇒) Let x0 and x1 be two 0-cells and u be a path between them. By 4.21 u is
homotopic to a cellular and hence constant path rel. İ, since X has no 1-cells. Thus
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x0 = x1.
(⇐) Since cells are path-connected each point in Xn can be connected with some
point in Xn−1 and by induction with the unique point in X0.

5.11 Definition. [9, 5.1.15] Every f : (X,x0) → (Y, y0) induces a group homo-
morphism π1(f) : π1(X,x0)→ π1(Y, y0) given by π1(f)[u] := [f ◦ u]. Just use that
u ∼ v ⇒f ◦ u ∼ f ◦ v and f ◦ (u · v) = (f ◦ u) · (f ◦ v) to get well-definedness and
the homomorphic-property.

5.12 Corollary. [9, 5.1.16] π1 is a functor from the category of pointed topological
spaces to that of groups, i.e. it preserves identities and commutativity of diagrams.

Proof. trivial

5.13 Proposition. [9, 5.1.18] π1 is homotopy invariant.
More precisely: If f ∼ g rel. x0 then π1(f) = π1(g). If f ∼ g then π1(g) =
conj[u] ◦π1(f), where u is the path given by the homotopy at x0. If f : X → Y is a
homotopy equivalence then π1(f) : π1(X,x0)→ π1(Y, f(x0)) is an isomorphism.

Proof. If f ∼ g rel. x0 and [v] ∈ π1(X,x0) then f ◦ v ∼ g ◦ v rel. İ, i.e. π1(f)[v] =
π1(g)[v].

If h is a free homotopy from f to g, then w(t) := h(t, x0) defines a path from f(x0) to
g(x0). And applying 5.6 (1⇒4) to (s, t) 7→ h(t, v(s)) we get (f ◦ v) ·w ∼ w · (g ◦ v)
rel. İ, and hence [f ◦ v] · [w] = [(f ◦ v) · w] = [w · (g ◦ v)] = [w] · [g ◦ v], i.e.
π1(g)[v] = [g ◦ v] = [w]−1 · [f ◦ v] · [w] = [w]−1 · π1(f)[v] · [w] = (conj[w] ◦π1(f))([v]).

Let now f : X → Y be a homotopy equivalence with homotopy inverse g : Y → X.
Then up to conjugation π1(f) and π1(g) are inverse to each other.

The fundamental group of the circle

5.15 Proposition. [9, 5.2.2] The composition deg ◦V : π1(S1, 1) → [S1, S1] → Z
is a group isomorphism.

Proof. By 2.17 we have that deg is a bijection. By 5.8 V is surjective since S1

is path-connected. By 5.7 and 5.8 it is also injective since S1 is a topological
group.

Remains to show that the composite is a group-homomorphism: Recall that deg([u])
is given by evaluating a lifting u : (S1, 1) → (S1, 1) to a curve ũ : R → R with
ũ(0) = 0 and exp(2πiũ(t)) = u(exp(2πit)) at 1. Given u, v ∈ π1(S1, 1) with lifts ũ
and ṽ, then the lift of u · v is given by

t 7→

{
ũ(2t) for t ≤ 1

2

ũ(1) + ṽ(2t− 1) for t ≥ 1
2 .

5.16 Corollary. [9, 5.2.4] π(X,x0) ∼= Z for every space X which contains S1 as
DR. In particular this is true for C \ {0}, the Möbius strip, a full torus and the
complement of a line in R3.
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Constructions from group theory

5.17 Definition. [9, 5.3.1] We will denote with 1 the neutral element in a
given group.

A subgroup of a group G is a subset H ⊆ G, which is with the restricted group
operations itself a group, i.e. h1, h2 ∈ H ⇒h1h2 ∈ H, h−1

1 ∈ H, 1 ∈ H.

The subgroup 〈X〉SG generated by a subset X ⊆ G is defined to be the smallest
subgroup of G containing X, i.e.

〈X〉SG :=
⋂
{H : X ⊆ H ≤ G} =

{
xε11 · · · · · xεnn : xj ∈ X, εj ∈ {±1}

}
.

Given an equivalence relation ∼ on G we can form the quotient set G/∼ and have
the natural mapping π : G → G/∼. In order that G/∼ carries a group structure,
for which π is a homomorphism, i.e. π(x · y) = π(x) ·π(y), we need precisely that ∼
is a congruence relation, i.e. x1 ∼ x2, y1 ∼ y2 ⇒x−1

1 ∼ x−1
2 , x1 · y1 ∼ x2 ∼ y2.

Then H := {x : x ∼ e} = π−1(e) is a normal subgroup (we write H / G), i.e.
is a subgroup such that g ∈ G, h ∈ H ⇒g−1hg ∈ H. And conversely, for normal
subgroups H/G we have that x ∼ x·h for all x ∈ G and h ∈ H defines a congruence
relation ∼ and G/H := G/ ∼= {gH : g ∈ G}. This shows, that normal subgroups
are exactly the kernels of group homomorphisms. Every surjective group morphism
p : G→ G1 is up to an isomorphism G→ G/ ker p.

The normal subgroup 〈X〉NG generated by a subset X ⊆ G is defined to be the
smallest normal subgroup of G containing X, i.e.

〈X〉NG :=
⋂
{H : X ⊆ H C G} =

{
g−1

1 y1g1 · · · · · g−1
n yngn : gj ∈ G, yj ∈ 〈X〉SG

}
.

5.18 Definition. Let Gi be groups. Then the product
∏
iGi of is defined to be

the solution of the following universal problem:

Gi
∏
iGi

prioo

H

fi

``@@@@@@@@

(fi)i

!

<<

A concrete realization of
∏
iGi is the cartesian product with the component-wise

group operations.

5.19 Definition. Let Gi be groups. Then the coproduct (free product)
∐
iGi

of is defined to be the solution of the following universal problem:

Gi
fi

  @@@@@@@@
inji // ∐

iGi

!

(fi)i

||
H

Remark. [9, 5.3.3] A concrete realization of
∐
iGi is constructed as follows. Take

the set X of all finite sequences of elements of the disjoint union
⊔
iGi. With

concatenation of sequences X becomes a monoid, where the empty sequence is
the neutral element. Every Gi is injectively mapped into X by mapping g to the
sequence with the single entry g. However this injection is not multiplicative and X
is not a group. So we consider the congruence relation generated by (g, h) ∼ (gh) if

64 andreas.kriegl@univie.ac.at c© 11. Jänner 2012



5. Fundamental Group 5.22

g, h belong to the same group and (1i) ∼ ∅ for the neutral element 1i of any group
Gi. Then X/∼ is a group and the composite Gi → X → X/∼ is the required group
homomorphism and this object satisfies the universal property of the coproduct.

In every equivalence class of X/∼ we find a unique representative of the form
(g1, . . . , gn), with gj ∈ Gij \{1} and ij 6= ij+1. Since (g1, . . . , gn) is just the product
of the images of gi ∈ Gi we may write this also as g1 · · · · · gn.

5.20 Definition. [9, 5.7.8] Let H, G1, G2 be groups and fj : H → Gj group
homomorphisms. Then the push-out G1

∐
H G2 of (f1, f2) is a solution of the

following universal problem:

H
f2 //

f1

��

G2

g2

��
k2

��6666666666666666

G1
g1 //

k1

**TTTTTTTTTTTTTTTTTTTTT G1

∐
H G2

!

$$
K

It can be constructed as follows:

G1

∐
H

G2 := (G1

∐
G2)/N , where N :=

〈
f1(h) · f2(h)−1 : h ∈ H

〉
NT

and where gj is given by composing the inclusion Gj → G1

∐
G2 with the natural

quotient mapping G1

∐
G2 → (G1

∐
G2)/N .

5.21 Definition. [9, 5.6.3] Let G be a group. Then the abelization abG of G is
an Abelian group being solution of the following universal problem:

G
f

��????????
π // abG

!

f̃

}}
A

where A is an arbitrary Abelian group.

A realization of abG is given by G/G′, where the commutator subgroup G′

denotes the normalizer generated by all commutators [g, h] := ghg−1h−1. Remark
that G′ = {[g1, h1] · · · · · [gn, hn] : gj , hj ∈ G}.

Remark. From general categorical results we conclude that the product (and more
general limits) in the category of Abelian groups is the product (limit) formed in
that of all groups. And abelization of a coproduct (more generally a colimit) is
just the coproduct (colimit) of the abelizations formed in the category of Abelian
groups.

5.22 Definition. [9, 5.3.7] Let Gi be abelian groups. Then the coproduct (di-
rect sum) ab

∐
iGi of is defined to be the solution of the following universal pro-

blem:

Gi
fi

��@@@@@@@@
inji // ab∐

iGi

!

(fi)i

{{
H
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where H is an arbitrary Abelian group.

Remark. A concrete realization of ab
∐
iGi is given by those elements of

∏
iGi,

for which almost all coordinates are equal to the neutral element.

5.23 Definition. [9, 5.5.3] Let X be a set. Then the free group F(X) is the
universal solution to

X
f

��@@@@@@@@
ι // F(X)

!

f̃

||
H

where the arrows starting at X are just mappings and f̃ is a group homomorphism.

Remark. [9, 5.5.2] One has F(X) ∼= F(
⊔
x∈X{x}) ∼=

∐
x∈X F ({x}) by a general

categorical argument, and F({∗}) ∼= Z, as is easily seen.

5.24 Definition. Let X be a set. Then the free abelian group abF(X) is the
universal solution to

X
f

��????????
ιi // abF(X)

!

f̃

{{
A

where the arrows starting at X are just mappings and f̃ is a group homomorphism.

Remark. By a general categorical argument we have ab(F(X)) ∼= abF(X). And
abF(X) ∼= ab

∐
x F({x}) ∼= ab

∐
x Z, which are just the finite sequences in ZX .

5.25 Definition. [9, 5.6.1] Given a set X and a subset R ⊆ F(X) we define

〈X : R〉 := F(X)/〈R〉NT
to be the group with generators X and defining relations R. If 〈X : R〉 ∼=
G, then 〈X : R〉 is called representation of the group G.

5.26 Examples. One has F(X) := 〈X : ∅〉 and Zn := 〈x : xn〉.
More generally,

∐
j〈Xj : Rj〉 = 〈

⊔
Xj :

⋃
j Rj〉.

Moreover ab〈X : R〉 = 〈X : R ∪ {[x, y] : x, y ∈ X}〉

5.27 Remark. [9, 5.8.1] Obviously we have:

1. 〈X : R〉 ∼= 〈X : R ∪ {r′}〉 for r′ ∈ 〈R〉NT .

2. 〈X : R〉 ∼= 〈X ∪ {a} : R ∪ {a−1w}〉 for a /∈ X and w ∈ F(X).

These operations are called Tietze operations.

5.28 Theorem. [9, 5.8.2] Two finite representations 〈X : R〉 and 〈Y : S〉 describe
isomorphic groups iff there is a finite sequence of Tietze operations converting one
description into the other.

For a proof see [9].
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Remark. The word problem for finitely presented groups is the problem to deter-
mine whether two elements w,w′ ∈ F(X) define the same element of 〈X : R〉, or
equivalently whether w−1w′ ∈ 〈R〉NT .

The isomorphy problem is to determine whether two finite group representations
describe isomorphic groups.

It has been shown that both problems have no algorithmic solution.

Group descriptions of CW-spaces

5.29 Proposition. [9, 5.2.6] For pointed spaces (Xi, xi) we have the following
isomorphism π1(

∏
iXi, (xi)i) ∼=

∏
i π1(Xi, xi).

Proof. Obvious, since [(Y, y), (
∏
iXi, (xi)i)] ∼=

∏
i[(Y, y), (Xi, xi)], by composition

with the coordinate projections, and since the multiplication of paths in
∏
iXi is

given component-wise.

5.30 Proposition. [9, 5.1.21] Let X0 be a path component of X and let x0 ∈ X0.
Then the inclusion of X0 ⊆ X induces an isomorphism π1(X0, x0) ∼= π1(X,x0).

Proof. Since S1 and S1 × I is path connected, the paths and the homotopies have
values in X0.

5.31 Proposition. Let Xα be subspaces of X such that every compact set is con-
tained in some Xα. And for any two of these subspaces there is a third one con-
taining both. Let x0 ∈ Xα for all α. Then π1(X,x0) is the inductive limit of all
π1(Xα, x0).

Proof. Let G be any group and fα : π1(Xα)→ G be group-homomorphisms, such
that for every inclusion i : Xα ⊆ Xβ we have fβ ◦ π1(i) = fα. We have to find
a unique group-homomorphism f : π1(X) → G, which satisfies f ◦ π1(i) = fα for
all inclusions i : Xα → X. Since every closed curve w in X is contained in some
Xα, we have to define f([w]X) := fα([w]Xα). We only have to show that f is well-
defined: So let [w1]X = [w2]X for curves w1 in Xα1 and w2 ∈ Xα2 . The image of
the homotopy w1 ∼ w2 is contained in some Xα, which we may assume to contain
Xα1 and Xα2 . Thus fα1([w1]Xα1

) = fα([w1]Xα) = fα([w2]Xα) = fα2([w2]Xα2
).

5.33 Theorem von Seifert und van Kampen. [9, 5.3.11]
Let X be covered by two open path connected subsets U1 and U2 such that U1 ∩ U2

is path connected and let x0 ∈ U1 ∩ U2. Then

π1(U1 ∩ U2, x0)
i2∗ //

i1∗
��

π1(U2, x0)

j2∗
��

π1(U1, x0)
j1∗ // π1(X,x0)

is a push-out, where all arrows are induced by the corresponding inclusions.

Proof. Let Gj := π1(Uj , x0) für j ∈ {1, 2}, G0 := π1(U1 ∩ U2, x0), G := π1(U1 ∪
U2, x0) = π1(X,x0) and Ḡ := (G1

∐
G2)/N with gi : Gi → Ḡ the push-out,

where N is the normal subgroup generated by {i1∗([u]) · i2∗([u])−1 : [u] ∈ G0}. By
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the universal property of the push-out there exists a unique group-homomorphism
ϕ : Ḡ→ G and we only have to show that it is bijective.

Surjectivity: Let [w] ∈ π1(X). By the Lebesgue-covering lemma applied to [0, 1] we
may take n sufficiently large such that for each 0 ≤ i < n we have w[ti, ti+1] ⊆ Uεi
for some εi ∈ {1, 2} and ti := i

n . Let wj be the restriction of w to [tj , tj+1] and let
vi be a path from x0 to w(ti) in Uεi ∩Uεi−1 . We may take v0 and vn to be constant
x0. Let ui := vi ·wi · v−1

i+1. Then ui is a closed path in Uεi and w ∼ u0 · . . . · un−1 in
X rel. İ. Let ḡi := gεi([u]Uεi ) ∈ Ḡ.

U1 U2

x0

wHt1L

wHt2L

wHt3L

w0

w1w2

w3

v1

v2

v3

Hence

[w]X = [u0]X · . . . · [un−1]X = jε0∗ ([u0]Uε0 ) · . . . · jεn−1
∗ ([un−1]Uεn−1

)

= ϕ(g1) · . . . · ϕ(gn−1) = ϕ(g1 · . . . · gn−1) ∈ ϕ(Ḡ).

Injectivity: Let z ∈ Ḡ = (G1

∐
G2)/N with ϕ(z) = 1 = [constx0 ] ∈ G. Then

we find closed paths ui in Uεi for certain εi ∈ {1, 2} with z = gε1([u1]Uε1 ) · . . . ·
gεn([un]Uεn ). Since

[constx0 ]X = ϕ(z) = ϕ
(
gε1([u1]) · . . . · gεn([un])

)
= ϕ

(
gε1([u1])

)
· . . . · ϕ

(
gεn([un])

)
= [u1]X · . . . · [un]X = [u1 · . . . · un]X

there is a homotopy H : I × I → X relative İ between u1 · . . . · un and constx0 . We
partition I × I into squares Q, such that H(Q) ⊆ UεQ for certain εQ ∈ {1, 2}. We
may assume that the resulting partition on the bottom edge I×{0} ∼= I is finer than
0 < 1

n < 2
n < . . . < n

n = 1. For every vertex k of this partition we choose a curve
vk connecting x0 with H(k). If H(k) ∈ Uj then we may assume that vk(I) ⊆ Uj . If
H(k) = x0, we may assume that vk is constant. For every edge c of such a square
Q we define the curve closed curve uc := vc(0) · (H ◦ c) · v−1

c(1) through x0. Since uc
is contained in some Uj we may consider [uc]Uj and its image c̄ := gj([uc]Uj ) ∈ Ḡ.
This is well defined, since if uc is contained in U1 ∩U2 then [uc]U1∩U2 is mapped to
[uc]Uj ∈ Gj for i ∈ {1, 2} and further on to the same element c̄ in the push-out Ḡ.

Let now Q be such a square with edges d, r, u, l. Then d · r ∼ l · u rel.
İ in Q, hence ud · ur ∼ ul · uu rel. İ in UεQ , i.e. [ud] · [ur] = [ul] · [uu] in
GεQ and thus d̄ · r̄ = gεQ([ud]) · gεQ([ur]) = gεQ([ul] · [uu]) = l̄ · ū in Ḡ.

u //

d //
l

OO
r

OO

Multiplying in Ḡ all these equations resulting from one row, gives that the pro-
duct corresponding to the top line equals in Ḡ that corresponding to the bot-
tom line, since the inner vertical parts cancel, and those at the boundary are
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1. Since the top row represents 1, we get that the same is true for the bot-
tom one. But ui is homotopic in Uεi rel. İ to the concatenation of the corre-
sponding uc in the bottom row, i.e. [ui]Uεi =

∏
c⊆[ i−1

n , in ]×{0}[uc]Uεi in Gεi . Thus
z =

∏
i gεi([ui]Uεi ) =

∏
c⊆[0,1]×{0} gεi([uc]Uεi ) =

∏
c c̄ = 1 in Ḡ.

5.34 Corollary. [9, 5.3.9] [9, 5.3.12] Let X = U1 ∪ U2 be as in 5.33 .

1. If U1 ∩ U2 is simply connected, then π1(U1 ∪ U2) ∼= π1(U1)q π1(U2).

2. If U1 and U2 are simply connected, then U1 ∪ U2 is simply connected.

3. If U2 is simply connected, then incl∗ : π1(U1) → π1(X) in the push-out
square is an epimorphism and its kernel is generated by the image of incl∗ :
π1(U1 ∩ U2)→ π1(U1).

4. If U2 and U1 ∩ U2 are simply connected, then π1(U1) ∼= π1(U1 ∪ U2).

Proof.

1 In this situation N = {1} and hence G1

∐
G2 is the push-out.

2 Here G1

∐
G2 = {1}

∐
{1} = {1} and hence also the push-out.

3 In this situation G1

∐
G2 = G1

∐
{1} ∼= G1 and N is the normal subgroup

generated by the image of G0 in G1.

4 Here we have N = {1} and hence the push-out is isomorphic to G1.

5.35 Theorem. [9, 5.4.8] Let a CW-complex X be the union of two connected
CW-subcomplexes A and B. Let x0 ∈ A∩B and A∩B be connected. Then π1 maps
the push-out square to a push-out.

Proof. By 4.19 we may choose open neighborhoods U(A), U(B) and U(A∩B) =
U(A) ∩ U(B) which contain A, B and A ∩ B as DRs. Then application of 5.33
and of 5.13 gives the result.

U(A) ∩ U(B) � � //
_�

��

U(A)
_�

��

A ∩B
* 


∼
77pppppppppp

� � //
_�

��

A
_�

��

, �

∼
::uuuuuuuuu

U(B) � � // X

B
* 


∼
77ppppppppppp� � // A ∪B

uuuuuuuuuu

uuuuuuuuuu

5.36 Proposition. [9, 5.4.9] Let A and B be (connected) CW-complexes. Then
π1(A ∨B, x0) ∼= π1(A)

∐
π1(B).

Proof. Since A∩B in A∨B is {x0} and hence simply connected this follows from
5.35 and 5.34 .

5.37 Example. We have π1(S1∨S1) ∼= Z
∐

Z. However, for spaces being not CW-
spaces in general π1(A ∨ B) 6= π1(A)

∐
π1(B): Take for example for A and B the
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subset of R2 formed by infinite many circles tangent at the base point. The closed
curve which passed through all those circles alternatingly can not be expressed as
finite product of words in π1(A) and π1(B).

5.38 Proposition. [9, 5.5.9] Let Xj be a CW-complex with base-point xj ∈ X0
j .

Then π1(
∨
Xj) ∼=

∐
j π1(Xj). In particular we have π1(

∨
J S

1) ∼=
∐
J Z ∼= F(J),

where the free generators of π1(
∨
j S

1) are just the inclusions injj : S1 →
∨
J S

1.

Proof. This follows from 5.36 by induction and by 5.31 , since every compact
subset is by 4.5 contained in a finite subcomplex of the CW-complex of

∨
j∈J Xj

given by 4.17 .

5.39 Corollary. [9, 5.4.1] [9, 5.4.2] Let Y be path connected with y0 ∈ Y and f :
Sn−1 → Y be continuous. Then the inclusion Y ⊆ Y ∪f en induces an isomorphism
π1(Y, y0)→ π1(Y ∪f en, y0) if n ≥ 3 and an epimorphism if n = 2. In the later case
the kernel is the normal subgroup generated by [v][f ][v−1], where v is a path from
y0 to f(1). So

π1(Y ∪f en) ∼= π1(Y )/〈conj[v][f ]〉NT

One could say that by gluing e2 to Y the element [f ] ∈ π1(Y ) gets killed.

Proof. We take U := Y ∪f (en \ {0}) and V := en.

U ∩ V � � //
_�

��

V

f

��

Sn−1

, �

∼
::uuuuuuuuu

// //
_�

f

��

{∗}
_�

��

+ �

∼
99ssssssssss

U
� � // U ∪ V

Y
, �

∼
::uuuuuuuuuu

� � // Y ∪f en

sssssssss

sssssssss

Then V and U ∩ V = en \ {0} ∼
Sn−1 are simply connected for
n ≥ 3, by 5.10 . Thus the inclu-
sion U ⊆ Y ∪f en induces an iso-
morphism by 5.34.4 . Since Y is
a DR of U by 2.42 the inclusi-
on of Y → U induces an isomor-
phism by 5.13 .

Now for n = 2. Again V is simply connected, but U∩V ∼ S1 and hence π1(U∩V, y0)
is the infinite cyclic group generated by the image of a circle of radius say 1/2. This
path is homotopic to [v][f ][v−1] in Y ∪f e2, hence everything follows by 5.34.3 .
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5.40 Example. [9, 5.4.4] We have π1(S1 ∪zn e2) ∼= Zn.

In particular, π1(P2) = π1(S1 ∪z2 e2) ∼= Z2.
This can be easily visualized: The top semi-circle α in
D2 has as α2 the full circle, which is contractible to 0.
Equally, P2 is obtained by glueing a 2-cell to the boun-
dary of a Möbius strip and the generator α ∈ π1(P2) is
just the middle line on the Möbius strip. Its square is
homotopic to the boundary of the Möbius strip which is
contractible in the disk.

Α

Α

∆1

∆1

∆2

∆2

Β1

Β2

Α

M1

M2

D1

D2

∆1 Β2Β1

Β1

Β2

∆2

D1

D2

5.42 Corollary. [9, 5.4.3] [9, 5.4.6] Let X be a CW-complex and x0 ∈ X0. Then
X2 ↪→ X induces an isomorphism π1(X2, x0) ∼= π1(X,x0) and X1 ↪→ X an epimor-
phism π1(X1, x0)� π1(X,x0) with the normal subgroup generated by conj[ve][χ

e|S1 ]
as kernel, where ve is a path joining x0 and χe(1) in Y and e runs through all 1-cells
in the connected component of x0 in X.

Proof. If X is a finite CW-complex then this follows from 5.39 by induction.
By 4.5 any compact subset of X is contained in a finite subcomplex X0 hence
π1(X,x0) is the inductive limit of the π(X0, x0) for the finite subcomplexes X0

containing x0 by 5.31 , hence the result hold in general.

5.43 Example. [9, 5.4.7] Since Pn = P2∪e3∪· · ·∪en we have π1(Pn) ∼= π1(P2) ∼= Z2.

5.32 Definition. [9, 5.5.11] A CW-complex X with X = X1 is called a graph.
A graph is called tree if it is simply connected.

5.44 Lemma. [9, 5.5.12] A connected graph is a tree iff it is contractible.

Proof. (⇒) Let X0 be the 0-skeleton of a tree X. And let x0 ∈ X0 be fixed. Every
x ∈ X0 can be connected by a path with x0, which gives a homotopy X0 → X. By
4.19 it can be extended to a homotopy ht : X → X with h0 = idX and h1(X0) =
{x0}. Let e ⊆ X be a 1-cell with characteristic map χe : I ∼= D1 → X. Then
[h1 ◦χe] ∈ π1(X,x0) = {1}, hence there is a homotopy het : (I, İ)→ (X, {x0}) with
he0 = h1 ◦ χe and he1(I) = {x0}. Let ket : X0 ∪ e→ X be defined by ket (X

0) = {x0}
and ket = het ◦ χ−1

e on e. Taking the union of all ket gives a homotopy kt : X1 → X
between h1 and a constant map.

5.45 Lemma. [9, 5.5.13] Every connected graph X contains a maximal tree. Any
maximal tree in X contains all vertices of X.
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Proof. LetM be the set of trees of X ordered by inclusion. Since the union of any
linear ordered subset of M is a tree (use 4.5 ), we get by Zorns lemma a maximal
tree Y ⊆ X.

Let Y be a maximal tree and
suppose that there is some x0 ∈
X0 \ Y 0. Let w : I → X be a
path connecting x0 and Y . Let
t1 be minimal in w−1(Y ) (hence
w(t1) ∈ Y 0) and t0 < t1 be
maximal in w−1(X0 \ Y 0). Then
w([t0, t1]) is the closure of a 1-cell
e and Y ∪ ē is a larger tree, since
Y is a SDR of Y ∪ ē by deforma-
tion along w|[t0,t1].

Y

x0

wHt0L

wHt1L

e

w

5.47 Corollary. [9, 5.5.17] Every connected CW-space is homotopy equivalent to
a CW-complex with just one 0-cell.

Proof. By 2.49 we have that X � X/Y with a maximal tree Y as constructed
in 5.45 is a homotopy equivalence since Y is contractible by 5.44 and (X1, Y )
has the HEP by 4.19 .

5.46 Proposition. [9, 5.5.14] Let X be a connected graph and x0 ∈ X0. Let Y ⊆ X
be a maximal tree. For every 0-cell x choose a path vx in Y connecting x0 with x.
And for every 1-cell e ⊆ X1 \ Y with characteristic mapping χe : I ∼= D1 → X1 let
s(e) := [vχe(0)][χe][vχe(1)]−1 ∈ π1(X,x0). Then

s : F({e : e is 1-cell in X1 \ Y })−∼=→ π1(X,x0),

i.e. π1(X,x0) is the free group generated by {s(e) : e is 1-cell in X1 \ Y }.

Proof. The quotient mapping p : X1 → X1/Y is a homotopy-equivalence onto a
CW-space with just one 0-cell Y . By 4.15 X1/Y ∼=

∨
e S

1, where e runs through
the 1-cells in X1 \ Y , see also 4.16 . Thus π1(X,x0) ∼= π1(X1/Y, y0) = F({e :
e is 1-cell in X1 \ Y }) by 5.38 . The inverse of this isomorphism is given by e 7→
[vχe(0) · χe · v−1

χe(1)] = s(e).

5.48 Corollary. [9, 5.5.16] Let X be a connected graph with d0 vertices and d1

edges. Then π1(X) is a free group of 1− d0 + d1 generators.

Proof. By induction we show that for all 1 ≤ n ≤ d0 there are trees Yn ⊆ X
with n vertices and n − 1 edges: Let Yn for n < d0 be given and choose a point
x0 ∈ X0 \ Yn and a path w connecting x0 with Yn. Then proceed as in the proof
of 5.45 to find an edge w([t0, t1]) connecting a vertex outside Yn with one in Yn.
Now Yn+1 = Yn∪w([t0, t1]) is the required tree with one more vertex and one more
edge.

By 5.46 the result follows, since there are d1−(d0−1) many 1-cells not in Yd1 .

5.49 Theorem. [9, 5.6.4] Let X be a CW-complex with maximal tree Y . Let ge-
nerators s(e1) be constructed for every e1 ∈ X1 \ Y 1 as in 5.46 . For every 2-cell
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e2 ∈ X2 define r(e2) := [u ·χe2 |S1 · u−1] ∈ π1(X1, x0), where u is a path from x0 to
χe2(1) in X1 and χe2 : D2 → ē2 a characteristic mapping. Then

π1(X,x0) ∼=
〈{
s(e1) : e1 is 1-cell in X1 \ Y 1

}
:
{
r(e2) : e2 ∈ X2

}〉
.

Proof. By 5.42 the mapping π1(X1, x0) → π1(X2, x0) ∼= π1(X,x0) induced by
X1 ↪→ X2 ↪→ X is surjective and its kernel is the normal subgroup generated by
r(e2) = [u · χe2 |S1 · u−1] ∈ π1(X1) ∼= F({s(e1) : e1 is 1-cell in X1 \ Y 1}).

5.50 Remark. [9, 5.6.5] For every group G = 〈S : R〉 there is a 2-dimensional
CW-complex X denoted CW(S : R) with π1(X) ∼= G.

Proof. Let X1 :=
∨
S S

1. Every r ∈ R ⊆ F(S) ∼= π1(X1) is the homotopy class
of a curve mapping fr : S1 → X1. Thus glue a 2-cell to X1 via this mapping. I.e.
X = CW (S : R) := X1

⋃
f (
⊔
r∈R e

2), where f :=
⊔
r∈R fr.

Note that this construction depends on the choice of fr ∈ [r]. However different
choices give rise to homotopy equivalent spaces by 2.47 .

5.51 Proposition. [9, 5.8.6] Every connected CW-complex of dimension less or
equal to 2 is homotopy equivalent to CW (S : R) for some representation 〈S : R〉 of
its fundamental group.

Proof. Choose a maximal tree Y ⊆ X1. Then by the proof of 5.46 we have that
X is homotopy equivalent to X/Y , which has as 1-skeleton

∨
S S

1. For every 2-cell
e we choose a characteristic map χe. Thus X/Y = (

∨
S S

1) ∪F
e χ

e|S1

⊔
eD

2. By
2.34.3 we can deform χe|S1 to a base point preserving map fe : S1 → X1. Hence

by 2.47 X/Y is homotopy equivalent to CW 〈S : {fe : e}〉.

Remark. Note that this does not solve the isomorphy problem for 2-dimensional
CW-complexes, since although two such spaces X and X ′ with isomorphic funda-
mental group are homotopy equivalent to CW (S,R) and CW (S,R′) for represen-
tations 〈S : R〉 ∼= 〈S′ : R′〉 of the homotopy group, the space CW (S : R) and
CW (S′ : R′) need not be homotopy equivalent, e.g. π1(S2) = {1} = π1({∗}) but
S2 is not homotopy equivalent to a point {∗} by 9.1 and 2.40.1 .

The following lemma shows exactly how the homotopy type might change while
passing to other representations of the same group.

5.52 Lemma. [9, 5.8.7] We have CW (S : R ∪ {r}) ∼ CW (S : R) ∨ S2 for r ∈
〈R〉NT \R and CW (S ∪{s} : R∪{s−1w}) ∼ CW (S : R) for s /∈ S and w ∈ F(X).

This shows that CW (〈S : R〉) := CW (S : R) would not be well-defined.

Proof. If X = CW (S : R) and Y = CW (S : R ∪ {r}) with r ∈ 〈R〉NG. Then
Y = X ∪f e2, where f : S1 →

∨
S S

1 = X1 ⊆ X is such that [f ] = r ∈ π1(
∨
S S

1) =
F(S). Since r ∈ 〈R〉NG, we have that [f ]X = 1 ∈ π1(X) = π1(

∨
S S

1)/〈R〉NG,
hence f ∼ 0 in X. Thus Y = X ∪f e2 ∼ X ∪0 e

2 = X ∨ S2 by 2.36.3 .

If X = CW (S : R) and Y = CW (S ∪{s} : R∪{s−1w}). Then Y = (X ∨S1)∪f e2,
where f = σ−1 ·ω for the inclusion σ : S1 → X ∨ S1 and w = [ω] ∈ π1(X) ∼= F(S).
Thus Y = X ∪f |

S1
−
D2 and since S1

− ⊆ D2 is a SDR we have that X is also a SDR

in Y , by 2.41 .
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5.53 Example. [9, 5.7.1]
The fundamental group of the orientable compact surface of genus g ≥ 0 is

〈α1, β1, . . . , αg, βg : [α1, β1] · . . . · [αg, βg]〉.
That of the non-orientable compact surface of genus g ≥ 1 is

〈α1, . . . , αg : α2
1 · . . . · α2

g〉.

Proof. By 1.101 these surfaces are obtained by gluing one 2-cell e to a join
∨
S1

of 2g, respectively g, many S1 and the gluing map is given by i1 · i2 · i−1
1 · i

−1
2 · . . .

and i21 · . . . · i2g, so the homotopy class of the characteristic mapping χe|S1 is [α1, β1] ·
. . . · [αg, βg] and α2

1 · . . . · α2
g, respectively.

5.54 Corollary. [9, 5.7.2] None of the spaces in 5.53 are homotopy equivalent.

Proof. The abelization of the fundamental groups are Z2g and Zg−1 ⊕ Z2. In fact
ab〈α1, β1, . . . , αg, βg : [α1, β1] · · · · · [αg, βg]〉 =

= 〈α1, β1, . . . , αg, βg : [α1, β1] · . . . [αg, βg], [αi, αj ], [βi, βj ], [αi, βj ]〉

=
5.27.1

======= 〈α1, β1, . . . , αg, βg : [αi, αj ], [βi, βj ], [αi, βj ]〉

= ab〈α1, β1, . . . , αg, βg : ∅〉

= abF(α1, β1, . . . , αg, βg) = Z2g

and
ab〈α1, . . . , αg : α2

1 · · · · · α2
g〉

= ab〈α1, . . . , αg : (α1 · · · · · αg)2〉

=
5.27.2

======= ab〈α1, . . . , αg, α : α2, α−1α1 . . . αg〉

=
5.27.2

======= ab〈α1, . . . , αg−1, α : α2〉

= ab(〈α1, . . . , αg−1 : ∅〉 q 〈α : α2〉)
= Zg−1 ⊕ Z2.

Geometric interpretations are the following:

S2 is simply connected by 5.10 hence π1 has no generator and no relation.

S1 × S1 is a torus. By 5.29 the generators α and β of π1 are given by S1 × {1}
and {1} × S1, which are a meridian and an equator in the 3-dimensional picture.
This can be also seen by gluing the 4 edges of a square as αβα−1β−1. The relation
αβ = βα is seen geometrically by taking as homotopy the closed curves given by
running through some arc on the equator, then the meridian at that position and
then the rest of the equator.

The oriented surface of genus g is obtained by cutting 2g holes into the sphere and
gluing g cylinders to these holes. Let x0 be one point on the sphere not contained
in the holes. As generators αj we may take curves through x0 along some generator
{x} × I of the cylinder and as βi loops around one boundary component S1 × {0}
of the cylinder. Then αiβiα−1

i describes the loop around the other component and
αiβiα

−1
i β−1

i is a loop around both holes. The product of all these loops is a loop
with all holes lying on one side and hence homotopic to a point, cf. 2.40.8
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5. Fundamental Group 5.54

We have discussed the generator α and the relation α2 ∼ 1 on P2 in 5.40 .

The non-orientable surface of genus g is obtained from a sphere by cutting g holes
and gluing g Möbius-strips. The generators αj are just conjugates of the middle
lines on the Möbius strips. Their squares are homotopic to the boundary circles.
And hence the product of all α2

i is homotopic to a loop around all holes, which is
in turn homotopic to a point.

This shows that beside the sphere, the torus and the projective plane these funda-
mental groups are not abelian.
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6.2 5. Fundamental Group

6. Coverings

We take up the method leading to the calculation π1(S1) ∼= Z in 5.15 . Basic
ingredient was the lifting property of the mapping t 7→ exp(2πit), R � S1, see
2.17 . Its main property can be stated abstractly as follows:

6.1 Definition. Coverings. [9, 6.1.1] A covering map p : Y → X is a surjec-
tive continuous map, such that every x ∈ X has an open neighborhood U ⊆ X
for which p|p−1(U) : p−1(U) → U is up to an homeomorphism just the projection
pr :

⊔
J U → U for some set J 6= ∅, i.e.

Y

p
## ##FFFFFFFFF p−1(U)

p|p−1(U) ## ##FFFFFFFFF
? _oo ⊔

J U

pr

}}zzzzzzzz

∼=oo U? _
injjoo

idssX U_?oo

The images of the summands U
in p−1(U) ⊆ Y are called the
leaves and U is called a trivia-
lising neighborhood. The in-
verse images of points under p are
called fibers, X is called base,
and Y total space.

Remark. Let G be any group acting on Y . In 1.78 we considered the orbit space
Y/G := Y/∼, where y ∼ y′ :⇔ ∃g ∈ G: y′ = g · y with the quotient topology and
the corresponding quotient mapping π : Y → Y/G. Let us assume that this is a
covering, i.e. for every y ∈ Y there has to exist an open neighborhood U ⊆ Y/G

such that π−1(U) is a disjoint union of open subsets Ũ homeomorphic via π to
U . So U = π(Ũ) and π−1(U) = π−1(π(Ũ)) = G(Ũ). Thus we would like that
g(Ũ) ∩ g′(Ũ) = ∅ for all g 6= g′. In 1.81 we called a group action satisfying this
condition act strictly discontinuous, i.e. every y ∈ Y has a neighborhood V
such that g(V ) ∩ V = ∅ for all g 6= e.

6.15 Lemma. Let G be a group acting strictly discontinuous on Y . Then the quo-
tient mapping q : Y → Y/G is a covering map.

Proof. Since G acts strictly discontinuous we find for each y ∈ Y a neighborhood
V with g · V ∩ V 6= ∅ ⇒ g = 1. Thus q|V : V → q(V ) =: U is bijective and
q−1(U) = G · V =

⊔
g∈G g · V is open in Y and hence U is open in Y/G.

6.2 Example.

1. Let Y := {(sin(2πt), cos(2πt), t) : t ∈ R} ∼= R and p = pr1,2 : Y → S1 ⊆ R2.
Then p is a covering map. Use 6.15 for S1 = R/Z.

2. The map z 7→ zn : S1 → S1 is an n-fold covering map. Use 6.15 for
S1 = S1/Zn.

3. The map Sn → Pn is a two-fold covering map. Use 6.15 for Pn = Sn/Z2,
see 1.68 and 1.71 .

4. Let p1 : Y1 → X1 and p2 : Y2 → X2 be two covering maps, then so is
p1 × p2 : Y1 × Y2 → X1 ×X2. Examples: R2 → S1 × S1, R2 → R × S1 and
R× S1 → S1 × S1.

5. There is a twofold covering map from I ×S1 to the Möbius strip. Use 6.15
for the action of Z2 on [−1, 1]×S1 given by (t, ϕ) 7→ (−t, ϕ+π), see exercise
(1.15).
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6. Coverings 6.3

6. The torus is a two fold covering of Klein’s bottle. Use 6.15 for the action
of Z2 on S1 × S1 given by (ϕ,ψ) 7→ (−ϕ,ψ + π), see exercise (1.17.3).

7. Zp acts transitively on S2k−1 and the orbit space is the lens space (see 1.82 ),
so we get a covering S2k−1 → L(p; q1, . . . , qk).

6.3 Lemma. [9, 6.1.3] Let p : Y → X be a covering. Then

1. The fibers are discrete in Y .

2. Every open subset of a trivialising set is trivialising.

3. Let A ⊆ X. Then p|p−1(A) : p−1(A)→ A is a covering map.

4. If B ⊆ Y is connected and p(B) ⊆ U for some trivialising set U , then B is
contained in some leaf.

5. The mapping p is a surjective open local homeomorphism and hence a quo-
tient mapping.

Proof. ( 1 ) Points in the fiber are separated by the leaves.

( 2 ) and ( 3 ) Take the restriction of the diagram above.

( 4 ) B is covered by the leaves. Since each leaf is open, so is the trace on B. Since
B is connected only one leaf may hit B, thus B is contained in this leaf.

( 5 ) Obviously the projection is a local homeomorphism. Hence it is open and a
quotient mapping.

Lemma. Let X and Y 6= ∅ be path connected, locally path connected and Hausdorff
and Y compact. Then every local homeomorphism f : Y → X is a covering.

Proof. Since f is a local homeomorphism, the fibers f−1(x) are discrete and closed
and hence finite since Y is compact.

Let us show next that f is surjective. In fact the image is open in X, since f is a
local homeomorphism. It is closed, since Y is compact and X is Hausdorff. Since
X is assumed to be (path-)connected and Y 6= ∅ it has to be all of X.

Let x ∈ X. Choose pairwise disjoint neighborhoods Vy for each y ∈ f−1(x) which
are mapped homeomorphically onto corresponding neighborhood of x. By taking
the inverse images of the (finite) intersection U :=

⋂
y∈f−1(x) f(Vy) in the Vy we

may assume that the image is the same neighborhood U for all y ∈ f−1(x). Hence
U is trivializing with leaves Vy and thus p : Y → X is a covering.

Example.
Not every surjective local homeomorphism is a covering map.

Take for example an open interval I ⊂ R of length more than 2π.
Then the restriction I → S1 of the covering from 6.2.1 is not a
covering.
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6.4 6. Coverings

6.10 Definition. Homomorphisms of coverings.

Let p′ : Y � X ′ and p : Y � X be two coverings with
the same total space Y . A homomorphism f of these
coverings is a map f : X ′ → X such that the diagram to
the right commutates.

Y
p′

~~~~}}}}}}}}
p

    @@@@@@@@

X ′
f // X

Note that such an f exists, iff p factors over p′, i.e. the fibers of p′ are contained in
fibers of p. If such an f exists it is uniquely determined since p′ is onto. So we get
a category CovY (a quasi-ordering) of all coverings with total space Y .

Conversely, let p′ : Y ′ � X and p : Y � X be two
coverings with the same base space X. A homomorphism
f of these coverings is a fiber respecting map f : Y ′ → Y ,
i.e. the diagram on the right commutates.

Y ′
f //

p′     AAAAAAAA Y

p~~~~~~~~~~~~

X

We denote the set of all homomorphisms from p′ : Y ′ � X to p : Y � X by
HomX(p′, p). So we get a category CovX of all coverings with base space X.

Remark that a homomorphism f is nothing else but a lift of p′ : Y ′ � X along
p : Y � X. The automorphisms f , i.e. invertible homomorphisms p → p, are also
called covering transformations or decktransformations, and we write
Aut(p) for the group formed by them.

6.4a Remark. Unique lifts along covering maps exist locally.
Let p : (Y, y0)→ (X,x0) be a covering and g : (Z, z0)→ (X,x0). Take a trivialising
neighborhood U of x0 and let Ũ be the leaf of p over U which contains y0. Then
(p|Ũ ) : Ũ → U is a homeomorphism and hence (p|Ũ )−1 ◦ g : Z ⊇ g−1(U)→ Ũ ⊆ Y
is a continuous local lift of g.

Ũ
� � //

∼=
p|Ũ ""EEEEEEEEEE p−1(U)

q�

""EEEEEEEE

��
W �� //

g̃
00

g−1(U)
q�

##FFFFFFFF g|g−1(U)

//

<<

U q�

##FFFFFFFFF Y

p

����
Z

g // X

Let g̃ be any continuous (local)
lift of g with g̃(z0) = y0. Then
W := g̃−1(Ũ) ⊆ g̃−1(p−1(U)) =
g−1(U) is a neighborhood of z0

and g̃(W ) ⊆ Ũ , hence g = p ◦ g̃
implies (p|Ũ )−1 ◦ g = (p|Ũ )−1 ◦
p|Ũ ◦ g̃ = g̃ on W , i.e. locally the
lift of g̃ is unique.

6.4 Lemma. Uniqueness of lifts. [9, 6.2.4]
Let p : Y → X be a covering map and g : Z → X be continuous, where Z is connec-
ted. Then any two lifts of g, which coincide in one point are equal. In particular, if
g is constant so are its lifts.

Proof. Let g1, g2 be two lifts of g. Then the set of points {z ∈ Z : g1(z) = g2(z)}
is clopen. In fact if U j is the leaf over U containing of gj(z), then gj = (p|Uj )−1 ◦ g
on the neighborhood (g1)−1(U1)∩ (g2)−1(U2) of z. Hence g1 = g2 locally around z
iff g1(z) = g2(z).
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6.22 Lemma.

Let X locally path connected and
let q : Z → Y and p : Y → X be given.

Then the following statements hold:

Z
q //

p◦q
  @@@@@@@ Y

p
~~~~~~~~~

X

0. If p and p ◦ q are coverings and Y is (path-)connected, then q is onto.

1. If p and p ◦ q are coverings and q is onto, then q is a covering.

2. If p and q are coverings and X is locally simply-connected, then p ◦ q is a
covering.

3. If q and p ◦ q are coverings, then p is a covering.

Proof. ( 0 ) We claim that the image of q is clopen in Y and hence coincides with
the connected space Y . For this we consider all leaves V over path-connected open
subsets U ⊆ X, which are trivializing for p and q ◦p. It suffices to show that if such
a leaf V meets the image q(W ) of a leaf W over U for p ◦ q then it is contained in
q(W ). So let w0 ∈W be such that q(w0) ∈ V . Since V has to be path-connected as
well, we may connect q(w0) with any v ∈ V by a curve c in V . The curve p◦ c has a
lift c̃ = (p◦q|W )−1◦p◦c starting at w0 ∈ (p◦q)−1(p(c(0))) with values in W . By the
uniqueness of local lifts q ◦ c̃ coincides with c and hence v = c(1) = q(c̃(1)) ∈ q(W ).

( 1 ) Take a path connected set U ⊆ X being trivialising for p ◦ q and p. Every
leaf W of p ◦ q over U is mapped by q into some leaf V of p over U : In fact, since
the leafs are homeomorphic to U , they are path-connected as well, hence q(W ) is
completely contained in a leaf V of p over U = (p ◦ q)(W ) by 6.3.4 . Thus q−1(V )
is the topological disjoint union of all leafs W of p ◦ q over U , which meet q−1(U).
Moreover, q|W = (p|V )−1 ◦ p|V ◦ q|W = (p|V )−1 ◦ (p ◦ q)|W is a homeomorphism
W ∼= U ∼= V .

( 2 ) Let p and q be coverings, with X locally simply connected. Then the leafs Vj
of p over a simply connected neighborhood U are again simply connected, hence
are trivialising neighborhoods of q as will be shown in 6.20a . Hence (p◦q)−1(U) =
q−1(p−1(U)) = q−1(

⊔
j Vj) =

⊔
j q
−1(Vj) and q−1(Vj) ∼=

⊔
Jj
Vj . Thus (p ◦ q)|Ṽj =

p|Vj ◦ q|Ṽj is a homeomorphism Ṽj ∼= Vj ∼= U for every leaf Ṽj over Vj . Hence p ◦ q
is a covering as well.

( 3 ) Let p ◦ q and q be coverings. We claim that p is a covering. Let U be path-
connected and trivialising for p ◦ q and Ũ a leaf of p ◦ q over U . Since q is an open
mapping, V := q(Ũ) is open in Y . Since (p ◦ q)|Ũ is an embedding the same is
true for q|Ũ . Thus q|Ũ is a homeomorphism Ũ ∼= V and consequently also p|V =
(p◦q)|Ũ ◦(q|Ũ )−1 : V → Ũ → U . We claim that q(Ũ) is a path-component of p−1(U)
and hence these sets form a disjoint partition of p−1(U): Let z0 ∈ Ũ be choosen
and let c be a continuous curve in p−1(U) from q(z0) to some point y ∈ p−1(U).
By 6.4a we have a lift c̃ := ((p ◦ q)|Ũ )−1 ◦ (p ◦ c) into Ũ of p ◦ c with initial value
z0. Then c and q ◦ c̃ are two lifts of p ◦ c with initial value q(z0) hence coincide and
thus q(c̃(1)) = c(1) = y.

6.18a The category CovYnorm.
We try to get a description of the category CovY of coverings with fixed total
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space Y . For every group G acting strictly discontinuous on Y (and w.l.o.g. we may
assume that G ⊆ Homeo(Y )) we get a covering π : Y → Y/G by 6.15 .

Can we recover G from the covering π : Y → Y/G?

Yes: If Y is path connected and locally path connected then Aut(π) = G:
Obviously, G ⊆ Aut(π). Conversely, let Φ ∈ Aut(π), i.e. π(y) = π(Φ(y)) for all
y ∈ Y . Choose y0 ∈ Y , then there is some g0 ∈ G with g0 · y0 = Φ(y0) since G acts
transitively on the fibers of π. Since the two mappings Φ and g0 cover the identity
(i.e. are lifts of π along π) and coincide on y0 they are equal by 6.4 .

Note, that if G′ ≤ G is a subgroup then π : Y → Y/G factors over π′ : Y → Y/G′

to a unique mapping f : Y/G′ → Y/G, i.e. a homomorphism π′ → π. So we get
a functor Actstr.dis.(Y ) → CovY from the partially ordered set (hence category)
Actstr.dis.(Y ) of subgroups of Homeo(Y ) for which the action on Y is strictly dis-
continuous.

Is this functor dense, i.e. is every covering mapping p : Y → X up to isomorphy
in the image of this functor? For this we have to find a subgroup G ≤ Homeo(Y )
for which the action on Y is strictly continuous and such that p ∼= (π : Y → Y/G).
The natural candidate is G := Aut(p).
Obviously the action of Aut(p) on Y is strictly discontinuous, since for g in Aut(p)
we have that g(Ũ) ∩ Ũ 6= ∅ implies that there exists some y ∈ Ũ with g(y) ∈ Ũ .
From p(g(y)) = p(y) and since p|Ũ : Ũ → U is injective we conclude that g(y) = y,
but then g = id by 6.4 .
Since every g ∈ Aut(p) is fiber preserving, we have that p is constant on the Aut(p)-
orbits and hence p factors to a quotient mapping Y/Aut(p)→ X, by 6.22.3 :

Y
p

�� ��????????
π

zzzzuuuuuuuuu

Y/Aut(p) // // X

This mapping is injective (and hence an isomorphism) iff every two points in the
same fiber of p are in the same orbit under Aut(p), i.e. iff Aut(p) acts transitive
on the fibers of p (such coverings p are called normal). Note that for a group G
acting strictly discontinuous on Y the covering π : Y → Y/G is obviously normal.
Let CovYnorm denotes the category of normal coverings with total space Y . Then we
have:

6.18 Theorem. [9, 6.5.3] For path-connected and locally path connected Y we have
an equivalence of categories

CovYnorm ∼ Actstr.dis.(Y ),

i.e. there exists a functor in the opposite direction and the compositions of these
two are up to natural isomorphisms the identity.

Proof. The functor Actstr.dis.(Y ) → CovYnorm is given by Homeo(Y ) ≥ G 7→ (π :
Y → Y/G) and if G′ ≤ G then π : Y → Y/G factors over π′ : Y → Y/G′ to a
unique mapping f : Y/G′ → Y/G, i.e. a homomorphism π′ → π.

Conversely, every homomorphism f : π′ → π has to be the unique factorization of
π : Y → Y/G and it induces an inclusion Aut(π′) ⊆ Aut(π), since Φ ∈ Aut(π′) ⇒
π′ ◦Φ = π′ ⇒ π ◦Φ = f ◦ π′ ◦Φ = f ◦ π′ = π, i.e. Φ ∈ Aut(π). Thus the functor is
full and faithfull.
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It is a general categorical result, that a full and faithful functor which is up to
isomorphisms surjective on objects is an equivalence. In fact an inverse is given by
selecting for every object in the range category an inverse image up to an isomor-
phism and by the full and faithfulness this can be extended to a functor.

We have shown above that the functor is dense, hence it gives the desired equiva-
lence of categories.

We now try to desribe the category CovX of coverings with base X in algebraic
terms. Since the homomorphisms p′ → p are lifts of p′ along p we have to study
liftings along coverings in more detail.

6.5 Theorem. Lifting of curves. [9, 6.2.2] [9, 6.2.5] Let p : Y → X be a covering.
Every path w : I → X has a unique lift yw̃ with yw̃(0) = y for given y ∈ p−1(w(0)).
Paths homotopic relative their initial value have homotopic lifts.

In particular we have an action of π1(X,x0) on p−1(x0) given by [u] : y 7→ yũ(1),
i.e. the end-point of the lift of u, which starts bei y.

The total space Y is path connected iff X is path connected and this action is
transitive, i.e. for all y1, y2 ∈ p−1(x0) there exists a g ∈ π1(X,x0) with y1 · g = y2

(equivalently: there exists a y0 ∈ p−1(x0) with y0 · π1(X,x0) = p−1(x0)).

Proof. By 6.4 we have to show existence of a lift. By considering a path w as a
homotopy being constant in the second factor, it is enough to show that homotopies
h : I × I → X can be lifted.

For this choose a partition of I2 into squares Qi,j , such that h(Qi,j) is contained
in a trivialising neighborhood Ui,j of X. Now construct inductively a lift h̃1 along⋃
iQi,1, by taking the leaf Ũi,1 over the trivialising neighborhood of Qi,1 which

contains the image under h̃ of the right bottom corner ofQi−1,1 and hence also of the
right side edge of Qi−1,1 (by 6.3.4 ). Then h̃|Qi,1 can be defined as (p|Ui,1)−1◦h|Qi,1 .
Now proceed by induction in the same way to obtain lifts h̃j for all stripes

⋃
iQi,j .

By induction we can show that the lifts agree on the horizontal lines: In fact the
image of h on a horizontal edge is contained in the intersection of the trivialising
sets containing the image of the square above and below. And since the lifts h̃j and
h̃j−1 are contained in the respective leaves, and thus in the leaf over the intersection,
they have to be equal. We call the unique homotopy y0 h̃.

Now suppose h is a homotopy rel. İ between two paths w0 and w1 from x0 to x1

and let y0 ∈ p−1(x0). The homotopy y0 h̃ has as boundary values lifts w̃0 and w̃1

with w̃0(0) = y0. Since s 7→ y0 h̃(0, s) is a lift of the constant path x0, it has to be
constant, hence w̃1(0) = y0. So these are the unique lifts of wj with initial value y0.
Since s 7→ h(1, s) is a lift of the constant path x1, it is constant, i.e. h̃ is a homotopy
rel. İ.

The lifting property gives us a mapping π1(X,x0) to the mappings of p−1(x0) by
setting [u](y) := yũ(1). This is well defined, since curves u homotopic relative İ
have lifts yũ homotopic relative İ and hence have the same end point.

Composition law: The lift of y0 ũ · w is y0 ũ · y1 ṽ, where y1 := y0 ũ(1).

Moreover we have [u · v](y) = yũ · v(1) = (yũ · y1 ṽ)(1) = y1 ṽ(1) = [v](y1) =
[v]([u](y)), where y1 = yũ(1) = [u](y). Hence, we consider this mapping as a right
action, i.e. we write y · [u] for [u](y). Then we have y · ([u] · [v]) = (y · [u]) · [v]. Thus
[u] acts on p−1(x0) as bijection.
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In particular, [u] acts on p−1(x0) as bijection.

Now the statement on path-connectedness:
If Y is path connected then so is the surjective continuous image X. Furthermore
a curve v connecting y1, y2 ∈ p−1(x0) has a closed curve u := p ◦ v as image and
v = y1 ũ, so y1 · [u] = y2, i.e. the action is transitive.

Conversely let y1 ∈ Y be arbitrary. Since X is path connected we have a curve u
connecting p(y1) with x0. Its lift y1 ũ connects y1 with y := y1 ũ(1) ∈ p−1(x0). Since
π1(X,x0) acts transitive on p−1(x0) there is a [u′] ∈ π1(X,x0) with y · [u′] = y0,
i.e. the curve yũ′ connects y with y0.

6.6 Corollary. [9, 6.3.5] Let X be path-connected. Then the fibers of any covering
p : Y → X can be mapped bijectively onto one another by lifting a curve connecting
the foot points.

Proof. Let F0 := p−1(x0), F1 := p−1(x1) and let u be a path from x0 to x1 then
y 7→ yũ(1) defines a mapping F0 → F1 and y 7→ yũ−1(1) a mapping F1 → F0 and
these mappings are inverse to each other, since the lift of the curve u · u−1 ∼ 0 is
0-homotopic rel. İ and hence closed.

6.20a Corollary. Let X be simply connected and p : Y → X be a path connected
covering. Then p is a homeomorphism. In particular every simply connected open
subset on the base space of a covering is a trivialising neighborhood.

Proof. Since π1(X,x0) = {1} acts transitively on the fiber p−1(x0) by 6.5 , the
fiber has to be single pointed, hence p is injective and thus a homeomorphism.

6.7 General lifting theorem. [9, 6.2.6] Let Z be path connected and locally path
connected. Let p : Y → X be a covering and g : Z → X continuous. Let x0 ∈ X,
y0 ∈ Y and z0 ∈ Z be base points and all maps base point preserving. Then g has
a base point preserving lift g̃ iff im(π1(g)) ⊆ im(π1(p)).

Proof. (⇒) If g = p ◦ g̃ then im(π1(g)) = im(π1(p) ◦ π1(g)) ⊆ im(π1(p)).

(⇐) Let z ∈ Z be arbitrary. Since Z is path-connected we may choose a path w
from z0 to z and take the lift y0 g̃ ◦ w and define g̃(z) := y0 g̃ ◦ w(1).

First we have to show that this definition is independent from the choice of w. So
let wj be two paths from z0 to z. Then g ◦ (w0 · w−1

1 ) = (g ◦ w0) · (g ◦ w1)−1 is a
closed path through x0, hence by assumption there exists a closed path v through
y0 with p◦ v ∼ (g ◦w0) · (g ◦w1)−1 rel. İ and hence (p◦ v) · (g ◦w1) ∼ (g ◦w0) rel. İ.
Thus y0 g̃ ◦ w0(1) = y0

(
(p ◦ v) · (g ◦ w1)

)∼(1) = (y0 p̃ ◦ v · y0 g̃ ◦ w1)(1) = y0 g̃ ◦ w1(1).

Remains to show that g̃ is continuous. Let z ∈ Z be fixed and let Ũ be a small
leaf over a trivialising neighborhood U of g(z) containing g̃(z). Let W be a path-
connected neighborhood of z with g(W ) ⊆ U and let w be a path from z0 to
z. Then for every z′ ∈ W we can choose a path wz′ in W from z to z′. Hence
g̃(z′) = y0(g ◦ (w · wz′))∼(1) = (y0 g̃ ◦ w · g̃(z)g̃ ◦ wz′)(1) = g̃(z)g̃ ◦ wz′(1). But since
g ◦ wz′ is contained in the trivialising neighborhood U and Ũ is the leaf over U
containing the lift g̃(z), we have that g̃(z)g̃ ◦ wz′ = (p|Ũ )−1 ◦ g ◦ wz′ , and hence
g̃(z′) = ((p|Ũ )−1 ◦ g)(z′) and thus is continuous.

Thus it is important to determine the image of π1(p) : π1(Y, y0)→ π1(X,x0).

82 andreas.kriegl@univie.ac.at c© 11. Jänner 2012



6. Coverings 6.9

6.8 Proposition. [9, 6.3.1] Let p : (Y, y0) → (X,x0) be a covering. Then the
induced map π1(p) : π1(Y, y0) → π1(X,x0) is injective and its image is formed by
those [w] ∈ π1(X,x0) for which for (some) any representative w the lift y0w̃ is
closed, i.e. by those g ∈ π1(X,x0) =: G which act trivial on y0, i.e. y0 ·g = y0. This
is the so called isotropy subgroup Gy0 of G at y0 with respect to the action of
G on p−1(x0).

π1(p) : π1(Y, y0) ∼= π1(X,x0)y0 .

Proof. Injectivity: Let [v] ∈ π1(Y, y0) be such that 1 = [p ◦ v], i.e. p ◦ v ∼ constx0 .
By 6.5 we may lift the homotopy. Since the lift of constx0 is just consty0 we have
[v] = 1.

If some u has a closed lift v, then π1(p)[v] = [p ◦ v] = [u], hence [u] ∈ im(π1(p)).
Conversely let [u] ∈ imπ1(p). Then there exists a closed curve v through y0 with
[p ◦ v] = π1(p)[v] = [u], hence u ∼ p ◦ v rel. İ, and so y0 ũ ∼ y0 p̃ ◦ v = v rel. İ, thus
y0 ũ is closed as well.

In view of 6.5 we study now abstractly given transitive (right) actions of a group
G on sets (i.e. discrete spaces) F .

6.9 Lemma. Transitive actions. Let G act transitively on F (and F ′) from the
right. A G-equivariant mapping or G-homomorphism ϕ is a mapping ϕ : F →
F ′, which satisfies ϕ(y · g) = ϕ(y) · g. We write HomG(F, F ′) for the set of all
G-homomorphisms F → F ′ and Gy := {g ∈ G : y · g = y} for the isotropy subgroup
of y ∈ F . Then

1. We have Gy·g = g−1Gyg.

2. {Gy : y ∈ F} is a conjugacy class of subgroups of G, i.e. an equivalence class
of subgroups of H with respect to the relation of being conjugate.

3. Let H be a subgroup of G. Then the set G/H := {Hg : g ∈ G} of right
classes carries a unique (transitive) right G-module structure, such that the
canonical projection π : G� G/H, g 7→ Hg is G-equivariant.

5. For y ∈ F the mapping G� F given by g 7→ y ·g factors to a G-isomorphism
G/Gy

'→ F .

6. For ϕ ∈ HomG(F, F ′) we have Gy ⊆ Gϕ(y). Conversely if y0 ∈ F and
y1 ∈ F ′ satisfy Gy0 ⊆ Gy1 , then there is a unique ϕ ∈ HomG(F, F ′) with
ϕ(y0) = y1.

9. F ∼=G F ′ ⇔ {Gy : y ∈ F} = {Gy′ : y′ ∈ F ′} ⇔ {Gy : y ∈ F} ∩ {Gy′ : y′ ∈
F ′} 6= ∅.

Note, that we refrain from writing the quotient G/H correctly as H\G.

Proof. ( 1 ) We have Gy·g = g−1Gyg, since h ∈ Gy·g ⇔ y·g·h = y·g ⇔ y·(ghg−1) =
y, i.e. ghg−1 ∈ Gy.

( 2 ) Since G acts transitively, {Gy : y ∈ F} = {g−1Gyg = Gy0·g : g ∈ G} is a
conjugacy class by ( 1 ).

( 3 ) The only possible action on G/H such that π is G-equivariant is given by
Hg · g′ = π(g) · g′ := π(g · g′) = π(gg′) = Hgg′. That the so defined action makes
sense, follows from Hg1 = Hg2 ⇒(Hg1) · g = Hg1g = Hg2g = (Hg2) · g.
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( 5 ) Consider evy : G� y ·G given by g 7→ y ·g. This mapping has image y ·G = F ,
since G acts transitively. Furthermore g′ and g have the same image y · g′ = y · g iff
g′g−1 ∈ Gy, so evy factors to a G-isomorphism G/Gy → F .

( 6 ) We have Gy = {g : y · g = y} ⊆ {g : ϕ(y) · g = ϕ(y · g) = ϕ(y)} = Gϕ(y).
Conversely let Gy0 ⊆ Gy1 and y ∈ F . Since G acts transitively there exists a g ∈ G
with y = y0 · g. Define ϕ(y) = ϕ(y0 · g) := ϕ(y0) · g = y1 · g. This definition makes
sense, since y0 · g′ = y0 · g implies g′g−1 ∈ Gy0 ⊆ Gy1 and hence y1 · g′ = y1 · g. By
construction ϕ is G-equivariant.

( 9 ) (1⇒2) Let ϕ : F → F ′ be a G-equivariant isomorphism. Then Gy ⊆ Gϕ(y) ⊆
Gϕ−1(ϕ(y)) = Gy by ( 6 ).

(1⇐3) By assumption there are y ∈ F and y′ ∈ F ′ with Gy = Gy′ hence F ∼=G

G/Gy = G/Gy′ ∼=G F ′ by 5 .

6.9a The category Subgr(G).
We use 6.9.3 for associateing to each subgroup H ≤ G the transitive action of G
on G/H. In order to extend this to a full and faithfull functor, we have to define
the morphisms H → H ′ appropriately:
Let ϕ ∈ HomG(G/H,G/H ′) and y0 := H ∈ G/H. By 6.9.6 ϕ is uniquely deter-
mined by y1 := ϕ(y0) =: H ′g ∈ G/H ′ with H = Gy0 ⊆ Gy1 = g−1H ′g by 6.9.1 .
So we define

Hom(H,H ′) := {g : gH ⊆ H ′g}/H ′,
where H ′ acts on {g : gH ⊆ H ′g} by multiplication from the left, since gH ⊆ H ′g
and h′ ∈ H ′ implies h′g H ⊆ h′H ′ g = H ′h′ g = H ′ h′g.
Then the set Subgr(G) of subgroups H ≤ G and H ′′g′ ◦H ′g := H ′′g′g as composi-
tion of these morphisms forms a category:
The composition H ′′g′ ◦H ′g := H ′′g′g is well-defined, since gH ⊆ H ′g and g′H ′ ⊆
H ′′g′ ⇒ g′gH ⊆ g′H ′g ⊆ H ′′g′g and since H ′′(h′′g′)(h′g) = H ′′g′h′g = H ′′h̄′′g′g =
H ′′g′g for h̄′′ := g′h′(g′)−1 ∈ g′H ′(g′)−1 ⊆ H ′′.
The identity on H is given by H = H 1.

Theorem. We have an equivalence Acttr(G) ∼ Subgr(G) of categories.

Proof. The functor Subgr(G)→ Acttr(G) is given on morphisms by:

Hom(H,H ′) 3 H ′g0 7→ (H g 7→ H ′ g0g) ∈ HomG(G/H,G/H ′).

This is well-defined, since H g = H ḡ ⇒ g0ḡ(g0g)−1 = g0ḡg
−1g−1

0 ∈ g0Hg
−1
0 ⊆ H ′

⇒ H ′ g0g = H ′ g0ḡ and since H ′ (h′g0)g = H ′ g0g for h′ ∈ H ′.

Functorality: H 7→ idG/H and the composition H ′′g2 ◦H ′g1 := H ′′g2g1 is mapped
to H g 7→ H ′ g1g 7→ H ′′ g2g1g.

The functor is faithfull: ∀g : Hg 7→ H ′g0g = H ′ḡ0g ⇒ H ′g0 = H ′ḡ0 ∈ Hom(H,H ′).

The functor is full by what we have shown above.

The functor is dense by 6.9.5 .

6.9b Corollary. [9, 6.3.3] Let G act transitively on F from the right. With AutG(F )
we denote the group of all G-equivariant isomorphisms F → F . For a subgroup H
of G one denotes with NormG(H) := {g ∈ G : H = g−1Hg}, the smallest subgroup
of G, which contains H as normal subgroup. Then

AutG(F ) ∼= NormG(Gy0)/Gy0
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Proof. By 6.9a we have HomG(F, F ′) ∼= Hom(H,H ′) := {g : gH ⊆ H ′g}/H ′,
where H := Gy and H ′ := Gy′ are isotropy subgroups of G for the action on F and
F ′. Moreover, H ′g ∈ Hom(H,H ′) is an isomorphism ⇔ ∃Hg′ ∈ Hom(H ′, H) with
H = Hg′ ◦H ′g = Hg′g and H ′ = H ′g ◦Hg′ = H ′gg′ ⇔ ∃g′ ∈ G with g′H ′ ⊆ Hg′,
g′g ∈ H, and gg′ ∈ H ′ ⇔ ∃g′ ∈ G with H ⊆ g−1H ′g ⊆ (g′g)−1Hg′g = H,
g′H ′ ⊆ Hg′, g′g ∈ H, and gg′ ∈ H ′ ⇔ H = g−1H ′g (and g′ := g−1)

Thus AutG(F ) ∼= Aut(H) = NormG(H)/H by 6.9a .

6.9d Corollary. We have a bijection between isomorphy classes of transitive right
actions of G and conjugacy classes of subgroups of G.

Proof. By the proof of 6.9b we have that H ′g ∈ Hom(H,H ′) is an isomorphism,
iff H = g−1H ′g, i.e. H and H ′ belong to the same conjugacy class. Now the result
follows from 6.9a .

6.9e Corollary. Let p : Y → X be a covering with path connected Y and x0 ∈ X.
The images π1(p)(π1(Y, y)) for y ∈ p−1(x0) form a conjugacy class of subgroups in
π1(X,x0).

This class is called the characteristic conjugacy class of the covering p.

Proof. By 6.8 π1(p)(π1(X, y)) = Gy for G := π1(X,x0) and y ∈ F := p−1(x0),
and by 6.9.2 {Gy : y ∈ F} is a conjugacy class of subgroups of G.

6.9c Corollary. For transitiv actions of G on F the following statements are
equivalent:

1. Gy is normal in G for some (all) y ∈ F ;

2. Gy = Gy′ for all y, y′ ∈ F ;

3. The induced action of G/
⋂
y∈F Gy is free,

i.e. if g ∈ G has a fixed point y ∈ F then it acts as identity on F ;

4. AutG(F ) acts transitive on F .

For 3 note that
⋂
y∈F Gy is the kernel of the action G→ Bij(F ).

Proof. ( 1 ⇒ 4 ) If Gy0 is normal, then NormG(Gy0) = G and hence AutG(F ) ∼=
G/Gy0 by 6.9b which obviously acts transitive, since G does.

( 4 ⇒ 3 ) Let y0 · g = y0 and y ∈ F . Since AutG(F ) acts transitive there is an
automorphism ϕ with y = ϕ(y0) = ϕ(y0 · g) = ϕ(y0) · g = y · g.

( 3 ⇒ 2 ) Let g ∈ Gy, i.e. y is a fixed point of g. Hence g acts as identity, so g ∈ Gy′
for all y′ ∈ F .

( 2 ⇒ 1 ) is obvious, since Gy = Gy·g = g−1 ·Gy · g by 6.9.1 .

Let us now show that Covpc
X → Acttr(G) is full and faithful:

6.11 Proposition. Let X be locally path connected. Let p : Y → X and p′ : Y ′ →
X be two path-connected coverings with typical fibers F := p−1(x0) and F ′ :=
(p′)−1(x0) and G := π1(X,x0). Then HomX(p, p′) ∼= HomG(F, F ′) via Φ 7→ Φ|F .
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Proof. The mapping Φ 7→ Φ|F is well-defined, i.e. Φ|F is a G-homomorphism, since
Φ(y · [u]) = (Φ ◦ yũ)(1) = Φ(y)ũ(1) = Φ(y) · [u].

It is injective, since Φ1|F = Φ2|F implies Φ1(y0) = Φ2(y0) and hence Φ1 = Φ2, by
the uniqueness of lifts of p proved in 6.5 .

Surjectivity: Let ϕ : F → F ′ be G-equivariant. As Φ : Y → Y ′ we take the
lift of p : Y → X which maps y0 ∈ F to ϕ(y0) ∈ F ′. This lift exists by 6.7 ,
since π1(p)

(
π1(Y, y0)

)
= Gy0 ⊆ Gϕ(y0) = π1(p′)

(
π1(Y ′, ϕ(y0))

)
and with X also Y

is locally path-connected. By 6.9.6 Φ|F = ϕ, since both are G-equivariant and
coincide on y0.

6.24 Corollary. [9, 6.3.4] Two path-connected coverings of a locally path-connected
space are isomorphic, iff their conjugacy classes are the same.

Proof. p ∼= p′ ⇐
6.11

====⇒ F ∼=G F ′ ⇐
6.9d

====⇒ {Gy : y ∈ F} = {Gy′ : y′ ∈ F ′}.

6.12 Corollary. [9, 6.5.5] Let Y be path connected and X be locally path connected.
For any covering map p : Y → X we have

Aut(p) ∼= Autπ1(X,x0)(p−1(x0)) ∼= Norm(π1(p)(π1(Y, y0)))/π1(p)(π1(Y, y0)).

The inverse of this isomorphism is given by mapping [u] ∈ Norm(π1(p)(π1(Y, y0)))
to the unique covering transformation f which maps y0 to y0 ũ.

Proof. Since the elements of Aut are just the isomorphisms of an object with itself,
this follows directly from 6.11 , 6.9b and 6.8 .

6.17 Corollary. Normal coverings. [9, 6.5.8] For path-connected coverings p :
Y → X of locally connected spaces X the following conditions are equivalent:

1. π1(p)(π1(Y, y)) is normal for (some) all y in the fiber over x0;

2. The characteristic conjugacy class of the covering consists of a single group;

3. If one lift of a closed path through x0 is closed, then so are all lifts;

4. The covering p is normal, i.e. the group Aut(p) acts transitive on the fiber
over x0.

In particular this is true if π1(X) is abelian or the covering is 2-fold or π1(Y ) = {1}.

Proof. Let G := π1(X,x0) and F := p−1(x0). By 6.8 π1(p)(π1(Y, y)) = Gy and
by 6.9e the characteristic conjugacy class is {Gy : y ∈ F}; the lift with initial
value y of a closed curve u through x0 is closed iff y is a fixed point of [u] acting
on F ; and the group of covering transformations is Aut(p) ∼= AutG(F ) by 6.11 .
So the result follows from 6.9c .
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6.26 Example. [9, 6.1.5]
Since every subgroup of an abelian group is nor-
mal and also any subgroup of index two, the
simplest non-normal covering could best be found
among the 3-fold coverings of S1 ∨ S1.
There is a three-fold covering of S1 ∨ S1,
which is not normal.

Proof. Let {y0, y1, y2} be the fiber over x0, let a
and b denote parametrizations of the two factors
S1 in S1 ∨ S1 and let a0, a1, a2 be the leafs over
a and b0, b1, b2 be the leafs over b. Let bi be from
yi+1 to yi+2 (mod 3). Let a0 be a closed path at
y0 and a1 and a2 connect y1 and y2 in opposite
directions.

So a has closed as well as none closed lifts.

x0

y0

y1

y2

a

a0

a1 a2

b

b2

b0

b1

p

6.13 Corollary. [9, 6.5.6] If p : Y → X is a convering with Y simply connected
and X locally path connected, then Aut(p) ∼= π1(X,x0).

Proof. In this situation π1(Y, y0) = {1} and hence NormG(Gy0) = G and so we
have AutG(F ) ∼= NormG(Gy0)/{1} ∼= G.

This can be used to calculate π1(X,x0) by finding a covering p : X̃ → X with
simply connected total space X̃ (see 6.20 ) and then determine its automorphism
group.

6.16 Examples of the fundamental group of orbit spaces. [9, 5.7.5]
We can apply 6.13 to the examples in 6.2 . In particular, we have Z as group of
covering transformations of R → S1 and Z2 as group of covering transformations
of Sn → Pn for n > 1. Furthermore, the homotopy group of L( qp ) ∼= S3/Zp from

1.82 is Zp and that of M
(
a b
c d

) ∼= L( ca ) from 1.75 (see 1.89 ) is Z|a|

Example. Orbits spaces need not be Hausdorff.
Consider the ordinary differential equation

dx

dt
= cos2 x,

dy

dt
= sinx

Since this vector field is bounded, the solutions
exist globally and we get a smooth function ϕ :
R×R2 → R2 associating to each t ∈ R and (x, y) ∈
R2 the solution with value (x, y) at 0 at time t.
If the initial value satisfies cos2 x = 0 then the
solution is y(t) = y(0)+t·sinx. Otherwise we have
dy
dx = sin x

cos2 x = d
dx

1
cos x , hence it has to be contained

in {(y, x) : y(x) = 1
cos x}. Moreover the time it

takes from x = x0 to x = x1 is given by t(x1) −
t(x0) =

∫ x1

x0

dt
dx =

∫ x1

x0

1
cos2 xdx = tanx|x1

x=x0
.

Note that the orbit space R2/R is not Hausdorff (and R2/Z as well). It consists of
a countable union

⊔
Z R of R′s together with the points π/2+π ·Z. A neighborhood

basis of π/2 + kπ is given by end-interval of the two neighboring R′s. However, Z
acts strictly discontinuous on R2.
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We may also form the space X := ([−π/2, π/2]×R)/∼, where (−π/2,−t) ∼ (π/2, t).
Since the action of R is compatible with this equivalence relation R acts fixed-point
free on this Möbius strip X as well. The orbits of the discrete subgroup Z ⊆ R are
obviously closed subsets. However, the action is not strictly discontinuous,
since for any neighborhood of [(π/2, 0)] some translate by t ∈ Z meets it again.

6.20 Maximal Covering.

We aim to show that the functor Covpc
X → Acttr(G), where G := π1(X,x0), is an

equivalence of categories. In view of 6.11 it remains to show its denseness.

For this we search for the “maximal” elements (i.e. the initial objects in categorical
language) first. For transitive actions of G the maximal object is G with the right
multiplication on itself, since for every action of G on some F we have G-equivariant
mappings evy : G→ F , g 7→ y · g, for y ∈ F by 6.9.6 .

The corresponding maximal path-connected covering p : X̃ → X should thus have
as typical fiber p−1(x0) = G and the action of G = π1(X,x0) on it should be given
by right multiplication. In particular, we must have Gy = {1} for all y ∈ G. Choose
a base-point y0 ∈ X̃ with x0 = p(y0). Since π1(p) : π1(X̃, y0) → Gy0 = {1} is an
isomorphism by 6.8 , we have that X̃ should be simply connected.

For every point y ∈ X̃
we find a path vy from
y0 to y and since X̃ is
simply connected the ho-
motopy class [vy] rel. İ is
well defined.
Let ∼̇ denote temporari-
ly the relation of being
‘homotopic relative İ’.

C
(
(I, 0), (X̃, y0)

)
/∼̇

ev1

∼=

xxxxppppppppppppp ∼=
p∗ ))SSSSSSSSSSSSSSS

p ◦ ev1

����

X̃

p
'' ''OOOOOOOOOOOOOOO C

(
(I, 0), (X,x0)

)
/∼̇

ev1

ttjjjjjjjjjjjjjjjjjj

X

Thus y 7→ [vy] gives bijection X̃ ∼= C
(
(I, 0), (X̃, y0)

)
/∼̇ with inverse ev1 : v(1)← [v].

By the lifting property 6.5 , these homotopy classes correspond bijectively to ho-
motopy classes of paths starting at x0.

Let U be a path-connected neighborhood of x1 ∈ X. We calculate ev−1
1 (U). Note

that ev−1
1 (x1) = {[v] : v is a path in X from x0 to x1} and in particular ev−1

1 (x0) =
π1(X,x0).

ev−1
1 (U) = {[w] : w(1) ∈ U} (now use w ∼̇ w · u−1 · u, then)

= {[v] · [u] : v(0) = x0, v(1) = x1, u(0) = x1, u(I) ⊆ U}
= {[v] · [u] : [v] ∈ ev−1

1 (x1), u(0) = x1, u(I) ⊆ U}

=
⋃{

[v]Ũ : [v] ∈ ev−1
1 (x1)

}
, with [v]Ũ := {[v] · [u] : u(0) = x1, u(I) ⊆ U}.

Since U is path-connected the mapping ev1 |[v]Ũ : [v]Ũ → U is onto. In order that
it is injective, we need that u0(1) = u1(1) ⇒[u0] = [u1], i.e. every closed curve in U
through x1 should be 0-homotopic in X. A space X which has a neighborhood of
sets with this property is called semi-locally simply connected. Note that the
closed curves are assumed to be local (i.e. contained in U), whereas the homotopy
may leave U . Since any subset of such a set U has the same property, we get for
a locally connected semi-locally simply connected space a neighborhood-basis of
connected sets U with this property.
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Note that [v1]Ũ ∩ [v2]Ũ 6= ∅ iff there exist curves ui with [v1] · [u1] = [v2] · [u2],
where ui are curves in U from x1 to the same endpoint. Hence [u1] = [u2] by the
semi-local simple connectedness and thus [v1] = [v2].

For a path-connected, locally path connected and semi-locally simply connected
space X we thus define X̃ to be the set C

(
(I, 0), (X,x0)

)
/∼̇ and p1 : X̃ → X by

p1([u]) := ev1(u) = u(1). Since for every U as above we want [u]Ũ to be a leaf
over U , we declare those sets to be open in X̃. In order that these sets form the
basis of a topology we have to consider two such neighborhoods U0 and U1 and
y ∈ y0Ũ0 ∩ y1Ũ1. Then p1(y) ∈ U0 ∩U1 and hence we can find such a neighborhood
U ⊆ U0 ∩U1 of p1(y). Then y ∈ yŨ and yŨ ⊆ y0Ũ0 ∩ y1Ũ1. Obviously we have that
p1|yŨ : yŨ → U is a homeomorphism, and hence p1 : X̃ → X is a covering map.

Note that for any path u starting at x0 we have that t 7→ [ut] is the lift along p1

with starting value [constx0 ] =: y0, where ut(s) := u(ts). Thus X̃ is path-connected.

Finally X̃ is simply connected: Let v be a closed curve in X̃ through y0. Then
u := p1 ◦ v is a closed curve through x0 and v(t) = [s 7→ u(ts)], since both sides are
lifts of u with starting point y0. Hence [constx0 ] = y0 = v(0) = v(1) = [u]. Since
homotopies can be lifted, we have consty0 ∼ v rel. İ.

Theorem. Universal covering. [9, 6.6.2]
Let X be path-connected, locally path-connected and semi-locally simply-connected.
Then there exists a path-connected, simple-connected covering p1 : X̃ � X.
Every simply connected path-connected covering of X covers any other path-con-
nected covering.

Proof. We have just shown the first part. The other one follows, since we can lift
the projection of any simple connected covering by 6.7 and the lift is a covering
by 6.22.1 .

6.21 Denseness of Covpc
X → Acttr(G). Let us return to the question of surjectivity

of Covpc
X → Acttr(G), where G := π1(X,x0). Let G act transitively on F . By

6.9.5 F∼= G/H, where H := Gy is any isotropy subgroup of this action. By 6.13
we have Aut(p1) ∼= π1(X,x0) =: G and it acts strictly discontinuous on X̃ by what
we have shown in 6.18a . By construction in 6.19 the typical fiber p−1

1 (x0) = G
and the action of G on it is given by right multiplication. Thus the subgroup H
acts also strictly discontinuously on X̃ and hence X̃ → X̃/H =: Y is a covering by
6.15 . Furthermore the mapping p1 : X̃ → X = X̃/G factors over X̃ → Y to give

some p : Y → X which is a covering by 6.22.3 .

It remains to show that the action corresponding to the covering p : X̃/H =: Y →
X is isomorphic to H. The standard fiber of this covering is p−1

1 (x0)/H = G/H ∼=G

F . The action of G on p−1(x0) = G/H is obviously given by factoring the action of
G on p−1

1 (x0) = G (by right multiplication) over the canonical quotient mapping
π : G→ G/H and is thus up to the isomorphism F ∼=G G/H the given action on F .
Thus we have found the desired covering Y → X, and hence obtain the following:

6.23 Theorem. [9, 6.6.3] Let X be path-connected, locally path-connected and semi-
locally simply connected. Then we have an equivalence between the category of path-
connected coverings of X and transitive actions of G := π1(X,x0).

CovpcX ∼ Acttr(G).
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Proof. By 6.11 the functor is full and faithful and by 6.21 it is dense, hence
induces an equivalence.

6.25a The category Covpc
X is not quasi-ordered.

I.e., we give an example that for two coverings p : Y → X and p′ : Y ′ → X there
may be more than one element in HomX(p, p′) up to isomorphy.

By 6.23 it is enough to consider the corresponding question for transitive G-
actions. For this we will consider subgroups H ≤ H ′ ≤ G for which NormG(H) = H
and NormG(H ′) = H ′ and for which a g /∈ H ′ exists with gHg−1 ⊆ H ′.
In particular, AutG(H) = {1}, AutG(H ′) = {1}, and H ′ 6= H ′g ∈ Hom(H,H ′). By
6.9a this gives the corresponding result for transitive actions of G.

Remains to show that H, H ′, G and g can be found. So let F be finite, G := Bij(F )
and let {Fj : j ∈ J} be a partition of F in disjoint subsets of different non-zero
cardinality. Then H := {ϕ ∈ G : ∀j ∈ J : ϕ(Fj) = Fj} is a subgroup with
NormG(H) = H: In fact, let g ∈ G be such that gHg−1 ⊆ H and assume g /∈ H,
i.e. there is some j with g(Fj) 6= Fj . Since |g(Fj)| = |Fj | there has to exist a j ∈ J
and y1, y2 ∈ Fj such that g(y1) and g(y2) are in different sets Fj1 and Fj2 . In
fact take j with |Fj | maximal and g(Fj) 6= Fj , then g(Fj) can not be completely
contained in one Fi since otherwise by maximality g(Fi) = Fi so g(Fj) can not
meet Fi. Now take h ∈ H given by exchanging just y1 and y2. Then ghg−1 maps
g(y1) to g(y2), and hence Fj1 is not invariant, so ghg−1 /∈ H.

If F = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and F1 = {1}, F2 = {2, 3}, F3 = {4, 5, 6} and
F4 = {7, 8, 9, 10}. Let H be given by the partition {F1, F2, F3, F4} and H ′ be given
by {F1 ∪ F2, F3 ∪ F4} and let g := (1, 4)(2, 5)(3, 6) /∈ H ′. Then gHg−1 ⊆ H ′, since
g−1(F1 ∪ F2) = F3, g−1(F3) = F1 ∪ F2 and g−1(F4) = F4, hence ghg−1(F3) =
gh(F1 ∪ F2) = g(F1 ∪ F2) = F3, ghg−1(F1 ∪ F2) = gh(F3) = g(F3) = F1 ∪ F2 and
ghg−1(F4) = F4.

By 5.50 the group G can then be realized as fundamental group of a 2-dimensional
CW -complex X.

Example. Let p : Y → X and p′ : Y ′ → X be two coverings. Then there may
exist homomorphisms in HomX(p, p′) and HomX(p′, p) without p ∼= p′.
In fact we can translate this to transitive actions. So we need subgroups H ≤ G and
H ′ ≤ G which are not conjugate, but such that H is contained in some conjugate
g−1H ′g of H ′ and conversely. Then G/H → G/(g−1H ′g) ∼= G/H ′ is G-equivariant
as is G/H ′ → G/((g′)−1Hg′) ∼= G/H, but G/H is not isomorphic to G/H ′.
In [6, p.187] the existence of such groups is shown.

6.25 Example. Threefold coverings. [9, 6.7.3] We now try to identify all 3-fold
coverings of S1∨S1 and also those of the torus S1×S1 and Klein’s bottle. For G we
have in these cases 〈{α, β} : ∅〉, 〈{α, β} : {αβ = βα}〉, and 〈{α, β} : {α2β2 = 1}〉.

First we have to determine all transitive actions of 〈{α, β} : ∅〉 on {0, 1, 2}, i.e.
group-homomorphisms from the free group with two generators α and β into that
group of permutations of {0, 1, 2}. We write such permutations in cycle notation,
i.e. these are

{(0), (01), (02), (12), (012), (021)}.
Where (0) has order 1, (012) and (021) have order 3 and the rest order 2. Up to
symmetry we may assume that the image a of α has order less or equal to the
image b of β. Note, that two actions on {0, 1, 2} are isomorphic if there exists a
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permutation which conjugates the generators for one action onto those of the other
one.
If ord a = 1, i.e. a = (0) then ord b has to be 3 (otherwise the resulting action is
not transitive) and the two possible choices are conjugate via (01).
If ord a = 2, then ord b can be 2, but b has to be different from a (otherwise not
transitive) and any two choices {a, b} and {a′, b′} are conjugate via the common
element c ∈ {a, b} ∩ {a′, b′}; or b can have order 3, and again the choices of b are
conjugate by a, and that of a are conjugate by b or b−1.
If ord a = 3 = ord b, they can be either the same or different.

So we get representatives for all transitive actions with (–) + indicating (none-
)normality:

a b S1 ∨ S1 S1 × S1 Kleins bottle
(0) (012) + + @

(012) (0) + + @
(01) (02) – @ –
(01) (012) – @ @
(012) (01) – @ @
(012) (012) + + @
(012) (021) + + +

Note, that the action is normal iff every g ∈ G acts either fixed-point free or is the
identity by 6.9c.3 . Thus at least the generators a and b have be of order 3 or 1.
This excludes the 3 actions in the middle. All other cases are normal, because there
the group generated by a and b is {(0), (012), (021)} and only the identity (0) has
fixed points.

The last two columns are determined by checking a2b2 = 1 and ab = ba.

6.27 Proposition. [9, 6.8.1] Let p : Y → X be a covering. Then the following
statements are true:

1. If X is a CW-complex then so is Y . The cells of Y are the path-components
(leafs) of p−1(e) for all cells e of X.

2. If X is a manifold so is Y .

3. If X is a topological group, so is Y .

Proof. (1) Let e be a cell of X. Since e is locally path-connected so is p−1(e)
and every component of p−1(e) is homeomorphic to e via the projection, since the
restriction of the projection is a covering map and e is simply connected. Since
Dn is simply connected we may lift a characteristic map to a characteristic map
χ̃e of the lifted cell ẽ by 6.7 . One can show that the properties (C) and (W) are
satisfied.

(2) We may take the chart domains to be trivialising sets in X. The leafs can then
be used as chart domains of Y .

(3) The group structures X × X → X and X → X can be lifted to mappings
Y ×Y → Y and Y → Y : In fact chose 1 ∈ p−1(1). Then π1(µ ◦ (p× p))([u1], [u2]) =
[(p ◦ u1) · (p ◦ u2)] = π1(p)[u1 · u2] by 5.7 . Thus µ ◦ (p × p) has a unique lift to
µ̃ : Y × Y → Y by 6.7 . Similarly π1(ν ◦ p)([u]) = [p ◦ u]−1 = π1(p)[u]−1.
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6.28 Theorem. [9, 6.9.1] Every subgroup H of a free group G is free. If H has
finite index k in G, then rank(H) = (rank(G)− 1) · k+ 1. In particular, there exist
subgroups of any finite rank in the free group of rank 2.

Proof. LetG be a free group andH a subgroup ofG. By 5.38 G is the fundamental
group of a join X of 1-spheres. Since X has a universal covering X̃ → X by 6.20 ,
there exists also a covering Y → X with isotropy subgroup H. By 6.27 Y is a
graph, and hence its homotopy group H is a free group by 5.46 .

If H has finite index k in G, then rank(H) = (rank(G)− 1) · k + 1 by 5.48 , since
the fiber F ∼= G/H by the proof of 6.21 and hence Y has k-times as many cells
of fixed dimension as X.

Let G := 〈{a, b} : ∅〉 and k ≥ 1. Then there exists a unique surjective homomor-
phism ϕ : G→ Zk with ϕ(a) = 1 and ϕ(b) = 0. Thus H := kerϕ has index k in G
and hence rankH = (2− 1)k + 1 = k + 1.
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7. Simplicial Homology

Since it is difficult to calculate within non Abelian groups we try to associate
abelian groups to a topological space. Certainly we could take abπ1(X), but in
order to calculate this we can hardly avoid the non-commutative group π1(X) as
intermediate step. So we have to find a more direct approach. We start with the
most explicitly describable spaces, i.e. the simplicial complexes K. By 3.30 there is
to each closed curve |∆̇| = S1 → |K| a homotopic simplicial approximation c from
some barycentric refinement of ∆̇ to K. Note that any barycentric refinement of ∆̇
is just a finite sequence of adjacent edges. If we want to get rid of commutativity we
should consider c as formal linear combination

∑
σ nσ ·σ with integer coefficients nσ

of oriented edges σ in K (we dropped those edges with same start and end point).
That c is a closed (and connected) curve corresponds to the assumption that every
vertex occurs equally often as start and as end point. So we can associate to such
a linear combination

∑
σ nσ · σ a boundary ∂

∑
σ nσ · σ :=

∑
σ nσ · ∂σ, where ∂σ

is just x1 − x0, when σ is the edge from x0 to x1. Thus c :=
∑
σ nσ · σ is closed iff

∂c = 0.

Next we should reformulate what it means that c is 0-homotopic, i.e. there exists an
extension c̃ : |∆| = D2 → |K|. Again by 3.30 we may assume that c̃ is simplicial
from some barycentric refinement of ∆. The image of c̃ can be viewed as 2-chain,
i.e. formal linear combination

∑
nσ · σ with integer coefficients nσ of ordered 2-

simplices σ of K. Note that an orientation of a triangle induces (or even is) a
coherent orientation on the boundary edges. That c̃ is an extension of c means
that the edges of these simplices, which do not belong to c, occur as often with
one orientation as with the other. And those which do belong to c occur exactly
that often more with that orientation than with the other. So we can define the
boundary ∂(

∑
σ nσ · σ) of a linear combination of 2-simplices as

∑
σ nσ · ∂σ, where

∂σ = 〈x0, x1〉 + 〈x1, x2〉 + 〈x2, x0〉, when σ is the triangle with vertices x0, x1, x2

in that ordering. Then c is 0-homotopic iff there exists a 2-chain with boundary c.
We call such a chain c exact or 0-homologue. The difference between closed and
exact 1-chains is an obstruction to simply connectedness of |K|. At the same time
this easily generalizes to k-chains:

Homology groups

7.1 Definition. [9, 7.1.1] [9, 7.1.4] An orientation of a q-simplex (with q > 0)
is an equivalence class of linear orderings of the vertices, where two such orderings
are equivalent iff they can be transformed into each other by an even permutation.
So if a q-simplex σ has vertices x0, . . . , xq then an orientation is fixed by specifying
an ordering xσ(0) < · · · < xσ(q) and two such orderings σ and σ′ describe the same
oriented simplex iff sign(σ′ ◦ σ−1) = +1. We will denote the corresponding ordered
simplex with 〈xσ(0), . . . , xσ(q)〉. Let σ−1 denote the simplex with the same vertices
as σ but the opposite orientation.
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x0 x1

x2

x0 x1

x2

x3

The qth-chain group

C0(K) := ab〈{σ : σ is 0-simplex in K}〉

Cq(K) := ab〈{σ : σ is ordered q-simplex in K} : {σ−1 + σ : σ is ordered q-simplex in K}〉

is the free abelian group with all ordered q-simplices as generators modulo the
relation σ + σ−1 = 0.

7.2 Lemma. [9, 7.1.5] By picking an ordering of each simplex we get an unnatural
isomorphism from Cq(K) to the free abelian group with the unordered q-simplices
as generators.

Proof. We consider the map which associates to each ordered simplex either the un-
ordered simplex, if the ordering is the selected one, or the negative of the unordered
simplex, otherwise. This induces a surjective group-homomorphisms O := abF({σ :
σ is ordered q-simplex inK}) → U := abF({σ : σ is unordered q-simplex in K}).
It factors over Cq(K), since σ + σ−1 is mapped to 0. The induced surjective ho-
momorphism Cq(X) → U is injective, since g :=

∑
σ nσ · σ + nσ−1 · σ−1 ∈ O is

mapped to
∑
σ(nσ − nσ−1) · σ (where σ runs through the unordered simplices with

the picked ordering) and this vanishes only if nσ = nσ−1 , i.e. if the image of g in
Cq(K) is 0.

Note that

∂〈x0, x1〉 = x1 − x0 = 〈p
−−−−qx0 , x1〉+ 〈x0,

p−−−−qx1 〉−1;

∂〈x0, x1, x2〉 = 〈x0, x1〉+ 〈x1, x2〉+ 〈x2, x0〉

= 〈x0, x1,
p−−−−qx2 〉+ 〈p

−−−−qx0 , x1, x2〉+ 〈x0,
p−−−−qx1 , x2〉−1

= 〈p
−−−−qx0 , x1, x2〉+ 〈x0,

p−−−−qx1 , x2〉−1 + 〈x0, x1,
p−−−−qx2 〉,

where p−−−qxi indicates that xi has to be left out. Let σ be the tetrahedron with the
natural orientation x0 < x1 < x2 < x3. Its faces should have orientation 〈x1, x2, x3〉,
〈x0, x2, x3〉−1, 〈x0, x1, x3〉 and 〈x0, x1, x2〉−1.

This leads to the generalized definition:

7.3 Definition. [9, 7.1.2] [9, 7.1.6] The ordering of the face σ′ opposite to the ver-
tex xj in σ = 〈x0, . . . , xq〉 should be given by σ′ := 〈x0, . . . , xj−1, p

−−−−qxj , xj+1, . . . , xq〉(−1)j .
Let us show that this definition makes sense. So let σ be a permutation of {0, . . . , q}
and σ′ be the face opposite to j. Then 〈xσ(0), . . . , xσ(q)〉 = 〈x0, . . . , xq〉signσ and we
have to show that

〈xσ(0), . . . , p
−−−−qxj , . . . , xσ(q)〉(−1)i = 〈x0, . . . , xj−1, p

−−−−qxj , xj+1, . . . , xq〉(−1)j signσ

where i is the position of j in σ(0), . . . , σ(q), i.e. i = σ−1(j). Without loss of
generality let i ≤ j (otherwise consider σ−1 instead). Consider the permutations of
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{0, . . . , q} given by the table

0 . . . i− 1 i . . . j − 1 j j + 1 . . . q
0 . . . i− 1 i+ 1 . . . j i j + 1 . . . q

σ(0) . . . σ(i− 1) σ(i+ 1) . . . σ(j) σ(i) σ(j + 1) . . . σ(q)

The first one is the cyclic permutation (i, i+1, . . . , j−1, j), hence has sign (−1)j−i,
the second one is σ, and the composite leaves j = σ(i) invariant, has sign (−1)j−i ·
signσ, and induces the identity

〈xσ(0), . . . , p
−−−−qxj , . . . , xσ(q)〉 = 〈x0, . . . , xj−1, p

−−−−qxj , xj+1, . . . , xq〉(−1)i−j signσ.

Now we define the boundary of an oriented q-simplex σ = 〈x0, . . . , xq〉 (for
q > 0) to be

∂σ =
q∑
j=0

(−1)j〈x0, . . . , xj−1, p
−−−−qxj , xj+1, . . . , xq〉.

For q ≤ 0 one puts ∂σ := 0. Extended by linearity and factorization over σ−1 ∼ −σ
we obtain linear mappings ∂ := ∂q : Cq(K) → Cq−1(K). For 0 > q ∈ Z one puts
Cq(K) := {0} and ∂q := 0 : Cq(K)→ Cq−1(K).

7.4 Definition. [9, 7.1.7] [9, 7.1.8] With Zq(K) := Ker(∂q) we denote the set of
closed q-chains. With Bq(K) := Im(∂q+1) we denote the set of exact (or 0-
homologous) q-chains. Two q chains are called homologous iff their difference
is exact.

If q = 0 then Cq(K) = Zq(K). If q = dim(K) then Bq(K) = {0}.

7.6 Theorem. [9, 7.1.9] 0 = ∂2 = ∂q ◦ ∂q+1 and hence Bq ⊆ Zq.

Proof. Let σ = 〈x0, . . . , xq+1〉 with q ≥ 1. Then

∂∂σ = ∂

q+1∑
j=0

(−1)j〈x0, . . . ,
p−−−−qxj , . . . , xq+1〉

=
q+1∑
j=0

(−1)j
(j−1∑
i=0

(−1)i〈x0, . . . ,
p−−−qxi , . . . , p

−−−−qxj , . . . , xq+1〉+

+
q+1∑
i=j+1

(−1)i−1〈x0, . . . ,
p−−−−qxj , . . . , p

−−−qxi , . . . , xq+1〉
)

=
∑
i<j

((−1)i+j − (−1)j+i)〈x0, . . . ,
p−−−qxi , . . . , p

−−−−qxj , . . . , xq+1〉

= 0

7.7 Definition. [9, 8.3.1] A chain complex is a family (Cq)q∈Z of Abelian groups
together with group-homomorphisms ∂q : Cq → Cq−1 which satisfy ∂q ◦ ∂q+1 = 0.
Equally, we may consider C :=

⊕
q∈Z Cq, which is a Z-graded Abelian group and

∂ :=
⊕

q∈Z ∂q, which is a graded group homomorphism C → C of degree −1 and
satisfies ∂2 = 0.

7.8 Definition. [9, 7.1.10] For a chain complex (C, ∂) we define its homolo-
gy H(C, ∂) := ker ∂/ im ∂. This is a Z-graded abelian group with H(C, ∂) =⊕

q∈Z Hq(C, ∂), where Hq(C, ∂) := ker ∂q/ im ∂q+1.
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The group Hq(K) := Zq(K)/Bq(K) is called the q-th homology group of K.

Examples and exact sequences

7.9 Example. [9, 7.2.1] We consider the following simplicial complex K formed
by one triangle σ2 with vertices x0, x1, x2 and edges σ0

1 , σ1
1 , σ2

1 one further point
x3 connected by 1-simplices σ3

1 and σ4
1 with x1 and with x2.

The generic chains are of the
form

c0 =
∑
i

ai xi ∈ C0(K) with ai ∈ Z,

c1 =
∑
i

bi σ
i
1 ∈ C1(K) with bi ∈ Z,

c2 = mσ2 ∈ C2(K) with m ∈ Z.

Σ2

Σ1
2

Σ1
0

Σ1
1

Σ1
3

Σ1
4

x0

x1

x2

x3

Since ∂c2 = m(σ0
1 + σ1

1 + σ2
1) 6= 0 for m 6= 0 the only closed 2-cycle is 0, hence

H2(K) = 0.

The boundary ∂c1 = (b1− b2)x0 + (b2− b0 + b3)x1 + (b0− b1− b4)x2 + (b4− b3)x3

vanishes, iff b2 = b1, b4 = b3 and b0 = b1 + b3. So Z1(K) is formed by c1 =
b1(σ0

1 +σ1
1 +σ2

1)+b3(σ0
1 +σ3

1 +σ4
1) and hence z1 := σ0

1 +σ1
1 +σ2

1 and z′1 := σ0
1 +σ3

1 +σ4
1

form a basis with ∂c2 = mz1. So B1(K) = {mz1 : m ∈ Z} und H1(K) ∼= Z.

For the determination of H0(K) see 7.12 .

7.10 Remark. [9, 7.2.2] We have Hq(K) = 0 for q < 0 and q > dimK. Further-
more, HdimK(K) = CdimK(K) (by 7.5 ) is a free abelian group as subgroup of
CdimK(K).

7.11 Lemma. [9, 7.2.3] If K1, . . . ,Km are the connected components of K, then
Cq(K) ∼=

⊕
j≤m Cq(Kj) and Hq(K) ∼=

⊕
j≤mHq(Kj).

7.12 Lemma. [9, 7.2.4] H0(K) is a free abelian group. Generators are given by
choosing in each component one point.

Proof.
C1(K) ∂ // // B0(K) � � // Z0(K) // //

7.5

H0(K)

∼=
��

ker(ε) � � // C0(K) ε // Z

Because of 7.11 we may assume that K is connected. Let ε : C0(K) → Z be the
linear map given by x 7→ 1 for all vertices x ∈ K. Obviously ε is surjective. Remains
to show that its kernel is B0(K). Every two vertices x0 and x1 are homologous,
since there is a 1-chain connecting x0 with x1. Thus c :=

∑
x nx ·x is homologous to

(
∑
x nx) · x0 = ε(c) · x0 and hence Ker(ε) ⊆ B0. Conversely let c = ∂(

∑
σ nσ · σ) =∑

σ nσ ·∂σ. Since ε(∂〈x0, x1〉) = ε(x1−x0) = 0 we have the converse inclusion.

7.13 Example. [9, 7.2.10] The homology of the cylinder X := S1 × I. Note that
S1 × I ∼ S1 and hence we would expect H2(X) = 0 and H1(X) = abπ1(S1) = Z.
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Let us show that this is in fact true. We consider the triangulation given by 6
triangles. We will show in a later section that the homology does not depend on
the triangulation. We orient the triangles in the natural way.

H2(X): Let z2 =
∑

dimσ=2 nσ ·σ ∈ Z2(X) = H2(X), i.e. ∂z2 = 0. Since those edges,
which join the inner boundary with the outer one belong to exactly two 2-simplices,
the coefficients of these two simplices have to be equal. So n := nσ is independent
on σ. However ∂(

∑
σ σ) is the difference of the outer boundary and the inner one,

hence not zero, and so z2 = n(
∑
σ σ) is a cycle only if n = 0, i.e. H2(X) = {0}.

H1(X): Let [z1] ∈ H1(X), i.e. z1 =
∑

dimσ=2 nσ ·σ ∈ Z1(X) with ∂z1 = 0. Since we
may replace z1 by a homologous chain, it is enough to consider linear combinations
of a subset of edges, such that for each triangle at least 2 edges belong to this subset.
In particular we can use the 6 interior edges. Since each vertex is a boundary point
of exactly two of these edges the corresponding coefficients have to be equal (if
we orient them coherently). Thus z1 is homologous to a multiple of the sum c1 of
theses 6 edges. Hence H1(X) is generated by [c1]. The only multiple of c1, which is
a boundary, is 0, since the boundary of

∑
dimσ=2 nσ · σ contains nσ · σ1, where σ1

is the edge of σ, which is not an interior one.

7.14 Example. [9, 7.2.14] The homology of the projective plane X := P2. We
use the triangulation of P2 by 10 triangles described in 3.9.2 . And we take the
obvious orientation of all triangles. Note however that on the “boundary edges”
these orientations are not coherent.

H2(X): Let z2 =
∑

dimσ=2 nσ ·σ ∈ Z2(X) = H2(X), i.e. ∂z2 = 0. Since those edges,
which belong to the “interior” in the drawing belong to exactly two 2-simplices, the
coefficient of these two simplices have to be equal. So n := nσ is independent on
σ. However ∂(

∑
σ σ) is twice the sum a + b + c of three edges along which we

have to glue, and hence is not zero. So z2 = n(
∑
σ σ) is a cycle only if n = 0, i.e.

H2(X) = {0}.

H1(X): Let [z1] ∈ H1(X), i.e. z1 =
∑

dimσ=1 nσ · σ ∈ Z1(X) with ∂z1 = 0. Now we
may replace z1 by a homologous chain using all edges except the 3 inner most ones
and the 3 edges normal to the “boundary”. Now consider the vertices on the inner
most triangle. Since for each such point exactly two of the remaining edges have
it as a boundary point, they have to have the same coefficient, and hence may be
replaced by the corresponding “boundary” parts. So z1 is seen to be homologous
to a sum of “boundary” edges. But another argument of the same kind shows that
they must occur with the same coefficient. Hence H1(X) is generated by a+ b+ c.
As we have show above 2(a+ b+ c) is the boundary of the sum over all triangles.
Whereas a + b + c is not a boundary of some 2-chain

∑
σ nσ · σ, since as before

such a chain must have all coefficients equal to say n and hence its boundary is
2n(a+ b+ c). Thus H1(P2) = Z2, which is no big surprise, since π1(P2) = Z2.

7.15 Definition. [9, 8.2.1] A sequence A−f→ B −g→ C of abelian groups is called
exact at B iff ker g = im f . A finite (or infinite) sequence of groups Cq and group
homomorphisms fq : Cq+1 → Cq is called exact if it is exact at all (but the end)
points.

7.16 Remark. [9, 8.2.2]

1 A sequence 0→ A−f→ B is exact iff f is injective.

2 A sequence A−f→ B → 0 is exact iff f is surjective.
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3 A sequence 0→ A−f→ B → 0 is exact iff f is bijective.

4 Let Aq+1 −fq+1→ Aq −fq→ Aq−1Eastfq−1Aq−2 be exact. Then the following
statements are equivalent:

• fq+1 is onto;

• fq = 0;

• fq−1 is injective.

7.17 Lemma. Let 0→ C0 → C1 → · · · → Cn → 0 be an exact sequence of finitely
generated free abelian groups. Then

∑n
q=0(−1)q rankCq = 0.

Proof. For an Z-linear map (i.e. abelian group homomorphism) f we have rank(ker f)+
rank(im f) = rank(dom f) by the pendent to the classical formula from linear al-
gebra. Thus taking the alternating sum of all rank(dom fq) gives a telescoping one
and hence evaluates to 0.

7.18 Proposition. [9, 7.2.5] Let K be a one dimensional connected simplicial
complex. Then H1(K) is a free abelian group with 1 − α0 + α1 many generators,
where αi are the number of i-simplices.

Compare with 5.48 .

Proof. Consider the sequence

0 // Z1

∼= 7.5
��

� � // C1
∂ // C0

// //

ε
  BBBBBBBB H0

//

∼= 7.12
��

0

H1 Z

It is exact by definition and the vertical arrow is an isomorphism by 7.12 and
hence we get by 7.17 the equation 0 = rank(H1)− α1 + α0 − 1

7.19 Definition. [9, 7.2.6] Let K be a simplicial complex in Rn. Let p ∈ Rn be
not contained in the affine subspace generated by all σ ∈ K. Let p ? 〈x0, . . . , xq〉 :=
〈p, x0, . . . , xq〉. Let p ?K := K ∪{p ? σ : σ ∈ K}∪ {p}. It is called the cone over K
with vertex p and is obviously a simplicial complex. Note that we can extend p? ( )
to a linear mapping Cq(K)→ Cq(p ? K).

7.20 Proposition. [9, 7.2.7] He have Hq(p ? K) = {0} for all q 6= 0.

Proof. Let c be a q-chain of K. Then

∂(p ? c) =

{
c− ε(c)p if q = 0
c− p ? ∂c otherwise.

Note that this shows that any q-chain c (with q > 0) is homologous to p ? ∂c.
In order to show this we may assume that c = 〈x0, . . . , xq〉. For q = 0 we have
∂(p ? c) = ∂〈p, x0〉 = x0 − p = c− ε(c)p. For q > 0 we get

∂(p ? c) = ∂〈p, x0, . . . , xq〉

= 〈x0, . . . , xq〉 −
q∑
i=0

(−1)i〈p, x0, . . . ,
p−−−qxi , . . . , xq〉 = c− p ? ∂c.
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Now let c ∈ Zq(p ? K) for q > 0. We have to show that it is a boundary. Clearly
c is a combination of simplices of the form 〈x0, . . . , xq〉 and 〈p, x0, . . . , xq−1〉, i.e.
c = cq + p ? cq−1 with cq ∈ Cq(K) and cq−1 ∈ Cq−1(K). Hence c = cq + p ? cq−1 =
∂(p ? cq) + p ? ∂cq + p ? cq−1. So p ? (∂cq + cq−1) ∈ Zq. But, again by the equation
above, the boundary of such a cone vanishes only if ∂cq + cq−1 = 0, hence c is a
boundary.

7.21 Corollary. [9, 7.2.8] For an n-simplex σn let K(σn) := {τ : τ ≤ σn}. Then
K(σn) is a connected simplicial complex of dimension n with |K(σn)| being an
n-ball. We have Hq(K(σn)) = 0 for q 6= 0.

Proof. Let σn = 〈x0, . . . , xn〉 and σn−1 = 〈x1, . . . , xn〉 then K(σn) = x0 ?K(σn−1).

7.22 Proposition. [9, 7.2.9] For an n + 1-simplex σn+1 let K(σ̇n+1) := {τ :
τ < σn+1}. Then K(σ̇n+1) is a connected simplicial complex of dimension n with
|K(σ̇n+1)| being an n-sphere and we have

Hq(K(σ̇n+1)) ∼=

{
Z for q ∈ {0, n}
0 otherwise.

A generator of Hn(K(σ̇n+1)) is ∂σn+1 :=
∑n+1
j=0 (−1)j〈x0, . . . , p

−−−−qxj , . . . , xn+1〉.

Proof. Let K := K(σ̇n+1) and L := K(σn+1). Then L \K = {σn+1} and we have

0 // Cn+1(L) // ∂ // Cn(L) ∂ // . . . ∂ // Cq+1(L) ∂ // Cq(L) ∂ // . . .

0
∂ // Cn(K) ∂ // . . . ∂ // Cq+1(K) ∂ // Cq(K) ∂ // . . .

By 7.21 the top row is exact (for q > 0). Thus we have exactness in the bottom
row for all 0 < q < n. By exactness the arrow 〈σn+1〉 ∼= Cn+1(L) −∂→ Cn(L) is
injective, and Hn(K) = Zn(K) = Zn(L) = ∂(Cn+1(L)) ∼= Cn+1(L) = Z.

We will show later that if |K| ∼ |L| then Hq(K) ∼= Hq(L) for all q ∈ Z, hence it
makes sense to speak about the homology groups of a polyhedra.

7.23 5’Lemma. [9, 8.2.3] Let

A1
ϕ1 //

∼=f1

��

A2
ϕ2 //

∼=f2

��

A3
ϕ3 //

f3

��

A4
ϕ4 //

∼=f4

��

A5

∼=f5

��
B1

ψ1 // B2
ψ2 // B3

ψ3 // B4
ψ4 // B5

be a commutative diagram with exact horizontal rows. If all but the middle vertical
arrow are isomorphisms so is the middle one.
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Proof. (f3 is injective)

f3a3 = 0⇒ 0 = ψ3f3a3 = f4ϕ3a3

f4 inj.⇒ ϕ3a3 = 0
exact at A3⇒ ∃a2 : a3 = ϕ2a2

⇒ 0 = f3a3 = f3ϕ2a2 = ψ2f2a2

exact at B2⇒ ∃b1 : f2a2 = ψ1b1
f1 surj.⇒ ∃a1 : b1 = f1a1

⇒ f2a2 = ψ1f1a1 = f2ϕ1a1

f2 inj.⇒ a2 = ϕ1a1

exact at A2⇒ a3 = ϕ2a2 = ϕ2ϕ1a1 = 0

a1
ϕ1 //

∼=f1

��

a2
ϕ2 //

∼=f2

��

a3
ϕ3 //

f3

��

0

∼=f4

��

•

b1
ψ1 // f2(a2)

ψ2 // 0
ψ3 // 0 •

(f3 is onto)

b3
f4 surj.⇒ ∃a4 : f4a4 = ψ3b3
exact at B4⇒ f5ϕ4a4 = ψ4f4a4 = ψ4ψ3b3 = 0
f5 inj.⇒ ϕ4a4 = 0
exact bei A4⇒ ∃a3 : a4 = ϕ3a3

⇒ ψ3f3a3 = f4ϕ3a3 = f4a4 = ψ3b3
exact at B3⇒ ∃b2 : b3 − f3a3 = ϕ2b2
f2 surj.⇒ ∃a2 : b2 = f2a2

⇒ b3 = f3a3 + ψ2b2 = f3a3 + ψ2f2a2 = f3(a3 + ϕ2a2)

• a2
ϕ2 //

∼=f2

��

a3
ϕ3 //

f3

��

a4
ϕ4 //

∼=f4

��

ϕ4a4

∼=f5

��
• b2

ψ2 // b3
ψ3 // ψ3b3

ψ4 // 0

Remark. An exact sequence of the from

0→ A→ B → C → 0

is called short exact.

1. We have that the top line in the diagram

Aq+1
fq+1 //

����

Aq
fq // Aq−1

0 // fq+1(Aq+1) � � // Aq // // fq(Aq)
?�

OO

// 0

is exact at Aq iff the bottom row is short exact.
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2. Up to an isomorphism we have the following description of short exact se-
quences:

0 // A
i //

∼=
��

B
p // C //

∼=
��

0

i(A) � � // B // // B/i(A)

3. The sequence 0→ A→ A⊕ C → C → 0 is short exact.

4. The sequence 0→ Z−m→ Z→ Zm → 0 is short exact.

7.24 Lemma. [9, 8.2.4] For a short exact sequence 0→ A−f→ B −g→ C → 0 the
following statements are equivalent:

1. There is an isomorphism ϕ : A ⊕ C → B such that the diagram below is
commutative;

2. g has a right inverse ρ;

3. f has a left inverse λ.

A C

id

��

ρ

{{
0 // A

f
//

id

OO

B g
//

λ

cc

C // 0

0 // A
inj1 // A⊕ C

pr2 //

ϕ ∼=

OO

C // 0
Under these equivalent conditions the sequence is called splitting.

Proof. (1⇒2) The morphism ρ := ϕ ◦ inj2 : c 7→ ϕ(0, c) is right inverse to g.

(2⇒3) The morphism idB −ρ ◦ g has image in ker(g), hence factors to a morphism
λ : B → A over f . Hence f ◦ λ ◦ f = (idB −ρ ◦ g) ◦ f = f − 0 = f ◦ id and so
λ ◦ f = id.

(3⇒1) Define ψ := (λ, g) : B → A ⊕ C. Then ψ makes the diagram commutative
(pr2 ◦ψ = g and ψ ◦ f = (idA, 0) = inj1) and therefore is an isomorphism by
7.23 .

7.25 Example. [9, 8.2.5] The sequence 0→ Z−m→ Z→ Zm → 0 does not split. In
fact, every a ∈ Zm has order ord(a) ≤ m <∞ but all b ∈ Z have order ord(b) =∞.

7.26 Remark. If C is free abelian then any short exact sequence 0 → A → B →
C → 0 splits.

If 0→ A→ B → C → 0 is exact and A and C is finitely generated then so is B. In
fact, the generators of A together with inverse images of those of C generate B.

7.27 Definition. [9, 8.3.4] Let (C, ∂) and (C ′, ∂′) be two chain complexes. A chain
mapping is a family of homomorphisms fq : Cq → C ′q which commutes with ∂, i.e.
∂′q ◦ fq = fq−1 ◦ ∂q.

7.28 Definition. [9, 7.3.1] Let ϕ : K → L be a simplicial map between simplicial
complexes. Define group homomorphisms Cq(ϕ) : Cq(K) → Cq(L) by Cq(ϕ) := 0
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for q < 0 or q > dimK and by Cq(ϕ)(〈x0, . . . , xq〉) := 〈ϕ(x0), . . . , ϕ(xq)〉 if ϕ is
injective on {x0, . . . , xq} and Cq(ϕ)(〈x0, . . . , xq〉) := 0 otherwise.

7.29 Proposition. [9, 7.3.2] For every simplicial map ϕ : K → L the induced map
(Cq(ϕ))q∈Z is a chain mapping.

Proof. We have to show that ∂q(Cq(ϕ)(σ)) = Cq−1(ϕ)(∂qσ) for every q-simplex
σ = 〈x0, . . . , xq〉. If all vertices ϕ(xj) are distinct or are at least two pairs identical
this is obvious. So we may assume that exactly two are the same. By reordering we
may assume ϕ(x0) = ϕ(x1). Then Cq(ϕ)(σ) = 0 and hence also ∂Cq(ϕ)(σ). On the
other hand ∂σ = 〈x1, . . . , xq〉 − 〈x0, x2, . . . , xq〉 +

∑q
j=2(−1)j〈x0, . . . , p

−−−−qxj , . . . , xq〉.
The first two simplices have the same image under Cq−1(ϕ). The sum is mapped
to 0, since ϕ(x0) = ϕ(x1).

7.30 Lemma. [9, 8.3.5] The chain maps form a category.
Any chain map f induces homomorphisms Hq(f) : Hq(C)→ Hq(C ′).

Proof. The first statement is obvious.
Since f ◦ ∂ = ∂ ◦ f we have that f(Zq) ⊆ Z ′q and f(Bq) ⊆ B′q and hence Hq(f) :
Hq(C)→ Hq(C ′) makes sense,

0 // Bq(C) //

��

Zq(C) //

��

Hq(C) //

��

0

0 // Bq(C ′) // Zq(C ′) // Hq(C ′) // 0

7.31 Theorem. [9, 8.3.8] Let 0→ C ′−f→ C−g→ C ′′ → 0 be a short exact sequence
of chain mappings. Then we obtain a long exact sequence in homology:

. . .−∂∗→ Hq(C ′)−Hq(f)→ Hq(C)−Hq(g)→ Hq(C ′′)−∂∗→ Hq−1(C ′)−Hq−1(f)→ . . .

In particular we can apply this to a chain complex C and a chain subcomplex C ′

and C ′′ := C/C ′, since ∂ factors over ∂′′ : C ′′ → C ′′, via ∂′′(c+ C ′) := ∂c+ C ′.

Proof. Consider

0 // C ′q
f //

∂

��

Cq
g //

∂

��

C ′′q //

∂

��

0

0 // C ′q−1
f // Cq−1

g // C ′′q−1
// 0

Let ∂∗[z′′] := [(f−1 ◦ ∂ ◦ g−1)(z′′)] for z′′ ∈ C ′′ with ∂z′′ = 0.

We first show that it is possible to choose elements in the corresponding inverse
images and then we will show that the resulting class does not depend on any of
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the choices.

So let z′′q ∈ C ′′q be a cycle, i.e. ∂z′′q = 0. Since
g is onto we find xq ∈ Cq with gxq = z′′q . Sin-
ce g∂xq = ∂gxq = ∂z′′q = 0, we find x′q−1 ∈ C ′q−1

with fx′q−1 = ∂xq. And hence x′q−1 ∈ f−1∂g−1z′′q .
Furthermore f∂x′q−1 = ∂fx′q−1 = ∂∂xq = 0. Sin-
ce f is injective we get ∂x′q−1 = 0 and hence we
may form the class ∂∗[z′′q ] := [x′q−1].

xq
g //

∂

��

z′′q

∂

��
x′q−1

f //

∂

��

∂xq
g //

∂

��

0

∂x′q−1
f // 0

Now the independency from all choices, So let [z′′q ] = [z̄′′q ], i.e. ∃x′′q+1 : ∂x′′q+1 =
z′′q − z̄′′q . Choose xq, x̄q ∈ Cq as before, so that gxq = x′′q and gx̄q = x̄′′q . Also
as before choose x′q−1, x̄

′
q−1 ∈ C ′q−1 with fx′q−1 = ∂xq and fx̄′q−1 = ∂x̄q. We

have to show that [x′q−1] = [x̄′q−1]. So choose xq+1 ∈ Cq+1 with gxq+1 = x′′q+1.
Then g∂xq+1 = ∂gxq+1 = ∂x′′q+1 = z′′q − z̄′′q = g(xq − x̄q), hence there exists an
x′q ∈ Cq with fx′q = ∂xq+1 − xq + x̄q. And f∂x′q = ∂fx′q = ∂(∂xq+1 − xq + x̄q) =
0− ∂xq + ∂x̄q = −f(x′q−1 − x̄′q−1). Since f is injective we have x′q−1 = x̄′q−1 + ∂x′q,
i.e. [x′q−1] = [x̄′q−1].

Exactness at Hq(C ′):
(⊆) f∗∂∗[z′′] = [ff−1∂g−1z′′] = [∂g−1z′′] = 0.
(⊇) Let ∂z′ = 0 and 0 = f∗[z′] = [fz′], i.e. ∃x: ∂x = fz′. Then x′′ := gx satisfies
∂x′′ = ∂gx = g∂x = gfz′ = 0 and ∂∗[x′′] = [f−1∂g−1gx] = [f−1∂x] = [z′].

Exactness at Hq(C):
(⊆) since g ◦ f = 0.
(⊇) Let ∂z = 0 with 0 = g∗[z] = [gz], i.e. ∃x′′: ∂x′′ = gz. Then ∃x: gx = x′′. Hence
gz = ∂x′′ = ∂gx = g∂x ⇒∃x′: fx′ = z − ∂x ⇒f∂x′ = ∂fx′ = ∂(z − ∂x) = 0
⇒∂x′ = 0 and f∗[x′] = [fx′] = [z − ∂x] = [z].

Exactness at Hq(C ′′):
(⊆) We have ∂∗g∗[z] = [f−1∂g−1gz] = [f−1∂z] = [f−10] = 0.
(⊇) Let ∂z′′ = 0 and 0 = ∂∗[z′′], i.e. ∃x′: ∂x′ = z′, where z′ ∈ f−1∂g−1z′′, i.e. ∃x:
gx = z′′ and fz′ = ∂x. Then ∂(x−fx′) = fz′−f(∂x′) = 0 and g(x−fx′) = z′′−0,
i.e. g∗[x− fx′] = [z′′].

Relative homology

7.32 Definition. [9, 7.4.1] Let K0 ⊆ K be a simplicial subcomplex. Then C(K0) is
a chain subcomplex of C(K) and hence we may form the chain complex C(K,K0)
given by Cq(K,K0) := Cq(K)/Cq(K0). Note that we can identify this so-called
relative chain group with the free abelian group generated by all q-simplices
in K \K0. The boundary operator is given by taking the boundary of

∑
σ kσ · σ in

C(K), but deleting all summands of simplices in C(K0). The q-th homology group
of C(K,K0) will be denoted by Hq(K,K0) and is call the relative homology
of K with respect to K0. Using the short exact sequence 0 → C(K0) → C(K) →
C(K,K0)→ 0 we get a long exact sequence in homology by 7.31 .

7.33 Remark. [9, 7.4.2]

1. If K0 = K then Cq(K,K0) = Cq(∅) = {0} and hence Hq(K,K) = {0}.

2. If K0 = ∅ then Cq(K,K0) = Cq(K) and hence Hq(K, ∅) = Hq(K).
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3. If K is connected and K ⊇ K0 6= ∅, then H0(K,K0) = {0}. In fact let
z ∈ C0(K,K0), i.e. z =

∑
x∈K\K0

kx · x. Let x0 ∈ K0 be chosen fixed.
Since K is connected we find for every x ∈ K a 1-chain c with boundary
∂c = x− x0, hence z ∼ ε(z) · x0 = 0 in C0(K,K0).

4. Note that in 7.22 we calculated the relative chain complex Cq(K,L), where
K := K(σn) and L := K(σ̇n) and obtained Cq(K,L) = {0} for q 6= n and
Cn(K,L) = 〈σn〉 ∼= Z. Hence Hq(K,L) ∼= {0} for q 6= 0 and Hn(K,L) ∼= Z.

7.34 Example. [9, 7.4.7] Let M be the Möbius strip with boundary ∂M . We have a
triangulation of M in 5 triangles as in 3.9.2 . Since ∂M is a 1-sphere H1(∂M) ∼= Z
by 7.22 , where a generator is given by the 1-cycle r formed by the 5-edges of the
boundary.

Furthermore H1(M) ∼= Z, where a generator is given by the sum m of the remaining
edges: In fact every triangle has two of these edges, so it suffices to consider linear
combinations of these edges. Since every vertex belongs to exactly two of theses
edges, the coefficients have to be equal.

If a combination of triangles has a multiple of m as boundary, their coefficients
have to be 0, cf. 7.13 .

Now consider the following fragment of the long exact homology sequence:

H1(∂M) // H1(M)
(3)
// // H1(M,∂M) 0

(2)
// H0(∂M)

∼=
(1)
// H0(M)

〈[r]〉 〈[m]〉 〈[x0]〉 〈[x0]〉

Since H0(∂M) ∼= Z ∼= H0(M) by 7.12 , where a generator is given by any point
x0 in ∂M ⊆ M , we have that the rightmost arrow is a bijection, so the one to
the left is 0 and hence the previous one is onto. Remains to calculate the image of
〈[r]〉 = H1(∂M)→ H1(M) = 〈[m]〉. For this we consider the sum over all triangles
(alternating oriented). It has boundary 2m − r and hence [r] is mapped to 2[m].
Thus H1(M,∂M) ∼= Z/2Z = Z2.

7.35 Proposition. [9, 8.3.11] Let (C,C ′) and (D,D′) be pairs of chain complexes,
C ′′ = C/C ′, D′′ = D/D′ and f : (C,C ′) → (D,D′) be a chain mapping of pairs.
This induces a homomorphism which intertwines with the long exact homology se-
quences.

. . . ∂∗ // Hq(C ′)

f∗

��

Hq(i) // Hq(C)

f∗

��

Hq(p) // Hq(C ′′)

f∗

��

∂∗ // Hq−1(C ′′)

f∗

��

Hq−1(g)// . . .

. . . ∂∗ // Hq(D′)
Hq(j) // Hq(D)

Hq(q) // Hq(D′′)
∂∗ // Hq−1(D′′)

Hq−1(g)// . . .
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Proof. The commutativity of all but the rec-
tangle involving ∂∗ is obvious. For this remai-
ning one let z′′ ∈ C ′′ be a cycle. We ha-
ve to show that ∂∗f∗[z′′] = f∗∂∗[z′′]. So let
z′ ∈ i−1∂p−1z′′, i.e. iz′ = ∂x for some x with
px = z′′. Then f∗∂∗[z′′] = [fz′] and we ha-
ve to show that j(fz′) ∈ ∂q−1fz′′, which fol-
lows from jfz′ = fiz′ = f∂x = ∂fx and
q(fx) = f(px) = fz′′.

x
p //

��

f

""DDDDDDDDD z′′

f

""EEEEEEEE

z′
i //

f

  @@@@@@@@ ∂x
f

!!CCCCCCCC fx

��

q // fz′′

fz′
j // ∂fx

7.36 Corollary. [9, 7.4.6] Proposition 7.35 applies in particular to a simplicial
mapping ϕ : (K,K0)→ (L,L0) of pairs.

7.37 Excision Theorem. [9, 7.4.9] Let K be the union of two subcomplexes K0

and K1. Then (K1,K0∩K1)→ (K,K0) induces an isomorphism H(K1,K0∩K1)→
H(K1 ∪K0,K0).

Proof. Note that we have

K1 \ (K0 ∩K1) = K1 \K0 = (K0 ∪K1) \K0

and also

0 // Cq(K0 ∩K1)
i1 //

i2

��

Cq(K1) //

j1

��

Cq(K1,K0 ∩K1) ∼=

∼=
��

〈K1 \ (K0 ∩K1)〉 // 0

0 // Cq(K0)
j2 // Cq(K0 ∪K1) // Cq(K0 ∪K1,K0) ∼= 〈(K0 ∪K1) \K0〉 // 0

This is gives even an isomorphism on the level of chain complexes, as follows from
the commutativity of the diagram.

If U := K \K1 = K0 \(K0∩K1) then K1 = K \U and K0∩K1 = K0 \U , hence the
isomorphism of 7.37 reads H(K \U,K0 \U) ∼= H(K,K0). Conversely, if (K,K0) is
a pair of simplicial complexes and U ⊆ K0 is such that K1 := K \U is a simplicial
complex, then we get:

7.38 Corollary. [9, 7.4.8] Let K0 ⊆ K be a pair of simplicial complexes and
U ⊆ K0 a set such that ∀τ ∈ U : τ < σ ⇒σ ∈ U . Then K1 := K \ U and
K0∩K1 := K0 \U are simplicial complexes and H(K,K0) ∼= H(K \U,K0 \U).
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8.4 7. Simplicial Homology

8. Singular Homology

Basics

8.1 Definition. [9, 9.1.1] The standard (closed!) q-simplex ∆q is the simplex
spanned by the standard unit vectors ej ∈ Rq+1 for 0 ≤ j ≤ q. So

∆q :=
{

(λ0, . . . , λq) : 0 ≤ λj ≤ 1 :
∑
j

λj = 1
}
.

8.2 Definition. [9, 9.1.2] For q ≥ 1 and 0 ≤ j ≤ q let the face-map δjq−1 : ∆q−1 →
∆q be the unique affine map, which maps ei to ei for i < j and to ei+1 for i > j,
i.e.

e0, . . . , eq−1 7→ e0, . . . , p
−−−qej , . . . , eq.

8.3 Lemma. [9, 9.1.3] For q ≥ 2 and 0 ≤ k < j ≤ q we have δjq−1 ◦ δkq−2 =
δkq−1 ◦ δ

j−1
q−2.

Proof. The mapping on the left side has the following effect on the edges:

e0, . . . , eq−2 7→ e0, . . . , p
−−−−qek , . . . , eq−1 7→ e0, . . . p

−−−−qek , . . . , p−−−qej , . . . , eq
And on the right side:

e0, . . . , eq−2 7→ e0, . . . , p
−−−−−−−−−−−−qej−1 , . . . , eq−1 7→ e0, . . . p

−−−−qek , . . . , p−−−qej , . . . , eq

8.4 Definition. [9, 9.1.4] Let X be a topological space. A singular q-simplex
is a continuous map σ : ∆q → X. The q-th singular chain group Sq(X) is the
free abelian group generated by all singular q-simplices, i.e.

Sq(X) := abF(C(∆q, X))

Its elements are called singular q-chains. The boundary operator ∂ is the linear
extension of

∂ : σ 7→
q∑
j=0

(−1)jσ ◦ δj .

By 8.3 the groups Sq(X) together with ∂ from a chain complex S(X):

∂∂σ = ∂
( q∑
j=0

(−1)jσ ◦ δj
)

=
q∑
j=0

(−1)j
q−1∑
k=0

(−1)kσ ◦ δj ◦ δk

=
∑

0≤k<j≤q

(−1)j+kσ ◦ δj ◦ δk +
∑

0≤j≤k<q

(−1)j+kσ ◦ δj ◦ δk

=
8.3

====
∑

0≤k<j≤q

(−1)j+kσ ◦ δk ◦ δj−1 +
∑

0≤j<k≤q

(−1)j+k−1σ ◦ δj ◦ δk−1

=
∑

0≤k<j≤q

(−1)j+kσ ◦ δk ◦ δj−1 +
∑

0≤k<j≤q

(−1)k+j−1σ ◦ δk ◦ δj−1 = 0.
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The q-th singular homology group Hq(X) is defined to be Hq(S(X)). The
elements of Bq(X) := Bq(S(X)) are called (singular) q-boundaries and those
of Zq(X) := Zq(S(X)) are called (singular) q-cycles.

Remark that singular 0-simplices can be identified with the points in X and singular
1-simplices with paths in X.

8.5 Definition. [9, 9.1.6] [9, 9.1.8] [9, 9.1.9] Let f : X → Y be continuous.
Then f induces a chain-mapping f∗ := S(f) : S(X) → S(Y ) and hence group-
homomorphisms f∗ := Hq(f) : Hq(X)→ Hq(Y ).

∂
(
S(f)(σ)

)
= ∂(f ◦σ) =

q∑
j=0

(−1)jf ◦σ◦δj = S(f)
( q∑
j=0

(−1)jσ◦δj
)

= S(f)
(
∂(σ)

)
.

So Hq is a functor from continuous maps between topological spaces into group
homomorphisms between abelian groups.

8.6 Remark. [9, 9.1.7] The identity id∆q : ∆q → ∆q is a singular q-simplex of
∆q, which we will denote again by ∆q. If σ is a singular q-simplex in X, then
S(σ)(∆q) = σ. We will make use of this several times in order to construct natural
transformations, by defining them first for the standard simplex, see 8.22 and
8.30 .

8.7 Theorem. [9, 9.1.10] Let X = {∗} be a single point. Then Hq(X) = {0} for
q 6= 0 and H0(X) = S0(X) ∼= Z.

A space X is called acyclic iff it is path-connected and Hq(X) = {0} for q 6= 0.

Proof. The only singular q-simplex is the constant mapping. Its boundary is ∂σq =
(
∑q
i=0(−1)j)σq−1. For even q > 0 we have that Zq(X) = {0} for odd q we have that

Bq(X) = Zq(X), hence in both cases Hq(X) = {0}. For q = 0 we have B0(X) = {0}
and Z0(X) = S0(X) ∼= Z.

8.8 Corollary. [9, 9.1.11] Let f : X → Y be constant then Hq(f) = 0 for q 6= 0.

Proof. Obvious, since f factors over a single point.

8.9 Proposition. [9, 9.1.12] Let Xj be the path components of X. Then the inclu-
sions of Xj → X induce an isomorphism

⊕
j Hq(Xj)→ Hq(X); cf. 7.11 .

Proof. This follows as 7.11 : Let σ be a singular simplex of X. Then σ is comple-
tely contained in some Xj , hence the induced map

⊕
j Sq(Xj) → Sq(X) is onto.

Conversely this linear map is injective, since the chains in the various Xj have
disjoint images. Thus we have a bijection

⊕
j Sq(Xj) ∼= Sq(X), which induces an

isomorphism of homology groups.

8.10 Proposition. [9, 9.1.13] Let X be a topological space. Then H0(X) is a free
abelian group with generators given by choosing one point in each path-component;
cf. 7.12 .

Proof. Because of 8.9 we may assume that X is path-connected. The mapping
ε : S0(X)→ Z,

∑
σ nσ ·σ 7→

∑
σ nσ is onto and as in 7.12 its kernel is just B0(X),

so ε induces an isomorphism H0(X) ∼= Z; cf. 7.12 .
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8.11 Corollary. [9, 9.1.14] Let X and Y be path-connected. Then every continuous
mapping f : X → Y induces an isomorphism H0(f) : H0(X)→ H0(Y ).

Proof. Obvious since the generator is mapped to a generator.

8.12 Definition. [9, 9.1.15] Let A ⊆ Rn be convex and p ∈ A be fixed. For a
singular q-simplex σ : ∆q → A we define the cone p ? σ : ∆q+1 → A by

(p ? σ)((1− t)e0 + tδ0(x)) := (1− t)p+ tσ(x) for t ∈ [0, 1] and x ∈ ∆q.

For a q-chain c =
∑
σ nσ · σ we extend it by linearity

p ? c :=
∑
σ

nσ · (p ? σ)

and obtain a homomorphism Sq(A)→ Sq+1(A); cf. 7.19 .

8.13 Lemma. [9, 9.1.16] Let c ∈ Sq(A) then

∂(p ? c) = c− ε(c) p for q = 0,

∂(p ? c) = c− p ? ∂c for q > 0,

where ε
(∑

x nx · x
)

=
∑
x nx; cf. 7.20 .

Proof. It is enough to show this for singular simplices c = σq. For q = 0 we have
that p ? σ : ∆1 → X is a path from p to σ hence ∂(p ? σ) = σ − p = σ − ε(σ)p.
For q > 0 we have (p ? σ) ◦ δ0 = σ and (p ? σ) ◦ δi = p ? (σ ◦ δi−1) for i > 0, hence
∂(p ? σ) = σ − p ? ∂σ.

8.14 Corollary. [9, 9.1.18] Let A ⊆ Rn be convex. Then A is acyclic; cf. 7.20 &

7.21 .

Proof. Let p ∈ A and z be a q-cycle for q > 0. Then z = ∂(p ? z) by 8.13 and
hence Zq(A) = Bq(A), i.e. Hq(A) ∼= {0}.

Relative homology

8.15 Definition. [9, 9.2.1] Let (X,A) be a pair of spaces. Then we get a pair of
chain complexes (S(X), S(A)) and hence a short exact sequence

0→ S(A)→ S(X)→ S(X,A)→ 0,

where Sq(X,A) := Sq(X)/Sq(A). Its elements are called relative singular q-

chains. But unlike 7.32 we can not identify them with formal linear
combinations of simplices in X \A.

8.16 Remark. [9, 9.2.3] But as in 7.32 we get a long exact sequence in homology

· · · → Hq(A)→ Hq(X)→ Hq(X,A)→ Hq−1(A)→ . . . ,

where Hq(X,A) := Hq(S(X,A)). Note that z ∈ Sq(X) with ∂z ∈ Sq(A) describe
the classes [z + Sq(A)] ∈ Hq(X,A).
For a continuous mapping of pairs (A,X) → (B, Y ) we get a homology ladder as
in 7.35 .
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8.17 Remark. [9, 9.2.2] As in 7.33 we get

1. Hq(X,X) = {0},

2. Hq(X, ∅) ∼= Hq(X), and

3. H0(X,A) = {0} for path connected X and A 6= ∅.

8.18 Remark. [9, 9.2.4] Using the long exact homology sequence

. . . Hq+1(X,A)→ Hq(A)→ Hq(X)→ Hq(X,A)→ Hq−1(A)→ . . . ,

we obtain:

1. Let A ⊆ X be such that Hq(A)→ Hq(X) is injective for all q. Then we get
short exact sequences 0 → Hq(A) → Hq(X) → Hq(X,A) → 0, where the
right most arrow is 0, since the next one in the exact homology sequence of
the pair is assumed to be injective.

2. Let A ⊆ X be a retract. Then by functorality Hq(A) → Hq(X) is a retract
and hence by (1) we have (splitting) short exact sequences.

3. Let x0 ∈ X. The constant mappingX → {x0} is a retraction, henceHq(X) ∼=
Hq({x0}) ⊕ Hq(X, {x0}) by 2 . By 8.7 we have that Hq({x0}) = {0} for
q 6= 0 and H0({x0}) = Z, hence Hq(X, {x0}) ∼= Hq(X) for q > 0 and
0→ Z→ H0(X)→ H0(X, {x0})→ 0 is splitting exact.

4. Let f : (X,A)→ (Y,B) be such that f∗ : Hq(A)→ Hq(B) and f∗ : Hq(X)→
Hq(Y ) are isomorphisms for all q. Then the same is true for f∗ : Hq(X,A)→
Hq(Y,B) by the 5’Lemma.

8.19 Theorem. Exact Homology Sequence of a Triple. [9, 9.2.5] Let B ⊆
A ⊆ X. Then we get a long exact homology sequence

· · · → Hq+1(X,A)−∂∗→ Hq(A,B)→ Hq(X,B)→ Hq(X,A)→ . . .

The boundary operator ∂∗ can also be described by [z](X,A) 7→ [∂z](A,B) for z ∈
Sq(X) or as composition Hq+1(X,A)−∂∗→ Hq(A)→ Hq(A,B).

Proof. We have a short sequence

0→ S(A,B)→ S(X,B)→ S(X,A)→ 0.

given by

S(B)

��

S(B) � � //

��

S(A)

��
S(A) � � //

��

S(X)

��

S(X)

��
0 // S(A,B) � � //

��

S(X,B) // //

��

S(X,A) //

��

0

0 0 0
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Hence the bottom row is exact at S(X,A) and at S(A,B): In fact for ȧ ∈ S(A,B)
let the image in S(X,B) be 0. Then a = b ∈ S(B) and hence ȧ = 0 in S(A,B).

b_

4.

��

∃b_

3.

��

•

∃a_

1.

��

� 2. // a_

2.

��

•

ȧ
� 0. // 0 •

It is also exact at S(X,B), since for ẋ ∈ S(X,B) which is mapped to 0 in S(X,A)
the image x ∈ S(X) is an a ∈ S(A) and hence satisfies ȧ is mapped to ẋ.

• • ∃a_

3.

��
a � 4. //_

5.

��

∃x_

1.

��

x_

2.

��
ȧ

� 5. // ẋ
� 0. // 0

So this short exact sequence induces a long exact sequence in homology. The boun-
dary operator maps by construction 7.31 the class [z + S(A)] with ∂z ∈ S(A) to
[∂z + S(B)]. This is precisely the image of value of the boundary operator [∂z] for
the pair (X,A) under the natural map H(A)→ H(A,B).

8.20 Exercise. Let X be path-connected and A ⊆ X. Then H0(X,A) = 0.

Homotopy theorem

We are now going to prove that homotopic mappings induce the same mappings in
homology. For this we consider first a homotopy, which is as free and as natural as
possible, i.e. the homotopy given by injt : X → X × I, x 7→ (x, t). We have to show
that inj0 and inj1 induce the same mapping in homology. So the images of a cycle
should differ only by a boundary. Let σ : ∆q → X be a singular simplex. Then
we may consider the cylinder σ(∆q) × I over σ(∆q). It seems clear, that we can
triangulate ∆q × I. The image of the corresponding chain cq+1 under σ × I gives
then a q+ 1-chain in X× I, whose boundary consists of the parts σ×{1} = inj1 ◦σ
and σ×{0} = inj0 ◦σ and a triangulation of (σ× I)∗∂cq. Note that it would havew
been easier here, if we had defined the singular homology by using squares instead of
triangles, since it is not so clear how to describe an explicit triangulation of ∆q× I,
in fact we will show the existence of cq+1 by induction in the following lemma.

We make use of the following

8.21 Definition. [9, 8.4.6] Let R,S : X → Y be two functors. A natural trans-
formation ϕ : R → S is a family ϕX : R(X) → S(X) of Y-morphisms for every
object X ∈ X such that for every X -morphism f : X → X ′ the following diagram
commutes:

R(X)
ϕX //

R(f)

��

S(X)

S(f)

��
R(X ′)

ϕX′
// S(X ′)
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8.22 Lemma. [9, 9.3.7] Let ϕ0, ϕ1 : S( )→ S( ×I) be two natural transformations
and assume furthermore that H0(ϕ0) = H0(ϕ1) : H0({∗})→ H0({∗}× I). Then ϕ0

and ϕ1 are chain homotopic, i.e. there exists natural homomorphisms Z = (Zq)q
with Zq : Sq(X)→ Sq+1(X × I) and ∂Zq + Zq−1∂ = ϕ1 − ϕ0 on Sq(X).

Proof. We construct Zq by induction on q:
For q < 0 let Zq := 0. Now let Zj for all j < q be already constructed. Consider
the natural transformation ϕ := ϕ1 − ϕ0. We first treat the case X := ∆q. So we
have to find Zq(∆q) =: cq+1 ∈ Sq(∆q× I) with ∂cq+1 = ϕ∆q−Zq−1∂∆q. For q = 0
this follows from the assumption [ϕ(∆0)] = 0 ∈ H0(∆0 × I). For q > 0 we can use
that S(∆q × I) is acyclic (since ∆q × I is a convex subset of Rq+2) by 8.14 . So
we only have to show that the right side is a cycle. In fact by induction hypothesis
(applied to ∂∆q) we have

∂
(
ϕ∆q−Zq−1∂∆q

)
= ϕ∂∆q−

(
ϕ−Zq−2∂

)
∂∆q = ϕ∂∆q−

(
ϕ∂∆q−Zq−2∂∂∆q

)
= 0.

Now we extend Zq : Sq(X) → Sq+1(X × I) by naturality to the case of a general
X: I.e. for σ : ∆q → X we define Zq(σ) := Sq+1(σ × I)(cq+1).

Then Zq is in fact natural, since Sq(f × I)Zq(σ) = Sq+1(f × I)Sq+1(σ× I)cq+1 and
ZqSq(f)(σ) = Zq(fσ) = Sq(fσ × I)cq+1 and (f × I) ◦ (σ × I) = (f ◦ σ)× I.

Sq(Y )
Zq // Sq(Y × I)

Sq(X)
Zq //

f∗

OO

Sq(X × I)

(f×I)∗

OO

Sq(∆q)
Zq //

σ∗

OO

Sq(∆q × I)

(σ×I)∗

OO

Furthermore Zq is also a chain-homotopy, since

∂Zq(σ) = ∂Sq(σ × I)(cq+1) = Sq(σ × I)∂cq+1 = Sq(σ × I)(ϕ∆q −Zq−1∂∆q)

= ϕSq(σ)(∆q)−Zq−1∂Sq(σ)(∆q) = ϕ(σ)−Zq−1∂(σ).

8.23 Definition. [9, 8.3.12] [9, 8.3.15] Two chain mappings ϕ,ψ : C → C ′ are
called (chain) homotopic and we write ψ ∼ ϕ if there are homomorphisms Z :
Cq → C ′q+1 such that ψ − ϕ = ∂Z + Z∂.

8.24 Proposition. [9, 8.3.13] Let ϕ ∼ ψ : C → C ′ then H(ϕ) = H(ψ) : H(C) →
H(C ′).

Proof. Let [c] ∈ H(C), i.e. ∂c = 0 then H(ψ)[c]−H(ϕ)[c] = [(ψ − ϕ)c] = [Z∂c +
∂Zc] = [∂Zc] = 0.

8.25 Proposition. [9, 8.3.14] Chain homotopies are compatible with compositions.

Proof. Clearly, for ϕ ∼ ψ we have χ ◦ ϕ ∼ χ ◦ ψ and ϕ ◦ χ ∼ ψ ◦ χ and being
homotopic is transitive.

8.26 Theorem. [9, 9.3.1] Let f ∼ g : (X,A)→ (Y,B). Then f∗ = g∗ : Hq(X,A)→
Hq(Y,B).
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Proof. By 8.22 we have that the chain mappings induced by the inclusions injj :
X → X×I are chain homotopic to each other for j ∈ {0, 1} by a chain homotopy Z.
Let h be a homotopy between f and g, i.e. f = h◦ inj0 and g = h◦ inj1. By 8.25 we
have S(f) ∼ S(g) : S(X) → S(Y ) and also the restrictions S(f) ∼ S(g) : S(A) →
S(B), since the constructed homotopy is natural. Thus S(f) ∼ S(g) : S(X,A) →
S(X,B). By 8.24 we have that H(f) = H(g) : H(X,A)→ H(X,B).

8.27 Corollary. [9, 9.3.2] Let f ∼ g : X → Y . Then f∗ = g∗ : Hq(X)→ Hq(Y ).

Proof. Obvious, since Hq(X, ∅) ∼= Hq(X).

8.28 Corollary. [9, 9.3.3] Let f : X → Y be a homotopy equivalence. Then f∗ :
Hq(X) → Hq(Y ) is an isomorphism for all q. In particular all contractible spaces
are acyclic.

Proof. Obvious by functoriality and 8.27 since an inverse g up to homotopy
induces an inverse H(g) of H(f).

8.29 Corollary. [9, 9.3.4] [9, 9.3.5] [9, 9.3.6]

1. Let A ⊆ X be a DR. Then Hq(A) → Hq(X) is an isomorphism and hence
Hq(X,A) = {0} for all q.

2. Let B ⊆ A ⊆ X and A be a DR of X. Then Hq(A,B) → Hq(X,B) is an
isomorphism.

3. Let B ⊆ A ⊆ X and B be a DR of A. Then Hq(X,B) → Hq(X,A) is an
isomorphism.

Proof. The first part follows as special case from 8.28 and from the long exact
homology sequence of a pair, 8.15 . The other two cases then follow by using the
long exact homology sequence of a triple, 8.19 .

Excision theorem

In order to prove the general excision theorem we need barycentric refinement for
singular simplices, since a singular simplex in X need neither be contained in S(U)
nor in S(V ) for a given covering {U, V } of X.

8.30 Definition. [9, 9.4.1] For the standard q-simplex ∆q we define the barycen-
tric chain B(∆q) ∈ Sq(∆q) recursively by

B(∆0) := ∆0 = {e0}

B(∆q) := ∆̂q ?

q∑
j=0

(−1)jS(δj)(B(∆q−1)) for q ≥ 1,

where ∆̂q denotes the barycenter 1
q+1

∑q
j=0 e

j .

Now we define in a natural way B(σ) := B
(
S(σ)(∆q)

)
= S(σ)B(∆q) for σ : ∆q →

X and extend it linearly to B : Sq(X) → Sq(X) by setting B
(∑

σ nσ · σ
)

:=∑
σ nσB(σ).
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8.31 Proposition. [9, 9.4.2] The barycentric refinement is a natural chain mapping
B : S( )→ S( ) with B ∼ id.

Proof. Let us first show naturality: So let f : X → Y be continuous. Then

(f∗B)σ = (f∗σ∗B)∆q = (f ◦ σ)∗B∆q = B(f ◦ σ) = Bf∗σ.

Next we prove that it is a chain mapping, i.e. ∂B = B∂. On Sq(X) with q ≤ 0 this
is obvious. Note that the formula for B(∆q) can be rewritten as

B∆q = ∆̂q ? B∂∆q.

so we use induction for q > 0:

∂Bσ = ∂σ∗B∆q = σ∗∂B∆q = σ∗∂
(

∆̂q ? B∂∆q

)
=

8.13
===== σ∗

(
B∂∆q − ∆̂q ? ∂B∂∆q

)
=
I.Hyp.
===== Bσ∗∂(∆q)− σ∗

(
∆̂q ? B∂∂(∆q)

)
= B∂σ∗(∆q)− 0 = B∂σ.

Finally we prove the existence of a chain homotopy id ∼ B : S → S. Let i : X →
X × I be given by x 7→ (x, 0) and p : X × I → X given by (x, t) 7→ x then
S(p) ◦ S(i) = id. By 8.22 we have a chain homotopy S(i) ∼ S(i) ◦B. Composing
with S(p) gives a chain homotopy id = S(p) ◦ S(i) ∼ S(p) ◦ S(i) ◦ B = B by
8.25 .

8.32 Corollary. [9, 9.4.3] Let Y ⊆ X then B∗ = id : H(X,Y )→ H(X,Y ).

By iteration we get the corresponding results for Br :=
r times

B ◦ . . . ◦B.

Proof. Let α ∈ Hq(X,Y ) be given, i.e. α = [z + Sq(Y )] for a z ∈ Sq(X) with
∂z ∈ Sq−1(Y ). By 8.31 B ∼ id. Let Z be a corresponding natural chain homotopy,
then Bz− z = ∂Zqz−Zq−1∂z ∈ ∂Zqz+Sq(Y ), i.e. Bz is homologous to z relative
Y and, furthermore, ∂Bz ∈ ∂z + 0 + ∂Zq−1∂z ∈ Sq−1(Y ), so Bz is a cycle relative
Y , i.e. α = [z + Sq(Y )] = [Bz + Sq(Y )] = B(α).

8.33 Lemma. [9, 9.4.4] Let X be the union of two open subsets U and V . Then
for every c ∈ Sq(X) there is an r > 0 with Brc ∈ Sq(U) + Sq(V ) ⊆ Sq(X).

Proof. It is enough to show this for c being a singular simplex σ : ∆q → X. The sets
σ−1(U) and σ−1(V ) form an open covering of ∆q. Let λ be the Lebesgue number
for this covering, i.e. all subsets of ∆q of diameter less than λ belong to one of the
two sets. Since Br(∆q) is a finite linear combination of singular simplices, whose
image are closed simplices of the r-th barycentric refinement of K := {τ : τ ≤ ∆q},
we have by 3.27 that each summand of Br(∆q) has image in σ−1(U) or in σ−1(V ).
Hence Br(σ) = BrS(σ)(∆q) = S(σ)Br(∆q) is a combination of terms in Sq(U) and
in Sq(V ).

8.34 Excision theorem. [9, 9.4.5]
Let Xj ⊆ X for j ∈ {0, 1} such that the interiors Xo

j cover X.
Then the inclusion i∗ : (X2, X2 ∩ X1) → (X2 ∪ X1, X1) induces isomorphisms
Hq(X2, X2 ∩X1)→ Hq(X2 ∪X1, X1) for all q.
In particular this applies to X1 := Y ⊆ X and X2 := X \ Z for subsets Z and Y
satisfying Z̄ ⊆ Y o and so gives isomorphisms Hq(X \ Z, Y \ Z)→ Hq(X,Y ).
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Proof. We have to show that i∗ : Hq(X2, X2∩X1)→ Hq(X2∪X1, X1) is bijective.

i∗ is onto: Let β ∈ Hq(X2 ∪ X1, X1), i.e. β = [z + Sq(X1)] for some z ∈ Sq(X)
with ∂z ∈ Sq(X1). By 8.33 there exists an r > 0 and uj ∈ Sq(Xo

j ) such that
z ∼ Brz = u1 + u2 ∼ u2 relative X1 by 8.32 . We have ∂u2 ∈ Sq−1(X2) and
∂u2 = ∂Brz − ∂u1 = Br∂z − ∂u1 ∈ Sq−1(X1), hence ∂u2 ∈ Sq−1(X1 ∩ X2). So
α := [u2 + Sq(X2 ∩X1)] ∈ Hq(X2, X2 ∩X1) and it is mapped by i∗ to β.

i∗ is injective: Let α ∈ Hq(X2, X2 ∩ X1) be such that i∗α = 0. Then α = [x2 +
Sq(X2 ∩X1)] for some x2 ∈ Sq(X2). Since i∗(α) = 0 we have a (q+ 1)-chain c in X
and a q-chain x1 in X1 with ∂c = x2+x1. Again by 8.33 there is an r > 0 such that
Brc = u1 +u2 with uj ∈ Sq(Xo

j ). Hence ∂u1 + ∂u2 = ∂Brc = Br∂c = Br(x2 +x1).
So a := Brx2−∂u2 = ∂u1−Brx1 is a chain in X1∩X2 and x2 ∼ Brx2 = ∂u2+a ∼ 0
relative X1 by 8.32 , i.e. α = [x2 + Sq(X2 ∩X1)] = [∂u2 + a+ Sq(X2 ∩X1)] = 0.

The alternate description is valid, since the interiors of X1 := Y and X2 := X \ Z
cover X iff Y o = Xo

1 ⊇ X \Xo
2 = X \ (X \ Z̄) = Z̄. Obviously Y \Z = X1∩X2.

8.35 Corollary. [9, 9.4.6] [9, 9.4.7] Let (X,A) be a CW-pair. Then the quotient
map p : (X,A) → (X/A,A/A) induces an isomorphism in homology for all q and
hence Hq(X,A) ∼= Hq(X/A) for all q 6= 0.

Proof. By 4.19 we have an open neighborhood U of A in X, of which A is a SDR.
Let p : X → X/A =: Y be the quotient mapping and let V := p(U) ⊆ X/A =: Y
and y := A/A ∈ X/A. Since U is saturated also V ⊆ Y is open and p(A) = {y} a
SDR in V . Now consider

Hq(X,A)
∼=

8.29
//

p∗

��

Hq(X,U)

p∗

��

Hq(X \A,U \A)
8.34

∼=oo

∼= 1.34p∗

��
Hq(Y, {y})

∼=

8.29
// Hq(Y, V ) Hq(Y \ {y}, V \ {y})

8.34

∼=oo

By 1.34 we have that p : (X,A) → (Y, {y}) is a relative homeomorphism, so the
vertical arrow on the right side is induced by an isomorphism of pairs and hence is
an isomorphism. The horizontal arrows on the right side are isomorphisms by the
excision theorem 8.34 . Hence the vertical arrow in the middle is an isomorphism.
By 8.29 the horizontal arrows on the left are isomorphisms, hence also the vertical
arrow on the left.

By 8.18.3 we have finally that Hq(Y, {y}) ∼= Hq(Y ) for q > 0.

8.37 Proposition. [9, 9.4.8] Let f : (X,A)→ (Y,B) be a relative homeomorphism
of CW-pairs. Assume furthermore that X \ A contains only finitely many cells
or f : X → Y is a quotient mapping. Then f∗ : Hq(X,A) → Hq(Y,B) is an
isomorphism for all q.
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Proof. By 1.34 we have an induced continuous bijective mapping X/A → Y/B
making the following diagrams commute:

A
f //

_�

��

B
_�

��
X

f //

p
����

Y

q
����

Hq(X,A)
f∗ //

_�

8.35p∗
����

Hq(Y,B)
_�

8.35q∗
����

X/A
f

∼=
// Y/B Hq(X/A,A/A)

8.18
∼=
// Hq(Y/B,B/B)

That this bijection is a homeomorphism follows in case X \A has only finitely many
cells since then X/A is compact, and in the case where f : X → Y is a quotient
map then so is X → Y → Y/B and hence also X/A → Y/B. Both X/A and Y/B

are CW-complexes by 4.15 and by 8.18.2 the bottom arrow on the right is an
isomorphism. By 8.35 the vertical arrows on the right are isomorphisms as well,
so the same has to be true for the top one.

8.38 Proposition. [9, 9.4.9] Let Xj be CW-complexes which 0-cells xj ∈ Xj as
base-points. Then we have natural isomorphisms ab

∐
j Hq(Xj) → Hq(

∨
j Xj) for

q 6= 0.

Proof. We have
∨
j Xj :=

⊔
j Xj/A where A := {xj : j ∈ J}. Hence Hq(A) = 0 for

q 6= 0 and so

Hq

(∨
j

Xj

) 8.36
∼= Hq

(⊔
j

Xj , A
) A “acyclic”∼= Hq

(⊔
j

Xj

) 8.9
∼= ab

∐
j

Hq(Xj).

8.39 Proposition. [9, 9.4.10] Let X = X1 ∪ X2, where Xj ⊆ X is open. Then
there is a long exact sequence (the so called Mayer-Vietoris sequence)

· · · → Hq(X1 ∩X2)→ Hq(X1)⊕Hq(X2)→ Hq(X)→ Hq−1(X1 ∩X2)→ . . . .

Proof. Let S := S(X), S1 := S(X1) ⊆ S(X) and S2 := S(X2) ⊆ S(X). Then
S(X1 ∩X2) = S1 ∩ S2. Let S1 + S2 be the chain complex which has the subgroup
of S generated by S1 and S2 in every dimension. We claim that the following short
sequence

0→ S1/(S1 ∩ S2)→ S/S2 → S/(S1 + S2)→ 0

is exact. In fact by the first isomorphy theorem we have S1/(S1∩S2) ∼= (S1+S2)/S2

and hence the inclusion S1 + S2 ⊆ S induces an injection S1/(S1 ∩ S2) → S/S2.
The quotient of it is by the second isomorphy theorem (S/S2)/((S1 + S2)/S2) ∼=
S/(S1 +S2), which proves the claim. By 8.34 we have that the inclusion (S1, S1 ∩
S2) ↪→ (S, S2) induces an isomorphism H(S1/(S1 ∩ S2)) =: H(X1, X1 ∩ X2) →
H(X1 ∪X2, X2) := H(S/S2). Hence the long exact homology sequence 7.31 gives
H(S/(S1 + S2)) = 0.

If we consider now the short exact sequence

0→ S1 + S2 → S → S/(S1 + S2)→ 0

we deduce from the long exact homology sequence that H(S1 + S2)→ H(S) is an
isomorphism.
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Now consider the sequence

0→ S1 ∩ S2 → S1 ⊕ S2 → S1 + S2 → 0,

where the inclusion is given by c 7→ (c,−c) and the projection by (c1, c2) 7→ c1 + c2.
This is obviously short exact, since (c1, c2) is mapped to 0 iff c1 + c2 = 0, i.e.
c := c1 = −c2 ∈ S1 ∩ S2 is mapped to (c1, c2).

S1 ∩ S2
� � //

� _

��

S2� _

��

S2� _

��
S1

� � //

����

S1 + S2
� � //

����

S // //

����

S/(S1 + S2)

S1/S1 ∩ S2 (S1 + S2)/S2
� � // S/S2

// // S/(S1 + S2)

So we get a long exact sequence in homology, where we may replace H(S1 +S2) by
H(S) =: H(X) by what we said above. Note that the boundary operator is given
by [z] 7→ [∂z1], where Brz = z1 + z2.

8.40 Remark. [9, 9.4.12]

(1) It is enough to assume in 8.39 that there are neighborhoods of X1 and X2

which have X1 and X2 and their intersection has X1 ∩ X2 as DRs. In particular
this applies to CW -subspaces Xi of a CW -complex X by 4.19 .

(2) Let X1 ∩ X2 be acyclic. Then the Mayer-Vietoris sequence gives Hq(X) ∼=
Hq(X1)⊕Hq(X2) for q 6= 0. In fact only the case q = 1 needs some argument: We
have the exact sequence

0 = H1(X1 ∩X2) // H1(X1)⊕H1(X2) // H1(X)

��
Z = H0(X1 ∩X2) // H0(X1)⊕H0(X2) // H0(X) // 0

and the mapping H0(X1∩X2)→ H0(X1)⊕H0(X2) is injective, since the generator
is mapped to a generator of H0(X1) and of H0(X2).

(3) Let X1 and X2 be acyclic, then we have Hq(X1∩X2) ∼= Hq+1(X) for q > 0 and
furthermore H1(X) is free abelian and

H1(X1)⊕H1(X2) // H1(X) // H0(X1 ∩X2) // H0(X1)⊕H0(X2) // H0(X) // 0

0 Zk Z2 Z

gives H1(X) ∼= Zk−1 via the rank formula rank(ker f) + rank(im f) = rank(dom f),
where we used that X = X1 ∪ X2 is connected being the union of two connected
sets.

(4) Consider the covering Sn = Dn
+ ∪ Dn

−. By (1) we get a long exact Mayer-
Vietoris sequence. And since Dn

+ and Dn
− are contractible, they are acyclic. So

Hq(Sn) ∼= Hq−1(Dn
+ ∩ Dn

−) = Hq−1(Sn−1) for q, n > 0. Inductively we hence
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get Hq(Sn) ∼= Hq−n(S0) = {0} for q > n, since S0 is discrete and Hq(Sn) ∼=
H1(Sn−q+1) = {0} for 0 < q < n, since

0 // H1(Sn−q+1) // H0(Sn−q) // H0(Dn−q
+ )⊕H0(Dn−q

− ) // H0(Sn−q+1) // 0

Z Z⊕ Z Z

and Hn(Sn) ∼= H1(S1) ∼= Z, since

0 // H1(S1) // H0(S0) // H0(D0
+)⊕H0(D0

−) // H0(S1) // 0

Z⊕ Z Z⊕ Z Z

Homology of balls, spheres and their complements

8.41 Proposition. [9, 9.5.1] Let n ≥ 0 then

Hq(∆n, ∆̇n) ∼=

{
Z for q = n

0 otherwise

The generator in Hn(∆n, ∆̇n) will be denoted [∆n] and is given by the relative
homology class of the singular simplex id∆n

: ∆n → ∆n.

Proof. We proof this by induction on n.

(n = 0) Hq(∆0, ∆̇0) = Hq({1}, ∅) =
8.17.2

======= Hq({∗}).

(n > 0) We consider ∆n−1 as face opposite to en in ∆n and let An := ∆̇n \∆n−1.
Since An is a DR of ∆n, we conclude from the homology-sequence 8.19 of the
triple An ⊆ ∆̇n ⊆ ∆n that Hq(∆n, ∆̇n) ∼= Hq−1(∆̇n, An). Since ∆n−1 \ ∆̇n−1 =
∆̇n \ An we get from 8.37 or 8.36 that the inclusion induces an isomorphism
Hq−1(∆n−1, ∆̇n−1) ∼= Hq−1(∆̇n, An). Hence Hq(∆n, ∆̇n) ∼= Hq−1(∆n−1, ∆̇n−1) and
by recursion we finally arrive in case q ≥ n at Hq−n(∆0, ∆̇0) which we calculated
above, and in case q < n at H0(∆n−q, ∆̇n−q) = 0 by 8.16 , since ∆n−q is connected
and ∆̇n−q 6= ∅.

Let [∆n] denote the relative homology class in Hn(∆n, ∆̇n) of id∆n
: ∆n → ∆n.

Then its image in Hn−1(∆̇n, An) ist given by [∂ id∆n
+Sn(An)] which equals the

image [id∆n−1 +sn(An)] of [∆n−1] ∈ Hn−1(∆n−1, ,̇∆n−1). Obviously [∆0] is the
generator of H0(∆0, ∆̇0) = H0({1}).

8.42 Corollary. [9, 9.5.2] For n ≥ 0 we have

Hq(Dn, Sn−1) ∼=

{
Z for q = n

0 otherwise

We denote the canonical generator by [Dn]. It is given by th relative homology class
of a homeomorphism ∆n → Dn.
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8.43 Corollary. [9, 9.5.3] For n > 0 we have

Hq(Sn) ∼=

{
Z for q = n or q = 0
0 otherwise

We denote the canonical generator by [Sn]. It is given by [Sn] = ∂∗([Dn]) = [∂Dn].

So this gives a different proof from 8.40.4

Proof. Consider the homology sequence of the pair Sn ⊆ Dn+1:

Hq+1(Dn+1) // Hq+1(Dn+1, Sn)
∼= // Hq(Sn) // Hq(Dn+1)

8.14

0 0

8.44 Corollary. [9, 9.5.6] By 8.38 we have Hq(
∨
j S

n) = 0 for q /∈ {0, n} and
Hn(

∨
j S

n) ∼= ab
∐
j Z and the generators are (injj)∗[Sn].

1.20 Proposition. Let m 6= n then Rm 6∼= Rn and Sm 6∼= Sn.

We have “proved” this by applying the theorem 1.19 of the invariance of domains.

Proof of 1.20 for Rn and Sn. Let m 6= n and m > 0. Then Hm(Sm) ∼= Z
but Hm(Sn) = {0}, so Sm 6∼ Sn. Assume Rn ∼= Rm then Sm−1 ∼ Rm \ {0} ∼=
Rn \ {0} ∼ Sn−1, hence m = n.

9.1 Proposition. [9, 11.1.1] Sn is not contractible and is not a retract in Dn+1

Proof. Since Hn(Sn) ∼= Z 6∼= {0} = Hn({∗}) the first statement is clear. And
the second follows, since retracts of contractible spaces are contractible. In fact let
ht : X → X be a contraction and let i : A → X have a left inverse p : X → A.
Then p ◦ ht ◦ i : A→ A is a contraction of A.

9.2 Corollary. Brouwers fixed point theorem. [9, 11.1.2] Every continuous
map f : Dn → Dn has a fixed point.

Proof. Otherwise we can define a retraction as in 2.23 .

10.1 Proposition. [9, 11.7.1] Let B ⊆ Sn be a ball. Then Sn \B is acyclic.

Proof. Induction on r := dimB.
(r = 0) Then B is a point and hence Sn \B ∼= Rn is contractible and thus acyclic.
(r + 1) Let z ∈ Zq(Sn \ B) for q > 0 and z := x − y ∈ Z0(Sn \ B) for q = 0 with
x, y ∈ Sn \B. We have to show that ∃b ∈ Sq+1(Sn \B) with ∂b = z.

Consider a homeomorphisms f : Ir+1 = Ir × I ∼= B. Then Bt := f(Ir × {t}) is
an r-ball. Thus by induction hypothesis there are bt ∈ Sq+1(Sn \Bt) with ∂bt = z
considered as element in Sq(Sn\Bt)← Sq(Sn\B). Since the image of bt is disjoint to
Bt, we can choose an open neighborhood Vt of t such that Ir×Vt ⊆ f−1(Sn\Im(bt)).
Using compactness we find a partition of 0 = t0 < t1 < · · · < tN = 1 of I into
finitely many intervals Ij := [tj−1, tj ] such that for each j there exists a t with
Ij ⊂ Vt. Let bj := bt ∈ Sq+1(Yj) where Yj is the open subset Sn \ f(Ir × Ij). Now
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let Xj :=
⋂
i<j Yi. Then Xj ∪ Yj =

⋂
i<j Yi ∪ Yj = Yj−1 ∪ Yj = Sn \ f(Ir × {tj})

and Xj ∩ Yj = Xj+1.

We now show by induction on j that [z] = 0 in Hq(Xj). For (j = 1) nothing is to
be shown, since X1 = Sn. For (j + 1) we apply the Mayer-Vietoris sequence 8.39
to the open sets Xj and Yj :

Hq+1(

Sn \ f(Ir × {tj})︷ ︸︸ ︷
Xj ∪ Yj) //

ind. on r

Hq(

Xj+1︷ ︸︸ ︷
Xj ∩ Yj) // Hq(Xj)⊕Hq(Yj)

0
The image of [z] ∈ Hq(Xj+1) in Hq(Xj)⊕Hq(Yj) is zero, since the first component
is [z] = 0 ∈ Hq(Xj) by induction hypothesis on j, and the second component
[z] = [∂bj ] = 0 ∈ Hq(Yj). Since the space on the left side is zero, the arrow on the
right is injective we get that [z] = 0 ∈ Hq(Xj+1).

Since Xj = Sn \B finally, we are done.

10.2 Theorem. [9, 11.7.4] Let S ⊆ Sn be an r-sphere with 0 ≤ r ≤ n − 1 and
n ≥ 2. Then

Hq(Sn \ S) =


Z⊕ Z for q = 0 and r = n− 1
Z for q ∈ {0, n− 1− r} and r < n− 1
0 otherwise.

Proof. Induction on r.
(r = 0) Then S ∼= {−1,+1} and Sn \S ∼ Sn−1, so the result follows from 8.40 or
8.43 .

(r > 0) We have Sr = Dr
−∪Dr

+ and B± := f(Dr
±) are r-balls and S′ := f(Sr−1) an

(r−1)-sphere. By 10.1 Sn\B± are acyclic and since Sn\S′ = (Sn\B+)∪(Sn\B−)
and Sn\S = (Sn\B+)∩(Sn\B−) we get by 8.40.3 that Hq(Sn\S) ∼= Hq+1(Sn\S′)
for q > 0 and H0(Sn \ S) ∼= H1(Sn \ S′) ⊕ Z. By recursion we finally arrive at
Hq+r(Sn \ {±1}) = Hq+r(Sn−1), which we treated before.

10.3 Proposition. [9, 11.7.2] [9, 11.7.5] Let n ≥ 2. If B ⊆ Rn is a ball, then

Hq(Rn \B) =

{
Z for q ∈ {0, n− 1}
0 otherwise.

If S ⊆ Rn is an r-sphere with 0 ≤ r ≤ n− 1, then

Hq(Rn \ S) =


Z⊕ Z for (q = n− 1, r = 0) or (q = 0, r = n− 1)
Z for (q = n− 1, r 6= 0) or (q ∈ {0, n− 1− r}, r 6= n− 1)
0 otherwise.

Proof. Let A ⊆ Rn ∼= Sn \ {P+} ⊂ Sn be compact. The long exact homology
sequence 8.16 of the pair (Sn \A,Rn \A) gives

→ Hq+1(Sn \A,Rn \A)−∂∗→ Hq(Rn \A)→ Hq(Sn \A)→ Hq(Sn \A,Rn \A)→

By the excision theorem 8.34 applied to A ⊆ Rn ⊆ Sn we get Hq(Sn\A,Rn\A) ∼=
Hq(Sn,Rn), which is isomorphic by 8.29 to Hq(Sn, {∗}), since Rn is contractible.
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This homology equals for q > 0 by 8.18.3 that of Hq(Sn) and is 0 for q = 0 by
8.20 since Sn is path-connected. So

Hq(Sn, {∗}) =

{
Z for q = n

0 otherwise

The long exact sequence from above thus is

→ Hq+1(Sn, {∗})−∂∗→ Hq(Rn \A)→ Hq(Sn \A)→ Hq(Sn, {∗})→

In particular, Hq(Rn \A) ∼= Hq(Sn \A) for q /∈ {n− 1, n} and near q = n− 1 it is
for A a sphere or ball:

0→ Hn(Rn \A)→ 0→ Z→ Hn−1(Rn \A)→ Hn−1(Sn \A)→ 0,

This gives Hn(Rn \A) = 0 and Hn−1(Rn \A) ∼= Z⊕Hn−1(Sn \A), from which the
claimed result follows.

10.4 Corollary (Jordan’s separation theorem generalized). [9, 11.7.6] [9,
11.7.7] Let X ∈ {Rn, Sn}. For any r-sphere S with r < n− 1 we have that X \S is
connected (i.e. we cannot cut X into two pieces along such a sphere).
If S is an n − 1-sphere then X \ S has two components, both of which have S as
boundary. If X = Sn then the components are acyclic.

Proof. For spheres of dimension r < n− 1 the result follows from 10.2 and 10.3
since H0(X \ S) ∼= Z in these cases.

If S is a sphere of dimension n−1, then H0(X \S) ∼= Z2 by 10.2 and 10.3 . Hence
X \ S has two components, say U and V .

That for X = Sn the components are acyclic follows from Hq(U) ⊕ Hq(V ) ∼=
Hq(X \ S) = {0} for q 6= 0.

(U̇ ⊆ S) In fact U̇ ∩ U = ∅, since U is open and thus U̇ = U \ Uo = U \ U .
From U ⊆ ∼V we get U ⊆ ∼V = ∼V since V is open and hence U ∩ V = ∅. So
U̇ = Ū \ U ⊆ (X \ V ) \ U = X \ (U ∪ V ) = S.

(S ⊆ U̇) Let x ∈ S and W be a neighborhood of x ∈ X. Choose n− 1-balls B and
B′ with S = B ∪ B′ and such that x ∈ B ⊆ W . Let c be a path in Rn from U to
V , which avoids B′ ⊆ S (this is possible by 10.3 since X \B′ is path connected).
Let t0 := sup{t : c(t) ∈ U}. Hence y := c(t0) ∈ Ū \ U = U̇ ⊆ S = B ∪ B′. Hence
y ∈ B ⊆W and so W ∩ U̇ contains y and is not empty, hence x ∈ U̇ .

10.5 Remark. [9, 11.7.8] For dimension 2 we have Schönflies’s theorem (see [7, §9]),
i.e. for every Jordan curve in S2, i.e. injective continuous mapping c : S1 → S2 there
exists a homeomorphism f : S2 ∼= S2 with f |S1 = c. Thus up to a homeomorphism
a Jordan-curve looks like the equator S1 ⊆ S2.

In dimension greater than 2, Alexanders horned sphere is a counterexample: One
component of the complement is not simply connected. This gives at the same time
an example of an open subset of S3, which is homologically trivial (i.e. acyclic) but
not homotopy-theoretical (π1(U) 6= 0).

120 andreas.kriegl@univie.ac.at c© 11. Jänner 2012
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1.19 Corollary (Invariance of the domain). Let X,Y ⊆ Rn be homeomorphic.
If X is open then so is Y .

Proof. Take x ∈ X and y := f(x) ∈ Y . By assumption there is a ball B := {z : |z−
x| ≤ r} ⊆ X. Let S := ∂B. Then Rn \f(S) = (Rn \f(B))∪ (f(B)\f(S)). The first

part is connected by 10.1 and the second one coincides with f(B\S) ∼= B\S =
o

Dn

and hence is connected as well. Thus they are the path components of Rn \ f(S)
and hence open. Since the set on the right side is a neighborhood of y in Y , we
have that Y is open.

10.6 Exercise. Let ν : S1 → S1 ∨ S1 be the closed path, which first runs once
through one and then through the other factor as in 5.14 . Then ν∗ : H1(S1) →
H1(S1 ∨ S1) is given by π1({S1}+) = (i1)∗({S1}+) + (i2)∗({S1}+).

Cellular homology

10.7 Proposition. [9, 9.6.1] Let X be a CW -complex. Then Hp(Xq, Xq−1) = 0
for p 6= q.

Proof. For q < 0 this is clear. For q = 0 we have Hp(Xq, Xq−1) = Hp(X0, ∅) = 0
by 8.15 , 8.7 and 8.9 .

So let q > 0. For p = 0 we have H0(Xq−1)� H0(Xq)−0→ H0(Xq, Xq−1)→ 0 and
the first mapping is onto (since Xq has less components). So the next arrow is 0.

Now let p 6= 0. By 8.36 we have Hp(Xq, Xq−1) ∼= Hp(Xq/Xq−1) and so the result
follows from 8.44 , since Xq/Xq−1 ∼=

∨
Sq.

10.8 Corollary. [9, 9.6.2] The inclusions induce an epimorphism Hq(Xq)→ Hq(X)
and an isomorphism Hq(Xq+1)→ Hq(X).

Proof. By 10.7 and

Hp+1(Xq, Xq−1)→ Hp(Xq−1)→ Hp(Xq)→ Hp(Xq, Xq−1)

the first arrow in sequence

Hq(Xq)→ Hq(Xq+1)→ · · · → Hq(Xp)→ · · · → Hq(X)

is onto and the others are isomorphisms. So we have the result for finite CW -
complexes. In the general case we use that every singular simplex lies in some
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10.10 8. Singular Homology

Xp, hence all mappings are surjective. Similar one shows injectivity, since [z] =
0 ∈ Hq(X) implies z = ∂c for some c ∈ Sq(X) =

⋃
j Sq(X

j), hence [z] = 0 ∈
Hq(Xj).

10.9 Corollary. [9, 9.6.3] Let X be a CW -space without q-cells. Then Hq(X) = 0.
In particular Hq(X) = 0 for q > dimX.

Proof. From the homology sequence

Hq+1(Xp, Xp−1)→ Hq(Xp−1)→ Hq(Xp)→ Hq(Xp, Xp−1)

for q > p and 10.7 we deduce Hq(Xq−1) ∼= . . . ∼= Hq(X−1) = 0. By assump-
tion Xq = Xq−1 and hence Hq(Xq, Xq−1) = 0 so we get the surjectivity of
Hq(Xq−1) → Hq(Xq) and thus Hq(Xq) = 0 as well. Now the result follows sin-
ce by 10.8 Hq(Xq)� Hq(X) is onto.

10.10 Definition. [9, 9.6.4] The q-th cellular chain group of a CW -complex
X is defined as

Cq(X) := Hq(Xq, Xq−1),

and its elements are called cellular q-chains. For every q-cell e in X with cha-
racteristic map χe : (Dq, Sq−1) → (Xq, Xq−1) we define a so-called orientation
χe∗([D

q]) ∈ Cq(X) as the image of χe∗ : Hq(Dq, Sq−1) ∼= Z → Hq(Xq, Xq−1), whe-
re [Dq] denotes the generator in Hq(Dq, Sq−1) induced from a homeomorphism
∆q → Dq.

For every cell there are exactly two orientations, which differ only by their sign.
And Cq(X) is a free abelian group generated by a selection of orientations for each
q-cell.

Proof. Let χ1 and χ2 be two characteristic mappings for e. We can consider them
as rel. homeomorphisms χj : (Dq, Sq−1) → (Xq−1 ∪ e,Xq−1). By 8.37 these
factorizations induce isomorphisms. Hence Hq(χ1)[Dq] = ±Hq(χ2)[Dq], since the
generator [Dq] has to be mapped to a generator of Hq(Dq, Sq−1), and the only ones
are ±[Dq].

Obviously C0(X) = H0(X0) is free abelian.

For q > 0 the projection p : (Xq, Xq−1) → (Y, {y0}) := (Xq/Xq−1, Xq−1/Xq−1)
induces by 8.35 an isomorphism p∗ : Cq(X) → Hq(Y, y0). Since Y is a join of
q-spheres we have that p∗χe∗[D

q] form a basis in the free abelian group Hq(Y, y0),
as follows from 8.44 . In fact consider the following commutative diagram:

(Dq, Sq−1)
χe //

h

��

(Xq, Xq−1)

p

��
(Sq, {∗})

8.44
// (Xq/Xq−1, {∗}),
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8. Singular Homology 10.12

where the vertical arrows are rel. homeomorphisms and hence induce isomorphisms
in homology

Hq(Dq, Sq−1)
χe∗
∼=
//

∼=h∗

��

Hq(Xq, Xq−1)

∼=p∗

��
Hq(Sq) // Hq(

∨
Sq)

Z ab
∐

Z

and the bottom arrow maps the generator [Sq] ∈ Hq(Sq) ∼= Hq(Sq, {∗}) to one of
the generators in Hq(Xq/Xq−1) ∼= Hq(Xq/Xq−1, {∗}).

10.11 Definition. [9, 9.6.6] Using the long exact sequences for the pairs (Xq+1, Xq)
and (Xq, Xq−1) we have

Cq+1(X)

. . . // Hq+1(Xq+1, Xq) //∂∗ // Hq(Xq) // Hq(Xq+1) // . . .

. . . // Hq(Xq−1) // Hq(Xq) � � j∗ // Hq(Xq, Xq−1) // . . .

Cq(X)

Let ∂ := j∗ ◦ ∂∗ : Cq+1(X) → Cq(X). We have ∂2 = 0 by the exactness of the
second sequence at Hq(Xq, Xq−1) and thus we obtain a chain complex. Its homology
H(C(X)) is called cellular homology of the CW -complex X.
For any q + 1-cell e with characteristic map χe we get

∂(χe∗[D
q+1]) = j∗∂∗χ

e
∗[D

q+1] = j∗(χe|Sq )∗∂∗[Dq+1] = j∗(χe|Sq )∗[∂Dq+1] = j∗(χe|Sq )∗[Sq],

by the homology ladder

Hq+1(Dq+1, Sq)
χe∗ //

∂∗

��

Hq+1(Xq+1, Xq)

∂∗

��

Cq+1(X)

∂

��
Hq(Sq)

(χe|Sq)∗ // Hq(Xq)
j∗ // Cq(X).

Singular versus cellular homology

10.12 Proposition. [9, 9.6.9] [9, 9.6.11] The homomorphism j∗ : Hq(Xq) →
Hq(Xq, Xq−1) is injective and maps onto the q-th cellular cycles. The map i∗ :
Hq(Xq) → Hq(X) is onto and its kernel is mapped by j∗ onto the q-th cellular
boundaries.

Thus one obtains isomorphisms

j∗ : Hq(C(X))−∼=→ Hq(X),

which are natural for cellular mappings.

andreas.kriegl@univie.ac.at c© 11. Jänner 2012 123



10.13 8. Singular Homology

Proof. From the exact sequence 0 =
10.9

===== Hq(Xq−1)→ Hq(Xq)−j∗→ Hq(Xq, Xq−1) =:
Cq(X) we deduce that j∗ is injective and hence Ker(∂) = Ker(j∗∂∗) = Ker(∂∗) =
Im(j∗).

From the exact homology sequence 8.16 of the pair (X,Xq+1)

Hq+1(Xq+1)
10.8

// // Hq+1(X) 0 // Hq+1(X,Xq+1) 0 // Hq(Xq+1)
∼=

10.8

// Hq(X)

0

we get Hq+1(X,Xq+1) = 0. By the exact homology sequence 8.19 for the triple
Xq ⊆ Xq+1 ⊆ X

Hq+1(Xq+1, Xq) // // Hq+1(X,Xq) // Hq+1(X,Xq+1)

0

we get that Hq+1(Xq+1, Xq) → Hq+1(X,Xq) is onto. The q-th cellular boundary
is the image of the top row in

Hq+1(Xq+1, Xq)
∂∗ //

����

Hq(Xq)
j∗ // Hq(Xq, Xq−1)

Hq+1(X,Xq)
∂∗ // Hq(Xq)

i∗

10.8

// // Hq(X)

Since the rectangle commutes by naturality of ∂∗ and since Im ∂∗ = Ker i∗ we get

Im(∂) = Im(j∗∂∗) = j∗(Im ∂∗) = j∗(Ker i∗).

Hence the q-th cellular boundaries are the image of Ker i∗ under j∗. Now we get
the desired natural isomorphism

0 // Ker i∗
� � //

j∗∼=

��

Hq(Xq)
i∗ // //

j∗∼=

��

j∗

&&MMMMMMMMMM
Hq(X) //

j∗∼=

��

0

Hq(Xq, Xq−1)

Cq(X)

0 // Im ∂q+1
� � // Ker ∂q // //

+ �

88qqqqqqqqqq
Hq(C(X)) // 0

10.13 Proposition. [9, 9.6.10] For q ≥ 1 we have that in the short exact sequence

0→ Ker(i∗)→ Hq(Xq)−i∗→ Hq(X)→ 0

Hq(Xq) is free abelian and Ker(i∗) is generated by Hq(χe)[Sq], where χe : Sq → Xq

is a chosen gluing map for any q + 1-cell e in X.
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Proof.

0 // Ker i∗
� � // Hq(Xq) // // Hq(X) // 0

Bild ∂∗� s

%%LLLLLLLLLL

. . . // Cq+1(X)
∂∗

//

∂∗

OOOO

Hq(Xq) // Hq(Xq+1)

∼= 10.8

OO

// . . .

By 10.12 we have that Hq(Xq) ∼= Ker ∂q ⊆ Cq(X) and hence is free abeli-
an. Furthermore Hq(Xq+1) ∼= Hq(X) by 10.8 , and hence the kernel of i∗ :
Hq(Xq) → Hq(X) equals the kernel of Hq(Xq) → Hq(Xq+1) ∼= Hq(X), and
equals by the homology sequence of the pair (X,Xq) the image of ∂∗ : Cq+1(X) :=
Hq+1(Xq+1, Xq) → Hq(Xq). By 10.10 we have that Cq+1(X) is the free abeli-
an group generated by χe∗[D

q+1], where χe : (Dq+1, Sq) → (Xq+1, Xq) are chosen
characteristic maps for all q + 1-cells e in X. By 10.11 (see 8.15 ) we have that
∂∗(χe∗[D

q+1]) = [∂χe[Dq+1]] = χe∗[S
q].

10.14 Proposition. [9, 9.9.10] For the projective spaces we have

Hq(Pn(C)) ∼=

{
Z for q = 0, 2, . . . , 2n
0 otherwise

and

Hq(Pn(H)) ∼=

{
Z for q = 0, 4, . . . , 4n
0 otherwise

Proof. Since there are no-cells in all but the dimensions divisible by 2 (or 4) the
boundary operator of the cellular homology is 0 (since either domain or codomain
is zero) and hence the homology coincides with the cellular chain complex.

Simplicial versus singular homology

We are now going to show that the singular homology of a singular complex K is
naturally isomorphic to the homology of the associated CW-space |K|. The idea
behind this isomorphism is very easy: To a given simplex σ = 〈x0, . . . , xq〉 ∈ K one
associates the affine singular simplex σ̄ : ∆q → |K|, which maps ej → xj for all
0 ≤ j ≤ q. We will show that this induces a map Hq(K) → Hq(|K|), [σ] 7→ [σ].
In order that it is well defined we have to show that an even permutation of the
vertices does not change the homology class of σ̄. We do this in the following

10.15 Lemma. [9, 9.7.1] Let τ be a permutation of {0, . . . , q}. Then τ indu-
ces a affine mapping τ : (∆q, ∆̇q) → (∆q, ∆̇q), with Hq(τ)[∆q] = sign(τ)[∆q] ∈
Hq(∆q, ∆̇q).

Proof. Since any permutation is a product of transpositions, we may assume
that τ is a transposition, say (0, 1). Let an affine σ : ∆q+1 → ∆q be defined by
e0; e1, e2 . . . 7→ e1; e0, e1, . . . . The boundary of this singular q + 1-simplex in ∆q is
∂σ = σ◦δ0+

∑
i/∈{0,2}(−1)iσ◦δi+σ◦δ2 = id∆q +c+τ for c :=

∑
i/∈{0,2}(−1)iσ◦δi ∈

Sq(∆̇q). Hence H(τ)[∆q] = −[τ ] = −[∆q].
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Although this lemma shows that the mapping Hq(K) → Hq(|K|) is well-defined,
it is not so obvious to show that it will be an isomorphism, since there are a lot
more singular simplices in |K| then just the simplices of K. So we will make a little
detour via the cellular homology.

10.16 Definition. [9, 9.7.2] Let σ = 〈x0, . . . , xq〉 be an oriented q-simplex in a sim-
plicial complex K. This induces an affine mapping σ̄ : (∆q, ∆̇q) → (|K|q, |K|q−1),
which can be considered as characteristic mapping for σ ⊆ |K|. Note however that
σ̄ depends on the chosen ordering of the vertices. Hence we get a mapping

Φ : Cq(K)→ Cq(|K|) = Hq(|K|q, |K|q−1), Φ(σ) := σ̄∗[∆q] = [σ̄].

This is well-defined (i.e. depends no longer on the ordering but only on the orien-
tation) by 10.15 . Note that we used an identification 7.2 of Cq(K) with the free
abelian group generated by the simplices with some fixed orientation.

10.17 Theorem. [9, 9.7.3] The mapping Φ defines a natural isomorphism C( )→
C(| |).

Proof. That ΦK : C(K) → C(|K|) is an isomorphism is clear, since the free
generators σ 7.2 are mapped to the free generators [σ̄] 10.10 .

It is natural for simplicial mappings ψ : K → L. In fact take a simplex σ =
〈x0, . . . , xq〉 ∈ K. If ψ is injective on the vertices xj of σ, then

Φψσ = Φ〈ψ(x0), . . . , ψ(xq)〉 = [〈ψ(x0), . . . , ψ(xq)〉] = [|ψ| ◦ σ̄] = |ψ|∗Φσ.

In the other case ψσ = 0, hence Φψσ = 0 and |ψ|∗Φσ = |ψ|∗[σ̄] = [|ψ| ◦ σ̄], but
|ψ| ◦ σ̄ has values in |L|q−1, hence [|ψ| ◦ σ̄] = 0 ∈ Hq(|L|q, |L|q−1).

Let us show that it is a chain mapping. For σ = 〈x0, . . . , xq〉 we have

∂Φσ = j∗∂∗[σ̄] = j∗[∂σ̄] = [∂σ̄] =
[∑
j

(−1)j σ̄ ◦ δj
]

and

Φ∂σ = Φ
(∑

j

(−1)j〈x0, . . . ,
p−−−−qxj , . . . , xq〉

)
=
[∑
j

(−1)j σ̄ ◦ δj
]

So ∂Φ = Φ∂.

10.18 Corollary. [9, 9.7.4] Let K be a simplicial complex. Then we have natural
isomorphisms Hq(K) −Φ∗→ Hq(C(|K|)) → Hq(|K|), from the simplicial to the
cellular and further on to the singular homology.

Proof. This follows by composing the isomorphisms in 10.17 and 10.12 .

Let us now come back to the description of the isomorphism H(K) ∼= H(|K|)
indicated in the introduction to this section.

10.19 Proposition. [9, 9.7.7] The isomorphism H(K) ∼= H(|K|) between simpli-
cial and singular homology can be described as follows: Choose a linear ordering of
the vertices of K, and then map a simplex σ = 〈x0, . . . , xq〉 with x0 < · · · < xq to
σ̄, which is just σ considered as map ∆q → |K|.
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Proof. We consider the following commutative diagram

Hq(|K|q)
i∗ // //

j∗

wwnnnnnnnnnnnn

j∗

��

Hq(|K|)

∼=

��

Hq(|K|q, |K|q−1)

Cq(|K|) Ker ∂q
5 U

ggPPPPPPPPPPP
// // Hq(C(|K|))

Cq(K)

Φ ∼=

OO

Zq(K)

Φ ∼=

OO

? _oo // // Hq(K)

Φ∗ ∼=

OO

and take α ∈ Hq(K). It can be represented by a simplicial cycle z :=
∑
σ nσσ ∈

Zq(K) ⊆ Cq(K). On the other hand we can consider the singular q-chain z̄ :=∑
σ nσσ̄ ∈ Sq(|K|). It is a cycle, since ∂z̄ =

∑
σ nσ∂σ̄

!=
∑
σ nσ∂σ = ∂(

∑
σ nσσ) =

∂z = 0̄ = 0. Since the image of σ̄ is the closure of the simplex σ it is contained
in the q-skeleton |K|q, and hence we may consider β := [z̄] ∈ Hq(|K|q). Note that
j∗(β) = j∗[

∑
σ nσσ̄] =

∑
σ nσσ̄∗[∆q] =

∑
σ nσΦ(σ) = Φ(z). Thus the composition

of isomorphisms Hq(K) −Φ∗→ Hq(C(|K|)) → Hq(|K|) maps α = [z] 7→ [Φ(z)] 7→
i∗j
−1
∗ (Φ(z)) = i∗[β] = [z̄].

Fundamental group versus first homology group

10.20 Proposition. [9, 9.8.1] We have a natural homomorphism h1 : π1(X,x0)→
H1(X) given by [ϕ] 7→ ϕ∗[S1] = [ϕ]. For the last equality we consider ϕ : (S1, 1)→
(X,x0) either as singular chain ∆̇2

∼= S1 → X or as singular simplex ∆1 → S1 →
X.
If X is path-connected then this homomorphism is surjective and its kernel is just
the commutator subgroup. Thus H1(X) is just the abelization of π1(X,x0).

Proof. That h is natural is clear. Let us show that it is a homomorphism. So let
two closed curves ϕ,ψ : (S1, 1)→ (X,x0) be given.

We need a formula for the concatenation of paths considered as mappings (S1, 1)→
(X,x0): The corresponding paths I → S1 are obtained by composing with t 7→ e2πit,
hence ϕ · ψ is given by (ϕ,ψ) ◦ ν : (S1, 1) → (S1, 1) ∨ (S1, 1) → (X,x0), where
ν : S1 → S1 ∨ S1 is given by t 7→ (e2πi2t, 1) ∈ S1 ∨ S1 ⊆ S1 × S1 for 2t ≤ 1 and
t 7→ (1, e2πi(2t−1)) ∈ S1 ∨ S1 for 2t ≥ 1.

We also need a formula for ν∗ : H1(S1) → H1(S1 ∨ S1): Consider the relative
homeomorphism σ : (∆1, ∆̇1)→ (S1, 1) given by (1− t)e0 + te1 7→ e2πit. It induces
an isomorphism H1(∆1, ∆̇1)→ H1(S1, 1) ∼= H1(S1), which maps the generator [∆1]
to [S1]. Now take the barycentric refinement Bσ of σ. We have ν∗[S1] = ν∗[σ] =
ν∗[Bσ] = [inj1 ◦σ] + [inj2 ◦σ] = [S1]⊕ [S1] ∈ H1(S1 ∨ S1) = H1(S1)⊕H1(S1).
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Thus we have

h1([ϕ][ψ])
5.14
= h1([(ϕ,ψ) ◦ ν]) = ((ϕ,ψ) ◦ ν)∗[S1] = (ϕ,ψ)∗ν∗[S1]

10.6
= (ϕ,ψ)∗

(
[S1]⊕ [S1]

)
= ϕ∗[S1] + ψ∗[S1]

= h1[ϕ] + h1[ψ].

Although the theorem is valid for arbitrary path-connected topological spaces, see
[8, IV.3.8], we give the proof only for connected CW-complexes X. Since π1 and
H1 do not depend on cells of dimension greater then 2 by 5.42 and 10.9 , we may
assume dimX ≤ 2. The theorem is invariant under homotopy equivalences, hence
we may assume by 5.47 and 2.49 that X has exactly one 0-cell and that this cell
is x0. So X1 is a one point union of 1-cells and X is obtained by gluing 2-cells e
via maps fe : S1 → X1. By 2.34 and 2.47 we may assume that fe(1) = x0. Now
consider the commutative diagram

0

��
π1(X1, x0)′� _

��

// π1(X,x0)′� _

��
0 // N

� � //

h1|N
����

π1(X1, x0)
i∗ // //

h1
����

π1(X,x0)

h1

��

// 0

0 // U
� � //

��

H1(X1)
i∗ // //

��

H1(X) // 0

0 0

By 5.49 the top i∗ is onto and its kernel N is the normal subgroup generated by the
[fe]. By 10.13 the bottom i∗ is onto and its kernel U is the subgroup generated
by (fe)∗[S1]. By 5.24 we know that the abelization of a free group is the free
abelian group and by 5.38 and 8.44 the two spaces in the middle are free resp.
free abelian, with the corresponding generators. So we have that the result is true
for X1. Furthermore h1(N) = U , since the generators of N are mapped to those of
U . By diagram chasing the general result follows: Let G := π1(X1, x0). The map
h1 : π1(X,x0) → H1(X) is obviously surjective and its kernel is given by all gN
for which h1(gN) = h1(g)U = 0, i.e. h1(g) ∈ U . By surjectivity of h1 : N → U we
have an n ∈ N with h1(n) = h1(g), i.e. gn−1 ∈ G′. So gN ∈ (G/N)′. The converse
inclusion is clear, since H1(X) is abelian.

10.21 Corollary. [9, 9.8.2] For the closed orientable surface X of genus g we have
H1(X) ∼= Z2g for the non-orientable one we have H1(X) ∼= Zg−1 ⊕ Z2 for the
projective spaces we have H1(Pn) ∼= Z2 for 2 ≤ n ≤ ∞.

Proof. Use the formulas given in 5.53 , 5.54 and 5.43 .

10.23 Proposition. [9, 9.9.2] Let f : S1 → S1 be continuous of degree k. Then
f∗ : H1(S1)→ H1(S1) is given by [S1] 7→ k · [S1].
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Proof. We know that f acts by multiplication in homotopy and using the naturality
of h1 gives the same result for homology.

Z
∼= //

k·
��

π1(S1, 1)
∼=
h1

//

π1(f)

��

H1(S1)

H1(f)

��
Z

∼= // π1(S1, 1)
∼=
h1

// H1(S1)

For a direct proof see [9, 9.5.5] and 2.17 .

10.24 Proposition. [9, 9.9.9] We have for the homology of the closed orientable
surface of genus g:

Hq(X) ∼=


Z for q = 0, 2
Z2g for q = 1
0 otherwise

and for the non-orientable ones:

Hq(X) ∼=


Z for q = 0
Zg−1 ⊕ Z2 for q = 1
0 otherwise

Proof. We calculate the cellular homology. Recall that in both cases X can be
described as the CW-complex obtained by gluing one 2-cell e to a join of circles
S1 along a map f : S1 →

∨k
S1 of the form in1

j1
· · · · · inmjm . Thus the non-vanishing

cellular chain groups are C0(X) ∼= Z, C1(X) ∼= Rk and C2(X) ∼= Z with generators
given by the base-point 1, the 1-cells e1

j and the 2-cell e2. As in the proof of 10.20
and using 10.23 one shows that f∗[S1] = n1 · [ē1

j1
]+ · · ·+nm · [ē1

jm
]. Hence ∂2(e2) =

j∗(χe|S1)[S1] = n1e
1
j1

+ · · ·+ nme
1
jm

, whereas ∂1 = 0.
In case of an oriented closed surface X of genus g we thus have ∂2e

2 = e1
1 + e1

2 −
e1

1 − e1
2 + · · · = 0, hence Hq(X) = Hq(C(X)) = Cq(X) is as claimed.

In case of a non-orientable surfaces X of genus g we have ∂2e
2 = ∂(χe

2

∗ [D2]) =
10.11

====== j∗f∗[S1] = 2e1
1 + · · · + 2e1

g, which shows that H2(X) = Ker ∂2 = {0} and
H1(X) = Ker ∂1/Ker ∂2 = Zg/2Z(e1

1 + · · ·+ e1
g) = ab〈e1

1, . . . , e
1
g : 2(e1

1 + · · ·+ e1
g) =

0〉 = ab〈e1
1, . . . , e

1
g−1, x := e1

1 + · · ·+ e1
g : 2x = 0〉 = Zg−1 ⊕ Z2.

10.25 Proposition. [9, 9.9.14] For the projective spaces we have

Hq(Pn(R)) ∼=


Z for q = 0 or q = n ≡ 1 mod 2
Z2 for 0 < q < n with q ≡ 1 mod 2
0 otherwise

Proof. The idea is to consider a CW-decomposition of Sn compatible with the
equivalence relation x ∼ −x, which gives Pn = Sn/∼. For this we consider the
spheres S0 ⊂ S1 ⊂ · · · ⊂ Sn and the cells {x ∈ Sq : ±xq+1 > 0} with characteristic
map fq± : x 7→ (x,±

√
1− |x|2). They form a cell decomposition of Sn and hence

eq± := (fq±)∗[Dq] is a basis in Cq(Sn). We have the reflection r : Dq → Dq, x 7→
−x and may consider it as mapping r : (Sq, Sq−1) → (Sq, Sq−1) to obtain an
homomorphism r∗ : Cq(Sn)→ Cq(Sn).
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We claim r∗e
q
+ = (−1)qeq−: Note that r∗[Dq] = (−1)q[Dq] which is obvious for

q = 1 and follows by induction for q ≥ 2. Since r ◦ fq+ = fq− ◦ r we thus get
r∗e

q
+ = r∗(f

q
+)∗[Dq] = (fq−)∗r∗[Dq] = (−1)qeq−.

Next we claim that ∂eq+1
+ = ±(eq+ − eq−) = ∂eq+1

− : Since fq+1
± |Sq = id we get

∂eq+1
± = j∗[Sq] using 10.11 . Now consider

Hq(Sq−1) // Hq(Sq)
j∗ // Hq(Sq, Sq−1)

∂∗ // Hq−1(Sq−1) // Hq−1(Sq)

0 Z ab〈{eq±}〉 Z 0

So ∂∗ 6= 0 since it is onto and in particular applied to the generators eq± we have
∂∗e

q
+ = ∂∗e

q
− 6= 0. So Ker ∂∗ ∼= Z is generated by eq+− e

q
−, but it coincides with the

image of j∗ and hence is generated by j∗[Sq]. Thus j∗[Sq] = ±(eq+ − e
q
−).

Now Pn is a CW -complex with cells en = p(eq±) and with characteristic mappings
p ◦ fq+ : Dq → Pq. Hence the generators of Cq(Pn) are given by (p ◦ fq+)∗[Dq] again
denoted eq. Since p◦r = p we have by the first claim that p∗(e

q
−) = (−1)qp∗(r∗e

q
+) =

(−1)qp∗(e
q
+) = (−1)qeq. For 0 < q ≤ n we get by the second claim that

∂eq = ∂p∗(e
q
+) = p∗∂(eq+) = ±p∗(eq−1

+ − eq−1
− )

= ±(1− (−1)q−1)eq−1 =

{
0 for odd q

±2eq−1 for even q
.

For even q with 0 < q ≤ n we have no non-trivial cycle in Cq(Pn), since ∂eq =
±2eq−1. For odd 0 < q ≤ n we have that eq is a cycle and 2eq = ±∂eq+1 is a
boundary for q < n. So the claimed homology follows.
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closed q-chains, 95

closed manifold, 12

cofibration, 35
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cone, 98, 108
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connected sum, 15

connectible, 45

contractible, 30

convex, 3
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covering map, 76

covering transformations, 78

CW-complex, 52
CW-decomposition, 52

CW-pair, 53
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CW-subspace, 53
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deformation retract, 37
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dense functor, 80
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direct sum of Abelian groups, 65
doubling of a manifold, 15

edges of a simplical complex, 44
equivalence classes, 5

exact, 93

exact q-chains, 95
exact sequence of Abelian groups, 97

face, 43
face-map, 106

fibers, 76

fibration, 35
first homotopy group, 60

free abelian group, 66

free group, 66
free product of groups, 64

fundamental group, 60

general lens space, 20

graph, 71

group with generators X and defining rela-
tions R, 66

Heegard decomposition, 18
homeomorphism of pairs, 2
homologous q-chains, 95

homology, 95
homology group, 96

homomorphism of coverings, 78
homotopic, 29, 30
homotopy, 29
homotopy class, 29

homotopy equivalence, 37
homotopy equivalence of pairs, 37
homotopy equivalent, 37

homotopy extension property (HEP), 35
homotopy of pairs, 30
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homotopy relative a subset, 30

induced ordering of the opposite face, 94

inductive limit, 67

inverse path, 60

isotropy subgroup, 83

Klein’s bottle, 14

knot, 23

leaves, 76

lens space, 18

Möbius-strip, 14

manifold, 12

mapping cylinder, 40

mapping degree, 32

mapping of pairs, 2

Mayer-Vietoris sequence, 115

natural transformation, 110

neighborhood deformation retract, 37

neutral element, 64

normal coverings, 80

normal subgroup, 64

normal subgroup generated by a subset, 64

orbit space, 19

orientation of a q-simplex, 93

pair of spaces, 2

points in general position, 43

polyhedra, 44

product of groups, 64

projective plane, 16

projective space, 16

push-out of groups, 65

quotient mapping, 5

quotient topology, 5

relative chain group, 103

relative homeomorphism, 2

relative homology, 103

relative singular q-chains, 108

representationof group, 66

retract, 33

semi-locally simply connected, 88

short exact sequence of Abelian groups, 100

simplex, 43

simplicial approximation, 46

simplicial complex, 43

simplicial mapping, 45

simply connected space, 62

singular q-chains, 106

singular q-simplex, 106

singular chain group, 106

singular homology group, 107

splitting sequence, 101

standard (closed

) q-simplex, 106

star, 48

strict deformation retract, 37

subcomplex, 45

subgroup, 64

subgroup generated by a subset, 64

surface, 12

topological equivalent, 23

topological group, 21

total space, 76
tree, 71

triangulation, 44

trivialising neighborhood, 76
turning (winding) number, 34

underlying topological space, 44

vertices, 43

vertices of a simplical complex, 44
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