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1. Surfaces of any genus.
Let f: R — R be C*°. Under which conditions on £ > 0 describes the equation

(@) + 97 =< (f(@) +y*) + 2 =0

a manifold? Furthermore show: If f is a polynomial with 2g simple zeros and positive highest coefficient,
then, for appropriately chosen ¢, this manifold is an oriented surface of genus g.
Hint: Counsider the intersection curves with the planes parallel to the y-z plane for f(z) < 0 and for

f(z) > 0.

2. Quadrics.

Let b : R™ x R™ — R be bilinear, symmetric and a € L(R",R). Find sufficient conditions under which
the quadric M := {z € R" : b(z,z) + a(x) = 1} is a manifold of dimension n — 1. Identify paraboloid,
hyperboloid and ellipsoid as special casees.

3. Conformal linear mappings.

Show that a bijective linear map f : E — E on an Euclidean space F is conformal (i.e. angle preserving)
if and only if a A > 0 exists, such that (f(z)|f(y)) = A(z|y) holds for all z,y € E, ie. % fis an
isometry.

Hint: (=) For v € E, define A\(v) > 0 by ||f(v)]|> = A(v) ||v||*. Let (e1,...,e,) be an orthonormal
basis. Then e; +e; L e; — e; and thus also for their images under f. Deduce that A(e;) = A(e;) and
furthermore that A is constant. Finally use the polarization equation to obtain the desired identity.

4. Conformity of the stereographic projection.

Show that the stereographic projection S™ — R™ angle preserving, i.e. its derivative at each point is
conformal.

Hint: Show that its inverse mapping h : R™ — S™ is conformal.

5. The image of hyperspheres under the stereographic projection.

Show that the stereographic projection S™ — R™ maps all (n — 1)-spheres to (n — 1)-spheres or
hyperplanes of the R™.

Hint: The equation of an (n — 1) sphere or hyperplane is

O‘(x%Jr"'er?z)JrBlIl+"’+ﬂn-rn+7:0

with 4oy < 7 + -+ + B2 and the stereographic projection maps (y1,...,Yn+1) to (z1,...,2,) with

— Yi
Xr; = .
v 1-yit1

6. Quaternions.
Show: The set {(’; }b) ta,be (C} is a subring of the the ring of complex 2 x 2-matrices and even
a skew field (i.e. division ring). If one identifies C? with these ring, by virtue of the linear mapping

(a,b) — (‘; _(,15), then C? becomes also a skew field H, whose elements are called quaternions. The

square of the norm of (a, b) is the determinant of (Z ;j’). Thus |(a1,b1) - (a2, b2)| = |[(a1,b1)] - |(az, b2)|
holds and the set S® C H of the unitary quaternions is a subgroup of H. If one identifies C? with
R x R3, then multiplication takes the following form: (¢,z) - (s,y) = (ts — (z,y),ty + sz — x x y) for

(t,2), (s,y) € R x R
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Show furthermore that: (Vo € {0} x R3 : 2y =yz) =y € Rx {0} and (Ve e H:zy = 20) = y=2z2 €
R x {0}. By differentiating the equation xz~! = 1, calculate the derivative of the map inv : z — 2%

7. Smoothness of the mapping “taking the image”.
Show that T+ im(T"), L.(m.n) — G(r,n) is C*°.
Hint: Describe this mapping locally as composition

L.(m,n) = L.(r,n) = V(r,n) = G(r,n)

where the first (local!) mapping is given by restricting to a suitably chosen r-dimensional subspace,
the second one is Gram-Schmidt orthonormalization of the columns of the matrix, and the last one is
“taking the image” treated in the lectures.

8. Smoothness of the mapping “taking the kernel”.
Show that T+ ker(T), L.(m,n) — G(m — r,m) is C*.
Hint: Ker 7 = (im T%)*.

9. Mébius strip, part 1.
Let M :=[—-1,1] x (=1,1)/ ~, where ~ is the equivalence relation generated by Vs: (—1,—s) ~ (1, ),
and ¢ : [-1,1] x (—1,1) — M, the quotient map (¢, s) — [(¢, s)].

Furthermore, let g, @1 : (—1,1) x (—=1,1) — R? be given by

(t+1,s) fort <0

Dot = (7 dp t, =
90()( ,S) ( 78) an Sol( S) {(t_ 17_5) fOI' t Z 0

and ¢; := qo@;. Then @, exchanges the left rectangle (1,0) x (—1,1) with the right one [0,1) x (—1,1)
and mirrors them vertically. Show that {yg, @1} is a C*°-atlas for M.

10. Mébius strip, part 2.
Show that the map

f:R2 S R3  (t,s)— ((1 + scos(5t)) cos(mt), (14 scos(Zt)) sin(rt), ssin(gt))

induces a diffeomorphism f : [(¢,s)] — f(t,s) of M from example 9 with the submanifold M&h:=
F(R % (~1,1)) C B,

Hint: Use f is a local parameterization of Méb and that f(z) = f(y) & = ~ y for all z,y €
[-1,1] x (—1,1).

11. Tangent space of the space of mappings of rank k.
Determine the tangent space of the manifold Ly(n, m) at

f:(zy) = (2,0), RFxR"® 5 RFxR™F,

12. Tangent space of the Grassmann manifold.
Determine the tangent space of the Grassmann manifold G(k,n) at the point P : R*¥ < R” x + (z,0).

13. Tangent space of the Stiefel manifold.
Determine the tangent space of the Stiefel manifold V (k,n) at the point A : R¥ <+ R" 2+ (x,0).

14. Normal space of a surface.

Show that the normal space (T, M )+ for each 2-dimensional manifold M C R? is generated by the
gradient grad, f of a regular equation and is also generated by the cross product d1¢(0) x d2¢(0) for
a parameterization ¢ with ¢(0) = p.
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15. Chain Rule.
Prove lemma [1, 10.4] for abstract manifolds.

Hint: In order to determine T, f, evaluate this expression at 0 € Der,(C*°(M,R),R) and the result on
h € C*(M,R),i.e. consider (T, f)(0)(h). For the product rule use the isomorphism Der, (C*°(R,R),R) =
R, 0 — 0(id).

16. Embedding of the projective space.
Show that the space P" of the straight line in the R”*! can be embedded into R?".

Hint: Let h: R*T! x R**! — R?7+! be given by
k
2n
(x(),"'axn;yO,"'ayn)H ( Z xiyj) =

. 7 k=0
i+j=0;5,5<n

n
= (Cﬂoyo, ToY1 + 1Yo, - - - Z TiYn—iy- -y Tn—1Yn + TnYn—1, xnyn)
=0

and let g : S® — S?" be given by g(r) = ‘Zgig‘ Then g(z1) = g(z2) & x1 = 4z holds (if
h(z,2) = A2h(y,y), then h(x + A\y,z — A\y) = 0 and therefore  + Ay = 0 or x — A\y = 0) and thus
provides an injective mapping P — {(20, ..., 22,) € S?" : 29 > 0}.

17. Universal vector bundle.

Show that E(k,n) := {(¢,v) € G(k,n) xR" : v € e} = G(k,n), (g,v) — ¢ is a (the so-called universal)
vector bundle over the Grassmann manifold. Its fiber over a point in G(k,n), i.e. over a k-plane € in
R™, is just this plane.

Hint: In order to recognize E(k,n) as a vector subbundle of G(k,n) x R™ (and thus especially as
a manifold), consider the locally defined mapping ¢ : G(k,n) — GL(n),

(A BY_ (A0
7\c¢ b c 1)
Show that ¢(g)(R* x {0}) = ¢ and thus (&, v) > (¢, ¢(e) - v) is a local diffeomorphism of G(k,n) x R",
which locally maps the subspace G(k,n) x R¥ x {0} to E(k,n).

18. Universality of E(k,s) — G(k,s).

Itisp: E — M a k-plane bundle and f : E — M x R® a VB monomorphism over id;. Show that E is
isomorphic to the pullback bundle g*(E(k, s)), where g is the classifying map described in [1, 27.23].
Hint: Using [1, 27.11], show that the natural map £ — M Xg,s) E(k, s) is a VB isomorphism

19. Smooth normality.

Let M be a paracompact Hausdorff manifold and let Ay, A7 € M be closed and disjoint. Show the
existence of a smooth function f: M — R with f|4, =4 for i € {0,1}.

Hint: Consider the partition of 1, which is subordinated to the covering {M \ Ao, M \ A;}.

20. Denseness of smooth functions.

Let M be a paracompact Hausdorff manifold, g : M — R and € : M — (0, +o00) continuous. Show the
existence of a smooth function h : M — R with |h(z) — g(z)| < e(z) for all z € M.

Hint: Use a partition F of unity, which is subordinated to the covering with the sets U, := {y :

l9(y) — g(x)| <e(y)} for z € M and put h(z) := 3,7 f(z) g(xf), where Trg(f) C Us,.

21. Special indexing of partitions of unity.
Show that the partition F of unity subordinated to a covering U can be chosen in such a way, that
F ={fv :U eU} with Trg(fy) CU for all U € U.
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Hint: Let F be any subordinated partition of unity, i.e. for each f € F exists a U € U with Trg(f) C U.
Choose such a Uy for each f € F and define a new partition of unity by fy := Efe}':Uf:U f-

22. A non integrables subbundle.
Show directly that the subvector bundle of TR? defined in [1, 18.3.3] is not integrable.
Hint: Determine the Lie-backet of the two generating vector fields.

In the following Exercises 23-28 we consider S? C R? as a Riemann manifold with the metric inherited
from R3. We use as charts off the poles

e the spherical coordinates (6, @) — (cos 6 cos p, cos 0 sin ¢, sin §) from [1, 3.4]

e and the stereographic coordinates (¢, s) — @(QL 2s,t2 + 52 — 1) from [1, 3.5].

23. Restricting a vector field to S2.
Consider the velocity field (x,y,2) + (—y,z,0) on R3, which corresponds to the rotation around the
2z axis. Express the restriction ¢ of this vector field to S? in the two coordinates mentioned above.

Furthermore, do the analoguous calculation for the vector field 1 : (x,v, 2) — (z2,yz, —2% — y?).

24. Riemann metrics on S2.
Describe the Riemann metric of S? as a 2-fold contravariant tensor field in the coordinates from above.

25. Associated 1-form on S2.
Describe the 1-forms associated via f to the vector fields from Exercise 23 in the coordinates from
above.

26. Volume form on S2.
Describe the volume form of S? in the coordinates from above.

27. A product on S2.
Find the A product of the 1-forms from Exercise 25 and compare it to the volume form from Exercise
26.

28. Pullback of 1-forms along a curve in S2.
Determine the pullback of the 1-forms from Exercise 25 along the mapping f : R — S2%, t
(sint, % cost, % cost).

29. 1-forms of related vector fields.
Let f: M — M be a smooth mapping between manifolds using Riemann metrics g and g. Continue
to be £ € X(M) and £ € X(M). Show: If £ is f-related to £ and g = f*g, so is € = f*(4€).

30. Hodge star operator.

Let E be an oriented m-dimensional Euclidean vector space. Then dim ( A" E) = (%) and thus N E =~

A" * E. We want to describe an isomorphism * : A* E — A™ " E, which does not depend on the
choice of a basis. This is called the Hodge star operator and is given by the following implicit equation:

k
nA*xw = (n,w)-det for n,w € /\E

Where the inner product on A" is defined by €/ A -+ A €% to be an orthonormal base if (¢*) is one of
E. Show that this really uniquely determines a linear operator.

To do so, calculate the coefficients of (et A --- A ei*) relative to the associated base of /\"7]“ E.
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31. Inverse of Hodge star operator.
Show that the Hodge star operator is an isometry that satisfies xox = (—1)*(m=+) . /\k E— /\m_k E—

N E.

32. Hodge star operator for Riemann manifolds.

For an oriented Riemann manifold (M, g) of dimension m, we define the Hodge star operator = :
QF (M) — Q™= F(M) by (+w)(z) := x(w(z)). Show that * : C>°(M,R) = Q°(M) — Q™(M) is given by
[ f-voland X(M) = QY (M) — Q™Y (M) by £ — ¢ vol.

33. Inner product on the dual space.

Let F be a finite dimensional Euclidean vector space and E* its dual space. Define the canonical inner
product on E* by (v,w) := (bv,bw) for all v,w € E*. Show that the dual base of each orthonormal

base of E is an orthonormal basis and ((gi,gj>)i’j is the inverse matrix to ({(gi,g;)):,; for each base
(gi)i of E with dual base g°.

34. Divergence of vector fields.
The divergence of a vector field £ € X(M) is defined by

div € := *(d(% volM)) 2 (xodoxof)(€) € C°(M,R).
Show that div & - volpys = L¢ volps holds and determine the local formula for div§.

Hint: For the latter, use the local formula from Exercise 32:

1e volyr = V@ Z(—l)j_lgjdul ANduTA LA du™
J

35. Inverse images and intersections of submanifolds.
Prove [1, 27.9] using [1, 27.8].

Hint: g: X — Y is for SS1.

36. Poincaré Lemma.
Let w be a closed k-form on an open and (with respect to 0) star-shaped set U C R™. Determine an
explicit formula for a solution 7 of dn = w.

Hint: After proof of the homotopyi axiom is 7 = I§(i¢(H*(w)) where H : U x R — U is the ho-
motopy (z,t) — tx and & = %.

37. Volume element of S".
Use [1, 28.10] to identify the volume element of S™ as

volgn = (* (Z(fl)kxk dz® A ANdaF AN dx”)
k

. Express this term for n = 2 in spherical coordinates and determine the surface area f g2 Volgz.

38. Decomposition of volume forms on a product.
Let M and N be two oriented manifolds of dimension m and n. For w € Q"(M) and n € QF(N)
put w A 1 := pri(w) A pri(n) € QT+t (M x N). For f € C°(M x N,R) define g € C*(M,R) by

g(x) == [y f(x,-)n. Show that:
/Mfo.W/\n:/Mg.w
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Each m+n-form on M x N can be written as f-wAn with appropriate f € C>*°(M x N,R), w € Q™(M),
and n € Q"(N).

39. Cohomology with compact carriers of cylinders.
Determine H(S7 x R™) by induction to j using the Mayer-Vietoris sequence for compact carriers.

40. Five-Lemma.
Show that in the proof of [1, 29.22] all squares (needed for the application of the Five-Lemma) commute
with the exception of

HYUNV) ——=HFNU UV)

| |

HAYUNV) —= H(UUV)*

which only commutes up to a sign.
Hint: In the proof of [1, 26.3.4], ¢y := hy e and ¢y := —hyp is the correct definition.
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