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Exercises for Analysis on Manifolds

SS 2018

Andreas Kriegl

1. Surfaces of any genus.
Let f : R→ R be C∞. Under which conditions on ε > 0 describes the equation

(f(x) + y2)2 − ε (f(x) + y2) + z2 = 0

a manifold? Furthermore show: If f is a polynomial with 2g simple zeros and positive highest coefficient,
then, for appropriately chosen ε, this manifold is an oriented surface of genus g.
Hint: Consider the intersection curves with the planes parallel to the y-z plane for f(x) < 0 and for
f(x) > 0.

2. Quadrics.
Let b : Rn ×Rn → R be bilinear, symmetric and a ∈ L(Rn,R). Find sufficient conditions under which
the quadric M := {x ∈ Rn : b(x, x) + a(x) = 1} is a manifold of dimension n− 1. Identify paraboloid,
hyperboloid and ellipsoid as special casees.

3. Conformal linear mappings.
Show that a bijective linear map f : E → E on an Euclidean space E is conformal (i.e. angle preserving)
if and only if a λ > 0 exists, such that 〈f(x)|f(y)〉 = λ〈x|y〉 holds for all x, y ∈ E, i.e. 1√

λ
f is an

isometry.
Hint: (⇒) For v ∈ E, define λ(v) > 0 by ‖f(v)‖2 = λ(v) ‖v‖2. Let (e1, . . . , en) be an orthonormal
basis. Then ei + ej ⊥ ei − ej and thus also for their images under f . Deduce that λ(ei) = λ(ej) and
furthermore that λ is constant. Finally use the polarization equation to obtain the desired identity.

4. Conformity of the stereographic projection.
Show that the stereographic projection Sn → Rn angle preserving, i.e. its derivative at each point is
conformal.
Hint: Show that its inverse mapping h : Rn → Sn is conformal.

5. The image of hyperspheres under the stereographic projection.
Show that the stereographic projection Sn → Rn maps all (n − 1)-spheres to (n − 1)-spheres or
hyperplanes of the Rn.
Hint: The equation of an (n− 1) sphere or hyperplane is

α(x2
1 + · · ·+ x2

n) + β1x1 + · · ·+ βnxn + γ = 0

with 4αγ < β2
1 + · · · + β2

n and the stereographic projection maps (y1, . . . , yn+1) to (x1, . . . , xn) with
xi = yi

1−yi+1
.

6. Quaternions.
Show: The set

{(
a −b̄
b ā

)
: a, b ∈ C

}
is a subring of the the ring of complex 2 × 2-matrices and even

a skew field (i.e. division ring). If one identifies C2 with these ring, by virtue of the linear mapping
(a, b) 7→

(
a −b̄
b ā

)
, then C2 becomes also a skew field H, whose elements are called quaternions. The

square of the norm of (a, b) is the determinant of
(
a −b̄
b ā

)
. Thus |(a1, b1) · (a2, b2)| = |(a1, b1)| · |(a2, b2)|

holds and the set S3 ⊆ H of the unitary quaternions is a subgroup of H. If one identifies C2 with
R × R3, then multiplication takes the following form: (t, x) · (s, y) = (ts − 〈x, y〉, ty + sx − x × y) for
(t, x), (s, y) ∈ R× R3.
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Show furthermore that: (∀x ∈ {0} × R3 : xy = yx)⇒ y ∈ R× {0} and (∀x ∈ H : xy = zx)⇒ y = z ∈
R× {0}. By differentiating the equation xx−1 = 1, calculate the derivative of the map inv : x 7→ x−1.

7. Smoothness of the mapping “taking the image”.
Show that T 7→ im(T ), Lr(m.n)→ G(r, n) is C∞.
Hint: Describe this mapping locally as composition

Lr(m,n)→ Lr(r, n)→ V (r, n)→ G(r, n)

where the first (local!) mapping is given by restricting to a suitably chosen r-dimensional subspace,
the second one is Gram-Schmidt orthonormalization of the columns of the matrix, and the last one is
“taking the image” treated in the lectures.

8. Smoothness of the mapping “taking the kernel”.
Show that T 7→ ker(T ), Lr(m,n)→ G(m− r,m) is C∞.
Hint: KerT = (imT t)⊥.

9. Möbius strip, part 1.
Let M := [−1, 1]× (−1, 1)/ ∼, where ∼ is the equivalence relation generated by ∀s : (−1,−s) ∼ (1, s),
and q : [−1, 1]× (−1, 1)→M , the quotient map (t, s) 7→ [(t, s)].

Furthermore, let ϕ̄0, ϕ̄1 : (−1, 1)× (−1, 1)→ R2 be given by

ϕ̄0(t, s) := (t, s) and ϕ̄1(t, s) :=

{
(t+ 1, s) for t < 0

(t− 1,−s) for t ≥ 0

and ϕi := q ◦ ϕ̄i. Then ϕ̄1 exchanges the left rectangle (1, 0)× (−1, 1) with the right one [0, 1)× (−1, 1)
and mirrors them vertically. Show that {ϕ0, ϕ1} is a C∞-atlas for M .

10. Möbius strip, part 2.
Show that the map

f : R2 → R3, (t, s) 7→
((

1 + s cos(π2 t)
)

cos(πt),
(
1 + s cos(π2 t)

)
sin(πt), s sin(π2 t)

)
induces a diffeomorphism f̃ : [(t, s)] 7→ f(t, s) of M from example 9 with the submanifold Möb:=
f(R× (−1, 1)) ⊆ R3.

Hint: Use f is a local parameterization of Möb and that f(x) = f(y) ⇔ x ∼ y for all x, y ∈
[−1, 1]× (−1, 1).

11. Tangent space of the space of mappings of rank k.
Determine the tangent space of the manifold Lk(n,m) at

f : (x, y) 7→ (x, 0), Rk × Rn−k → Rk × Rm−k.

12. Tangent space of the Grassmann manifold.
Determine the tangent space of the Grassmann manifold G(k, n) at the point P : Rk ↪→ Rn, x 7→ (x, 0).

13. Tangent space of the Stiefel manifold.
Determine the tangent space of the Stiefel manifold V (k, n) at the point A : Rk ↪→ Rn, x 7→ (x, 0).

14. Normal space of a surface.
Show that the normal space (TpM)⊥ for each 2-dimensional manifold M ⊆ R3 is generated by the
gradient gradp f of a regular equation and is also generated by the cross product ∂1ϕ(0)× ∂2ϕ(0) for
a parameterization ϕ with ϕ(0) = p.
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15. Chain Rule.
Prove lemma [1, 10.4] for abstract manifolds.

Hint: In order to determine Tpf , evaluate this expression at ∂ ∈ Derp(C
∞(M,R),R) and the result on

h ∈ C∞(M,R), i.e. consider (Tpf)(∂)(h). For the product rule use the isomorphism Derp(C
∞(R,R),R) ∼=

R, ∂ 7→ ∂(id).

16. Embedding of the projective space.
Show that the space Pn of the straight line in the Rn+1 can be embedded into R2n.

Hint: Let h : Rn+1 × Rn+1 → R2n+1 be given by

(x0, . . . , xn; y0, . . . , yn) 7→
( k∑
i+j=0;i,j≤n

xiyj

)2n

k=0
=

=
(
x0y0, x0y1 + x1y0, . . . ,

n∑
i=0

xiyn−i, . . . , xn−1yn + xnyn−1, xnyn

)
and let g : Sn → S2n be given by g(x) = h(x,x)

|h(x,x)| . Then g(x1) = g(x2) ⇔ x1 = ±x2 holds (if

h(x, x) = λ2h(y, y), then h(x + λy, x − λy) = 0 and therefore x + λy = 0 or x − λy = 0) and thus
provides an injective mapping Pn → {(z0, . . . , z2n) ∈ S2n : z0 ≥ 0}.

17. Universal vector bundle.
Show that E(k, n) := {(ε, v) ∈ G(k, n)×Rn : v ∈ ε} → G(k, n), (ε, v) 7→ ε is a (the so-called universal)
vector bundle over the Grassmann manifold. Its fiber over a point in G(k, n), i.e. over a k-plane ε in
Rn, is just this plane.

Hint: In order to recognize E(k, n) as a vector subbundle of G(k, n) × Rn (and thus especially as
a manifold), consider the locally defined mapping ϕ : G(k, n)→ GL(n),

ϕ :

(
A B
C D

)
7→
(
A 0
C 1

)
.

Show that ϕ(ε)(Rk ×{0}) = ε and thus (ε, v) 7→ (ε, ϕ(ε) · v) is a local diffeomorphism of G(k, n)×Rn,
which locally maps the subspace G(k, n)× Rk × {0} to E(k, n).

18. Universality of E(k, s)→ G(k, s).
It is p : E →M a k-plane bundle and f : E →M ×Rs a VB monomorphism over idM . Show that E is
isomorphic to the pullback bundle g∗(E(k, s)), where g is the classifying map described in [1, 27.23].
Hint: Using [1, 27.11], show that the natural map E →M ×G(k,s) E(k, s) is a VB isomorphism

19. Smooth normality.
Let M be a paracompact Hausdorff manifold and let A0, A1 ⊆ M be closed and disjoint. Show the
existence of a smooth function f : M → R with f |Ai

= i for i ∈ {0, 1}.
Hint: Consider the partition of 1, which is subordinated to the covering {M \A0,M \A1}.

20. Denseness of smooth functions.
Let M be a paracompact Hausdorff manifold, g : M → R and ε : M → (0,+∞) continuous. Show the
existence of a smooth function h : M → R with |h(x)− g(x)| < ε(x) for all x ∈M .
Hint: Use a partition F of unity, which is subordinated to the covering with the sets Ux := {y :
|g(y)− g(x)| < ε(y)} for x ∈M and put h(x) :=

∑
f∈F f(x) g(xf ), where Trg(f) ⊆ Uxf

.

21. Special indexing of partitions of unity.
Show that the partition F of unity subordinated to a covering U can be chosen in such a way, that
F = {fU : U ∈ U} with Trg(fU ) ⊆ U for all U ∈ U .
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Hint: Let F be any subordinated partition of unity, i.e. for each f ∈ F exists a U ∈ U with Trg(f) ⊆ U .
Choose such a Uf for each f ∈ F and define a new partition of unity by fU :=

∑
f∈F :Uf=U f .

22. A non integrables subbundle.
Show directly that the subvector bundle of TR3 defined in [1, 18.3.3] is not integrable.
Hint: Determine the Lie-backet of the two generating vector fields.

In the following Exercises 23-28 we consider S2 ⊆ R3 as a Riemann manifold with the metric inherited
from R3. We use as charts off the poles

• the spherical coordinates (θ, ϕ) 7→ (cos θ cosϕ, cos θ sinϕ, sin θ) from [1, 3.4]

• and the stereographic coordinates (t, s) 7→ 1
t2+s2+1 (2t, 2s, t2 + s2 − 1) from [1, 3.5].

23. Restricting a vector field to S2.
Consider the velocity field (x, y, z) 7→ (−y, x, 0) on R3, which corresponds to the rotation around the
z axis. Express the restriction ξ of this vector field to S2 in the two coordinates mentioned above.

Furthermore, do the analoguous calculation for the vector field η : (x, y, z) 7→ (xz, yz,−x2 − y2).

24. Riemann metrics on S2.
Describe the Riemann metric of S2 as a 2-fold contravariant tensor field in the coordinates from above.

25. Associated 1-form on S2.
Describe the 1-forms associated via ] to the vector fields from Exercise 23 in the coordinates from
above.

26. Volume form on S2.
Describe the volume form of S2 in the coordinates from above.

27. ∧ product on S2.
Find the ∧ product of the 1-forms from Exercise 25 and compare it to the volume form from Exercise
26.

28. Pullback of 1-forms along a curve in S2.
Determine the pullback of the 1-forms from Exercise 25 along the mapping f : R → S2, t 7→
(sin t, 3

5 cos t, 4
5 cos t).

29. 1-forms of related vector fields.
Let f : M → M̃ be a smooth mapping between manifolds using Riemann metrics g and g̃. Continue
to be ξ ∈ X(M) and ξ̃ ∈ X(M̃). Show: If ξ is f -related to ξ̃ and g = f∗g̃, so is ]ξ = f∗(]ξ̃).

30. Hodge star operator.
Let E be an oriented m-dimensional Euclidean vector space. Then dim

(∧k
E
)

=
(
m
k

)
and thus

∧k
E ∼=∧m−k

E. We want to describe an isomorphism ∗ :
∧k

E →
∧m−k

E, which does not depend on the
choice of a basis. This is called the Hodge star operator and is given by the following implicit equation:

η ∧ ∗ω = 〈η, ω〉 · det for η, ω ∈
k∧
E.

Where the inner product on
∧k

is defined by ei1 ∧ · · · ∧ eik to be an orthonormal base if (ei) is one of
E. Show that this really uniquely determines a linear operator.

To do so, calculate the coefficients of ∗(ei1 ∧ · · · ∧ eik) relative to the associated base of
∧n−k

E.
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31. Inverse of Hodge star operator.
Show that the Hodge star operator is an isometry that satisfies ∗◦∗ = (−1)k(m−k) :

∧k
E →

∧m−k
E →∧k

E.

32. Hodge star operator for Riemann manifolds.
For an oriented Riemann manifold (M, g) of dimension m, we define the Hodge star operator ∗ :
Ωk(M)→ Ωm−k(M) by (∗ω)(x) := ∗(ω(x)). Show that ∗ : C∞(M,R) = Ω0(M)→ Ωm(M) is given by
f 7→ f · vol and X(M) ∼= Ω1(M)→ Ωm−1(M) by ξ 7→ iξ vol.

33. Inner product on the dual space.
Let E be a finite dimensional Euclidean vector space and E∗ its dual space. Define the canonical inner
product on E∗ by 〈v, w〉 := 〈[v, [w〉 for all v, w ∈ E∗. Show that the dual base of each orthonormal
base of E is an orthonormal basis and (〈gi, gj〉)i,j is the inverse matrix to (〈gi, gj〉)i,j for each base
(gi)i of E with dual base gi.

34. Divergence of vector fields.
The divergence of a vector field ξ ∈ X(M) is defined by

div ξ := ∗
(
d
(
ιξ volM

))
=
32
== (∗ ◦ d ◦ ∗ ◦ ])(ξ) ∈ C∞(M,R).

Show that div ξ · volM = Lξ volM holds and determine the local formula for div ξ.

Hint: For the latter, use the local formula from Exercise 32:

ιξ volM =
√
G
∑
j

(−1)j−1ξjdu1 ∧ . . . ∧ p−−−−−−−−−qduj ∧ . . . ∧ dum

35. Inverse images and intersections of submanifolds.
Prove [1, 27.9] using [1, 27.8].

Hint: g : X → Y is for SS1.

36. Poincaré Lemma.
Let ω be a closed k-form on an open and (with respect to 0) star-shaped set U ⊆ Rn. Determine an
explicit formula for a solution η of dη = ω.

Hint: After proof of the homotopyi axiom is η = I1
0 (iξ(H

∗(ω)) where H : U × R → U is the ho-
motopy (x, t) 7→ tx and ξ = ∂

∂t .

37. Volume element of Sn.
Use [1, 28.10] to identify the volume element of Sn as

volSn = ι∗
(∑

k

(−1)kxk dx0 ∧ · · · ∧ p−−−−−−−−−qdxk ∧ · · · ∧ dxn
)

. Express this term for n = 2 in spherical coordinates and determine the surface area
∫
S2 volS2 .

38. Decomposition of volume forms on a product.
Let M and N be two oriented manifolds of dimension m and n. For ω ∈ Ωmc (M) and η ∈ Ωnc (N)
put ω ∧ η := pr∗1(ω) ∧ pr∗2(η) ∈ Ωm+n

c (M × N). For f ∈ C∞(M × N,R) define g ∈ C∞(M,R) by
g(x) :=

∫
N
f(x, ) η. Show that: ∫

M×N
f · ω ∧ η =

∫
M

g · ω
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Each m+n-form on M×N can be written as f ·ω∧η with appropriate f ∈ C∞(M×N,R), ω ∈ Ωm(M),
and η ∈ Ωn(N).

39. Cohomology with compact carriers of cylinders.
Determine Hk

c (Sj × Rn) by induction to j using the Mayer-Vietoris sequence for compact carriers.

40. Five-Lemma.
Show that in the proof of [1, 29.22] all squares (needed for the application of the Five-Lemma) commute
with the exception of

Hk−1(U ∩ V ) //

��

Hk(U ∪ V )

��
H l+1
c (U ∩ V )∗ // H l

c(U ∪ V )∗

which only commutes up to a sign.
Hint: In the proof of [1, 26.3.4], ϕU := hV ϕ and ϕV := −hUϕ is the correct definition.
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