Exercises for Analysis on Manifolds

SS 2018

Andreas Kriegl

1. Surfaces of any genus.

Let $f : \mathbb{R} \to \mathbb{R}$ be C^{∞} . Under which conditions on $\varepsilon > 0$ describes the equation

$$(f(x) + y^2)^2 - \varepsilon (f(x) + y^2) + z^2 = 0$$

a manifold? Furthermore show: If f is a polynomial with 2g simple zeros and positive highest coefficient, then, for appropriately chosen ε , this manifold is an oriented surface of genus g. **Hint:** Consider the intersection curves with the planes parallel to the u-z plane for f(x) < 0 and for

Hint: Consider the intersection curves with the planes parallel to the *y*-*z* plane for f(x) < 0 and for f(x) > 0.

2. Quadrics.

Let $b : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be bilinear, symmetric and $a \in L(\mathbb{R}^n, \mathbb{R})$. Find sufficient conditions under which the quadric $M := \{x \in \mathbb{R}^n : b(x, x) + a(x) = 1\}$ is a manifold of dimension n - 1. Identify paraboloid, hyperboloid and ellipsoid as special casees.

3. Conformal linear mappings.

Show that a bijective linear map $f: E \to E$ on an Euclidean space E is conformal (i.e. angle preserving) if and only if a $\lambda > 0$ exists, such that $\langle f(x)|f(y)\rangle = \lambda \langle x|y\rangle$ holds for all $x, y \in E$, i.e. $\frac{1}{\sqrt{\lambda}}f$ is an isometry.

Hint: (\Rightarrow) For $v \in E$, define $\lambda(v) > 0$ by $||f(v)||^2 = \lambda(v) ||v||^2$. Let (e_1, \ldots, e_n) be an orthonormal basis. Then $e_i + e_j \perp e_i - e_j$ and thus also for their images under f. Deduce that $\lambda(e_i) = \lambda(e_j)$ and furthermore that λ is constant. Finally use the polarization equation to obtain the desired identity.

4. Conformity of the stereographic projection.

Show that the stereographic projection $S^n \to \mathbb{R}^n$ angle preserving, i.e. its derivative at each point is conformal.

Hint: Show that its inverse mapping $h : \mathbb{R}^n \to S^n$ is conformal.

5. The image of hyperspheres under the stereographic projection.

Show that the stereographic projection $S^n \to \mathbb{R}^n$ maps all (n-1)-spheres to (n-1)-spheres or hyperplanes of the \mathbb{R}^n .

Hint: The equation of an (n-1) sphere or hyperplane is

$$\alpha(x_1^2 + \dots + x_n^2) + \beta_1 x_1 + \dots + \beta_n x_n + \gamma = 0$$

with $4\alpha\gamma < \beta_1^2 + \cdots + \beta_n^2$ and the stereographic projection maps (y_1, \ldots, y_{n+1}) to (x_1, \ldots, x_n) with $x_i = \frac{y_i}{1-y_{i+1}}$.

6. Quaternions.

Show: The set $\left\{\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} : a, b \in \mathbb{C}\right\}$ is a subring of the the ring of complex 2 × 2-matrices and even a skew field (i.e. division ring). If one identifies \mathbb{C}^2 with these ring, by virtue of the linear mapping $(a, b) \mapsto \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$, then \mathbb{C}^2 becomes also a skew field \mathbb{H} , whose elements are called quaternions. The square of the norm of (a, b) is the determinant of $\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$. Thus $|(a_1, b_1) \cdot (a_2, b_2)| = |(a_1, b_1)| \cdot |(a_2, b_2)|$ holds and the set $S^3 \subseteq \mathbb{H}$ of the unitary quaternions is a subgroup of \mathbb{H} . If one identifies \mathbb{C}^2 with $\mathbb{R} \times \mathbb{R}^3$, then multiplication takes the following form: $(t, x) \cdot (s, y) = (ts - \langle x, y \rangle, ty + sx - x \times y)$ for $(t, x), (s, y) \in \mathbb{R} \times \mathbb{R}^3$. Show furthermore that: $(\forall x \in \{0\} \times \mathbb{R}^3 : xy = yx) \Rightarrow y \in \mathbb{R} \times \{0\}$ and $(\forall x \in \mathbb{H} : xy = zx) \Rightarrow y = z \in \mathbb{R} \times \{0\}$. By differentiating the equation $xx^{-1} = 1$, calculate the derivative of the map inv $: x \mapsto x^{-1}$.

7. Smoothness of the mapping "taking the image".

Show that $T \mapsto im(T)$, $L_r(m.n) \to G(r,n)$ is C^{∞} . **Hint:** Describe this mapping locally as composition

$$L_r(m,n) \to L_r(r,n) \to V(r,n) \to G(r,n)$$

where the first (local!) mapping is given by restricting to a suitably chosen r-dimensional subspace, the second one is Gram-Schmidt orthonormalization of the columns of the matrix, and the last one is "taking the image" treated in the lectures.

8. Smoothness of the mapping "taking the kernel".

Show that $T \mapsto \ker(T)$, $L_r(m, n) \to G(m - r, m)$ is C^{∞} . **Hint:** Ker $T = (\operatorname{im} T^t)^{\perp}$.

9. Möbius strip, part 1.

Let $M := [-1, 1] \times (-1, 1) / \sim$, where \sim is the equivalence relation generated by $\forall s : (-1, -s) \sim (1, s)$, and $q : [-1, 1] \times (-1, 1) \rightarrow M$, the quotient map $(t, s) \mapsto [(t, s)]$.

Furthermore, let $\bar{\varphi}_0, \bar{\varphi}_1: (-1,1) \times (-1,1) \to \mathbb{R}^2$ be given by

$$\bar{\varphi}_0(t,s) := (t,s) \text{ and } \bar{\varphi}_1(t,s) := \begin{cases} (t+1,s) & \text{ for } t < 0\\ (t-1,-s) & \text{ for } t \ge 0 \end{cases}$$

and $\varphi_i := q \circ \overline{\varphi}_i$. Then $\overline{\varphi}_1$ exchanges the left rectangle $(1, 0) \times (-1, 1)$ with the right one $[0, 1) \times (-1, 1)$ and mirrors them vertically. Show that $\{\varphi_0, \varphi_1\}$ is a C^{∞} -atlas for M.

10. Möbius strip, part 2.

Show that the map

$$f: \mathbb{R}^2 \to \mathbb{R}^3, \quad (t,s) \mapsto \left(\left(1 + s \cos(\frac{\pi}{2}t) \right) \cos(\pi t), \left(1 + s \cos(\frac{\pi}{2}t) \right) \sin(\pi t), s \sin(\frac{\pi}{2}t) \right)$$

induces a diffeomorphism $\tilde{f} : [(t,s)] \mapsto f(t,s)$ of M from example 9 with the submanifold Möb:= $f(\mathbb{R} \times (-1,1)) \subseteq \mathbb{R}^3$.

Hint: Use f is a local parameterization of Möb and that $f(x) = f(y) \Leftrightarrow x \sim y$ for all $x, y \in [-1,1] \times (-1,1)$.

11. Tangent space of the space of mappings of rank k.

Determine the tangent space of the manifold $L_k(n,m)$ at

$$f: (x,y) \mapsto (x,0), \quad \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^k \times \mathbb{R}^{m-k}.$$

12. Tangent space of the Grassmann manifold.

Determine the tangent space of the Grassmann manifold G(k, n) at the point $P : \mathbb{R}^k \hookrightarrow \mathbb{R}^n, x \mapsto (x, 0)$.

13. Tangent space of the Stiefel manifold.

Determine the tangent space of the Stiefel manifold V(k,n) at the point $A: \mathbb{R}^k \hookrightarrow \mathbb{R}^n, x \mapsto (x,0)$.

14. Normal space of a surface.

Show that the normal space $(T_p M)^{\perp}$ for each 2-dimensional manifold $M \subseteq \mathbb{R}^3$ is generated by the gradient $\operatorname{grad}_p f$ of a regular equation and is also generated by the cross product $\partial_1 \varphi(0) \times \partial_2 \varphi(0)$ for a parameterization φ with $\varphi(0) = p$.

Andreas Kriegl

15. Chain Rule.

Prove lemma [1, 10.4] for abstract manifolds.

Hint: In order to determine $T_p f$, evaluate this expression at $\partial \in \text{Der}_p(C^{\infty}(M, \mathbb{R}), \mathbb{R})$ and the result on $h \in C^{\infty}(M, \mathbb{R})$, i.e. consider $(T_p f)(\partial)(h)$. For the product rule use the isomorphism $\text{Der}_p(C^{\infty}(\mathbb{R}, \mathbb{R}), \mathbb{R}) \cong \mathbb{R}, \partial \mapsto \partial(\text{id})$.

16. Embedding of the projective space.

Show that the space \mathbb{P}^n of the straight line in the \mathbb{R}^{n+1} can be embedded into \mathbb{R}^{2n} .

Hint: Let $h: \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \to \mathbb{R}^{2n+1}$ be given by

$$(x_0, \dots, x_n; y_0, \dots, y_n) \mapsto \left(\sum_{i+j=0; i,j \le n}^k x_i y_j\right)_{k=0}^{2n} = \left(x_0 y_0, x_0 y_1 + x_1 y_0, \dots, \sum_{i=0}^n x_i y_{n-i}, \dots, x_{n-1} y_n + x_n y_{n-1}, x_n y_n\right)$$

and let $g: S^n \to S^{2n}$ be given by $g(x) = \frac{h(x,x)}{|h(x,x)|}$. Then $g(x_1) = g(x_2) \Leftrightarrow x_1 = \pm x_2$ holds (if $h(x,x) = \lambda^2 h(y,y)$, then $h(x + \lambda y, x - \lambda y) = 0$ and therefore $x + \lambda y = 0$ or $x - \lambda y = 0$) and thus provides an injective mapping $\mathbb{P}^n \to \{(z_0, \dots, z_{2n}) \in S^{2n} : z_0 \ge 0\}$.

17. Universal vector bundle.

Show that $E(k,n) := \{(\varepsilon, v) \in G(k,n) \times \mathbb{R}^n : v \in \varepsilon\} \to G(k,n), (\varepsilon, v) \mapsto \varepsilon$ is a (the so-called universal) vector bundle over the Grassmann manifold. Its fiber over a point in G(k,n), i.e. over a k-plane ε in \mathbb{R}^n , is just this plane.

Hint: In order to recognize E(k,n) as a vector subbundle of $G(k,n) \times \mathbb{R}^n$ (and thus especially as a manifold), consider the locally defined mapping $\varphi : G(k,n) \to GL(n)$,

$$\varphi: \begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} A & 0 \\ C & 1 \end{pmatrix}$$

Show that $\varphi(\varepsilon)(\mathbb{R}^k \times \{0\}) = \varepsilon$ and thus $(\varepsilon, v) \mapsto (\varepsilon, \varphi(\varepsilon) \cdot v)$ is a local diffeomorphism of $G(k, n) \times \mathbb{R}^n$, which locally maps the subspace $G(k, n) \times \mathbb{R}^k \times \{0\}$ to E(k, n).

18. Universality of $E(k,s) \rightarrow G(k,s)$.

It is $p: E \to M$ a k-plane bundle and $f: E \to M \times \mathbb{R}^s$ a VB monomorphism over id_M . Show that E is isomorphic to the pullback bundle $g^*(E(k,s))$, where g is the classifying map described in [1, 27.23]. **Hint:** Using [1, 27.11], show that the natural map $E \to M \times_{G(k,s)} E(k,s)$ is a VB isomorphism

19. Smooth normality.

Let M be a paracompact Hausdorff manifold and let $A_0, A_1 \subseteq M$ be closed and disjoint. Show the existence of a smooth function $f: M \to \mathbb{R}$ with $f|_{A_i} = i$ for $i \in \{0, 1\}$.

Hint: Consider the partition of 1, which is subordinated to the covering $\{M \setminus A_0, M \setminus A_1\}$.

20. Denseness of smooth functions.

Let M be a paracompact Hausdorff manifold, $g: M \to \mathbb{R}$ and $\varepsilon: M \to (0, +\infty)$ continuous. Show the existence of a smooth function $h: M \to \mathbb{R}$ with $|h(x) - g(x)| < \varepsilon(x)$ for all $x \in M$.

Hint: Use a partition \mathcal{F} of unity, which is subordinated to the covering with the sets $U_x := \{y : |g(y) - g(x)| < \varepsilon(y)\}$ for $x \in M$ and put $h(x) := \sum_{f \in \mathcal{F}} f(x) g(x_f)$, where $\operatorname{Trg}(f) \subseteq U_{x_f}$.

21. Special indexing of partitions of unity.

Show that the partition \mathcal{F} of unity subordinated to a covering \mathcal{U} can be chosen in such a way, that $\mathcal{F} = \{f_U : U \in \mathcal{U}\}$ with $\operatorname{Trg}(f_U) \subseteq U$ for all $U \in \mathcal{U}$.

Hint: Let \mathcal{F} be any subordinated partition of unity, i.e. for each $f \in \mathcal{F}$ exists a $U \in \mathcal{U}$ with $\operatorname{Trg}(f) \subseteq U$. Choose such a U_f for each $f \in \mathcal{F}$ and define a new partition of unity by $f_U := \sum_{f \in \mathcal{F}: U_f = U} f$.

22. A non integrables subbundle.

Show directly that the subvector bundle of $T\mathbb{R}^3$ defined in [1, 18.3.3] is not integrable. Hint: Determine the Lie-backet of the two generating vector fields.

In the following Exercises 23-28 we consider $S^2 \subseteq \mathbb{R}^3$ as a Riemann manifold with the metric inherited from \mathbb{R}^3 . We use as charts off the poles

- the spherical coordinates $(\theta, \varphi) \mapsto (\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta)$ from [1, 3.4]
- and the stereographic coordinates $(t,s) \mapsto \frac{1}{t^2+s^2+1}(2t,2s,t^2+s^2-1)$ from [1,3.5].

23. Restricting a vector field to S^2 .

Consider the velocity field $(x, y, z) \mapsto (-y, x, 0)$ on \mathbb{R}^3 , which corresponds to the rotation around the z axis. Express the restriction ξ of this vector field to S^2 in the two coordinates mentioned above.

Furthermore, do the analoguous calculation for the vector field $\eta: (x, y, z) \mapsto (xz, yz, -x^2 - y^2)$.

24. Riemann metrics on S^2 .

Describe the Riemann metric of S^2 as a 2-fold contravariant tensor field in the coordinates from above.

25. Associated 1-form on S^2 .

Describe the 1-forms associated via \sharp to the vector fields from Exercise 23 in the coordinates from above.

26. Volume form on S^2 .

Describe the volume form of S^2 in the coordinates from above.

27. \wedge product on S^2 .

Find the \wedge product of the 1-forms from Exercise 25 and compare it to the volume form from Exercise 26.

28. Pullback of 1-forms along a curve in S^2 .

Determine the pullback of the 1-forms from Exercise 25 along the mapping $f : \mathbb{R} \to S^2, t \mapsto$ $(\sin t, \frac{3}{5}\cos t, \frac{4}{5}\cos t).$

29. 1-forms of related vector fields.

Let $f: M \to \tilde{M}$ be a smooth mapping between manifolds using Riemann metrics g and \tilde{g} . Continue to be $\xi \in \mathfrak{X}(M)$ and $\tilde{\xi} \in \mathfrak{X}(\tilde{M})$. Show: If ξ is *f*-related to $\tilde{\xi}$ and $g = f^*\tilde{g}$, so is $\sharp \xi = f^*(\sharp \tilde{\xi})$.

30. Hodge star operator. Let *E* be an oriented *m*-dimensional Euclidean vector space. Then $\dim(\bigwedge^k E) = \binom{m}{k}$ and thus $\bigwedge^k E \cong \bigwedge^{m-k} E$. We want to describe an isomorphism $* : \bigwedge^k E \to \bigwedge^{m-k} E$, which does not depend on the choice of a basis. This is called the Hodge star operator and is given by the following implicit equation:

$$\eta \wedge *\omega = \langle \eta, \omega \rangle \cdot \det \text{ for } \eta, \omega \in \bigwedge^k E.$$

Where the inner product on \bigwedge^k is defined by $e^{i_1} \land \cdots \land e^{i_k}$ to be an orthonormal base if (e^i) is one of E. Show that this really uniquely determines a linear operator.

To do so, calculate the coefficients of $*(e^{i_1} \wedge \cdots \wedge e^{i_k})$ relative to the associated base of $\bigwedge^{n-k} E$.

31. Inverse of Hodge star operator.

Show that the Hodge star operator is an isometry that satisfies $*\circ * = (-1)^{k(m-k)} : \bigwedge^k E \to \bigwedge^{m-k} E \to \bigwedge^k E$.

32. Hodge star operator for Riemann manifolds.

For an oriented Riemann manifold (M,g) of dimension m, we define the Hodge star operator *: $\Omega^k(M) \to \Omega^{m-k}(M)$ by $(*\omega)(x) := *(\omega(x))$. Show that $*: C^{\infty}(M, \mathbb{R}) = \Omega^0(M) \to \Omega^m(M)$ is given by $f \mapsto f \cdot \text{vol}$ and $\mathfrak{X}(M) \cong \Omega^1(M) \to \Omega^{m-1}(M)$ by $\xi \mapsto i_{\xi}$ vol.

33. Inner product on the dual space.

Let E be a finite dimensional Euclidean vector space and E^* its dual space. Define the canonical inner product on E^* by $\langle v, w \rangle := \langle bv, bw \rangle$ for all $v, w \in E^*$. Show that the dual base of each orthonormal base of E is an orthonormal basis and $(\langle g^i, g^j \rangle)_{i,j}$ is the inverse matrix to $(\langle g_i, g_j \rangle)_{i,j}$ for each base $(g_i)_i$ of E with dual base g^i .

34. Divergence of vector fields.

The divergence of a vector field $\xi \in \mathfrak{X}(M)$ is defined by

$$\operatorname{div} \xi := \ast \left(d(\iota_{\xi} \operatorname{vol}_{M}) \right) \stackrel{32}{=} (\ast \circ d \circ \ast \circ \sharp)(\xi) \in C^{\infty}(M, \mathbb{R}).$$

Show that $\operatorname{div} \xi \cdot \operatorname{vol}_M = \mathcal{L}_{\xi} \operatorname{vol}_M$ holds and determine the local formula for $\operatorname{div} \xi$.

Hint: For the latter, use the local formula from Exercise 32:

$$\iota_{\xi} \operatorname{vol}_{M} = \sqrt{G} \sum_{j} (-1)^{j-1} \xi^{j} du^{1} \wedge \ldots \wedge \overline{du^{j}}^{1} \wedge \ldots \wedge du^{m}$$

35. Inverse images and intersections of submanifolds.

Prove [1, 27.9] using [1, 27.8].

Hint: $g: X \to Y$ is for SS1.

36. Poincaré Lemma.

Let ω be a closed k-form on an open and (with respect to 0) star-shaped set $U \subseteq \mathbb{R}^n$. Determine an explicit formula for a solution η of $d\eta = \omega$.

Hint: After proof of the homotopyi axiom is $\eta = I_0^1(i_{\xi}(H^*(\omega)))$ where $H : U \times \mathbb{R} \to U$ is the homotopy $(x, t) \mapsto tx$ and $\xi = \frac{\partial}{\partial t}$.

37. Volume element of S^n .

Use [1, 28.10] to identify the volume element of S^n as

$$\operatorname{vol}_{S^n} = \iota^* \left(\sum_k (-1)^k x^k \, dx^0 \wedge \dots \wedge \overline{dx^k} \wedge \dots \wedge dx^n \right)$$

. Express this term for n = 2 in spherical coordinates and determine the surface area $\int_{S^2} \operatorname{vol}_{S^2}$.

38. Decomposition of volume forms on a product.

Let M and N be two oriented manifolds of dimension m and n. For $\omega \in \Omega_c^m(M)$ and $\eta \in \Omega_c^n(N)$ put $\omega \wedge \eta := \operatorname{pr}_1^*(\omega) \wedge \operatorname{pr}_2^*(\eta) \in \Omega_c^{m+n}(M \times N)$. For $f \in C^{\infty}(M \times N, \mathbb{R})$ define $g \in C^{\infty}(M, \mathbb{R})$ by $g(x) := \int_N f(x, \cdot) \eta$. Show that:

$$\int_{M \times N} f \cdot \omega \wedge \eta = \int_M g \cdot \omega$$

Andreas Kriegl

Each m+n-form on $M \times N$ can be written as $f \cdot \omega \wedge \eta$ with appropriate $f \in C^{\infty}(M \times N, \mathbb{R}), \omega \in \Omega^{m}(M)$, and $\eta \in \Omega^{n}(N)$.

39. Cohomology with compact carriers of cylinders.

Determine $H^k_c(S^j \times \mathbb{R}^n)$ by induction to j using the Mayer-Vietoris sequence for compact carriers.

40. Five-Lemma.

Show that in the proof of [1, 29.22] all squares (needed for the application of the Five-Lemma) commute with the exception of

$$\begin{array}{c} H^{k-1}(U\cap V) \longrightarrow H^k(U\cup V) \\ & \downarrow \\ & \downarrow \\ H^{l+1}_c(U\cap V)^* \longrightarrow H^l_c(U\cup V)^* \end{array}$$

which only commutes up to a sign.

Hint: In the proof of [1, 26.3.4], $\varphi_U := h_V \varphi$ and $\varphi_V := -h_U \varphi$ is the correct definition.

Literatur

[1] A. Kriegl. Analysis on Manifolds. Univ. Wien, SS 2018.