
TILINGS, FUNDAMENTAL COCYCLES AND
FUNDAMENTAL GROUPS OF SYMBOLIC Zd-ACTIONS

KLAUS SCHMIDT

Abstract. We prove that certain topologically mixing two-dimensional
shifts of finite type have a ‘fundamental’ 1-cocycle with the property that
every continuous 1-cocycle on the shift space with values in a discrete
group is continuously cohomologous to a homomorphic image of the
fundamental cocycle. These fundamental cocycles are closely connected
with representations of the shift space by Wang tilings and the tiling
groups of J.H. Conway, J.C. Lagarias and W. Thurston, and they de-
termine the projective fundamental groups of the shift spaces introduced
by W. Geller and J. Propp.

1. Introduction

Recent investigations of certain classes of expansive and mixing Zd-actions
with d ≥ 2 have revealed an intrinsic algebraic structure of higher-dimen-
sional shifts of finite type. One way of realising this structure is by repres-
enting any higher-dimensional shift of finite type (SFT) in terms of Wang
tilings (cf. [2], [23], [32], [8] and Section 4). Following [5] and [30] one can
then define, for every set T of Wang tiles (and hence for every SFT), a
finitely presented group, the ‘tiling group’ of T (cf. Section 4); such groups
were originally introduced by J.H. Conway and J.C. Lagarias in [5] as a
way of deciding whether a region in the plane can be tiled by a given set of
polygonal tiles (cf. [30]). Unfortunately, a given SFT can be represented by
many different Wang tilings, and the corresponding tiling groups may differ
considerably. This makes it desirable to determine whether the tiling groups
of representations of the same SFT by different Wang tilings have anything
in common.

In dimension two W. Geller and J. Propp provided a first answer to this
question in [7] by associating with each two-dimensional SFT a ‘project-
ive fundamental group’ which is an invariant of topological conjugacy, and
which is not only conceptually, but also — in interesting examples — com-
putationally related to tiling groups.

A different approach to constructing a topological conjugacy invariant
connected with tiling groups is based on work by J. Kammeyer ([10], [11],
[12]) in which she proved that every continuous cocycle on the full 2-dimen-
sional n-shift with values in a finite group G is trivial, i.e. continuously
cohomologous to a homomorphism (see Sections 2–4 for the relevant defin-
itions). Kammeyer’s result was extended to a more general class of higher-
dimensional SFT’s in [25], where it was also shown that such shifts are
generally quite particular about the discrete groups in which they have non-
trivial first cohomology. The paper [25] also pointed out the connection
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between cohomology and Wang tilings, which is explored further in this pa-
per. From the definition of a tiling group it is clear that every set of Wang
tiles generates not only a group, but also a continuous 1-cocycle for the
shift-action σ of Z2 on the tiling space (or Wang shift) with values in the
tiling group, the ‘tiling cocycle’ (Section 4). Every representation of a SFT
as a Wang shift leads to a corresponding tiling cocycle, and every continuous
1-cocycle for the shift-action of Z2 on the SFT is a homomorphic image of
such a tiling cocycle for a suitable representation of the SFT as a Wang shift
(Theorem 4.2). Representations of the SFT as different Wang shifts may, of
course, lead to quite different tiling cocycles. However, in some interesting
examples (such as the domino tilings, the three-coloured chessboards, the
square ice model, or the lozenge tilings) there exists a nontrivial ‘funda-
mental’ cocycle c∗ with the property that every continuous 1-cocycle with
values in a discrete group (and in particular every tiling cocycle) is continu-
ously cohomologous to the composition of c∗ with a group homomorphism
(Theorems 6.7, 7.1, 8.1 and 9.1).

These fundamental cocycles have an immediate interpretation as obstruc-
tions to the ‘patching of holes’ in the spirit of [5] and [30] (cf. Section 5).
Suppose that X ⊂ AZ2

is a two-dimensional SFT with (finite) alphabet
A. If z ∈ AZ2rQ is an allowed partial configuration, where Q ⊂ Z2 is a
rectangular ‘hole’ of finite size, then it may not be possible to extend the
configuration z to all of Z2, i.e. to find a point x ∈ X whose projection onto
the coordinates Z2 rQ coincides with z. If we represent X as a Wang shift
WT and denote by Γ(T ) the tiling group of WT (cf. Section 4), then the
‘word’ in Γ(T ) obtained by running along the edges of the tiles around the
rectangular hole Q has to be equal to the identity if the tiling corresponding
to z can be extended to an element of X (cf. [5], [30]). However, different
representations of X by Wang shifts may give different answers: for ex-
ample, the tiles (7.1) represent the SFT X(3) of three-coloured chessboards,
but give no information about the possibility of filling such a hole Q since
the associated tiling cocycle is a homomorphism. In contrast, the represent-
ation of X(3) in terms of the tiles (7.3) does yield a nontrivial obstruction.
Would one obtain further information by using other sets of Wang tiles to
represent X(3)?

It turns out that any fundamental cocycle expresses the total informa-
tion about the patching of holes that can be extracted from all Wang shifts
representing a SFT X (cf. Proposition 5.2): by choosing Wang tiles T cor-
responding to a sufficiently high n-block representation of X in the sense
of Theorem 4.2 (cf. (4.7)–(4.8)) we obtain a tiling cocycle cT such that the
fundamental cocycle is a homomorphic image of cT , and every continuous
cocycle — in particular every tiling cocycle of a Wang shift representing X
— is continuously cohomologous to a homomorphic image of cT . It follows
that none of these cocycles can yield any obstructions beyond those obtained
from cT (or, indeed, from the fundamental cocycle). However, even a fun-
damental cocycle may not provide complete information about the patching
of holes (Example 5.3).

The fundamental cocycles discussed here are also related to the projective
fundamental groups of SFT’s introduced by W. Geller and J. Propp in [7]
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(cf. Section 5). If a SFT X is cohomologically trivial in the sense that
every continuous cocycle on X with values in a discrete group is trivial
then the projective fundamental group of X is also trivial (Corollary 5.8);
more generally, if X has a fundamental cocycle c∗ : Z2 ×X 7−→ G∗, where
G∗ is some discrete group, then the projective fundamental group of [7] is
(isomorphic to) an explicitly identified subgroup of G∗ (Theorem 5.5 and
the Remarks 5.6, 6.10, 7.6, 8.6 and 9.2).

This paper is organised as follows. Section 2 introduces the basic defini-
tions of SFT’s, their cohomology, and the notion of a fundamental cocycle
(Definition 2.3). Section 3 discusses a Livshitz-type result about cohomo-
logical triviality needed for the subsequent examples (Proposition 3.1 and
its corollaries). Section 4 defines Wang tilings and their tiling groups and
tiling cocycles, shows that every continuous cocycle on a SFT X with val-
ues in a discrete group is a homomorphic image of a tiling cocycle of X
(Theorem 4.2), and proves that the existence of a fundamental cocycle on
X is equivalent to the statement that all continuous cocycles on X depend
(essentially) only on a fixed range of coordinates (Corollary 4.4). Section 5
investigates the connection of tiling groups, tiling cocycles and fundamental
cocycles with extension problems and the projective fundamental groups of
SFT’s. The Sections 6–9 deal with specific examples. In Section 6 we discuss
domino tilings and prove that the tiling cocycle of a natural representation
of the dominoes by Wang tiles is fundamental in the above sense (Theorem
6.7). This cocycle takes values in the group G× Z2, where change

G =
{( a(1,1) a(1,2) a(1,3)

0 1 a(2,3)

0 0 a(3,3)

)
: a(1,3) ∈ Z, a(1,1), a(3,3) ∈ {1,−1},

a(1,2), a(2,3), a(1,1) + a(1,2), a(3,3) + a(2,3) ∈ {0, 1}
}
.

As a consequence of Corollary 3.3 we also obtain that the dominoes have no
nontrivial cocycles with values in an abelian group (Theorem 6.6). In Section
7 we study the SFT consisting of all colourings of Z2 by 3 colours such that
no two adjacent lattice points have the same colour. For these three-coloured
‘chessboards’ we obtain a fundamental cocycle with range Z3 (Theorem 7.1);
if one uses more than three colours the first cohomology becomes trivial by
Example 4.4 in [25]. Section 8 deals with the ‘square ice’ model, which is a
three-to-one factor of the three-coloured chessboards and has a fundamental
cocycle with values in Z3 (Theorem 8.1). Section 9 discusses a subshift of
the square ice model, the lozenge tilings described in [30] and in Example
4.6 in [25]. Again we obtain a fundamental cocycle with values in Z3 which
is, in fact, the restriction to the lozenge tilings of the fundamental cocycle
of the square ice model (Theorem 9.1). Section 10 gives a simple sufficient
condition for a d-dimensional SFT X to have trivial cohomology with values
in every discrete group (Theorem 10.3) and lists a number of examples of
SFT’s satisfying this triviality condition. Theorem 10.3 is closely related
to Theorem 3.2 in [25]. Section 11 deals with SFT’s which are factors of
SFT’s with trivial cohomology, gives a sufficient condition under which they
have fundamental cocycles (Theorem 11.1), and presents some examples.
However, the behaviour of fundamental cocycles under factor maps is not



4 KLAUS SCHMIDT

well understood in general (Remark 11.2). Section 12 investigates a mixing
two-dimensional SFT X (originally introduced by F. Ledrappier) for which
the existence of a fundamental cocycle is not known, although we construct a
continuous cocycle c∗ : Z×X 7−→ G∗ with values in a discrete group G∗ such
that every known continuous cocycle of X is continuously cohomologous to a
homomorphic image of c∗ (Theorem 12.4). In the final section we prove that
no mixing one-dimensional SFT can have a fundamental cocycle (Theorem
13.1).

The main problem left open in this paper is which higher-dimensional
SFT’s have fundamental cocycles; as general statements about higher-dim-
ensional SFT’s are rather hard to come by one really has to look at additional
examples in order to shed further light on this question. Another open
question is whether there exists a SFT X with trivial projective fundamental
group which is cohomologically nontrivial (cf. Corollary 5.8).

Finally a remark about exposition. In order to keep the presentation as
simple as possible I have restricted the discussion to continuous cocycles
on SFT’s with values in discrete groups; there are no statements about
Hölder cocycles on general expansive and mixing Zd-actions, although such
an extension is possible (cf. Proposition 3.1 in [25] and [14], [15], [26], [28]).
In line with this aim I have also kept the detailed description of Wang tilings
and tiling cocycles to dimension two (with brief comments on the higher-
dimensional case in the Remarks 4.3 and 5.9 (2)). Many of the examples
presented in this paper also appear in [25], but I have tried to make theirchange
description reasonably self-contained.

2. Shifts of finite type and their cohomology

Let A be a finite set, d ≥ 1, and let AZd
be the set of all maps x : Zd 7−→ A,

furnished with the compact product topology. We write a typical point
x ∈ AZd

as x = (xm) = (xm, m ∈ Zd), where xm ∈ A denotes the value of
x at m. The shift action σ : n 7→ σn of Zd on AZd

is defined by

(σn(x))m = xm+n (2.1)

for every x = (xm) ∈ AZd
and n ∈ Zd. A subset X ⊂ AZd

is shift-invariant if
σn(X) = X for every n ∈ Zd, and a closed, shift-invariant subset X ⊂ AZd

is
a subshift. IfX ⊂ AZd

is a subshift we write σ = σX for the restriction of the
shift-action (2.1) toX. For any subset S ⊂ Zd we denote by πS : AZd 7−→ AS

the projection map which restricts every x ∈ AZs
to S. A subshift X ⊂ AZd

is a shift of finite type (SFT) if there exists a finite set F ⊂ Zd such that

X = {x ∈ AZd
: πF · σn(x) ∈ πF (X) for every n ∈ Zd}. (2.2)

A standard re-coding argument allows us to assume that

F = {0, 1}d ⊂ Zd (2.3)

in (2.2), by changing the alphabet A, if necessary (cf. [25]; a more restrictivechange
definition of higher-dimensional SFT’s is considered in [21]–[22]).

If X ⊂ AZd
is a SFT it will sometimes be helpful to specify the shift-

action of Zd explicitly and to write (X,σ) instead of X. For example, if
σ̄ : n 7→ σ̄n = σ2n is the even shift-action on a SFT X ⊂ AZd

then (X, σ̄)
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can be viewed as a SFT with alphabet A′ = πF (X) ⊂ AF , where F is
defined in (2.3).

Definition 2.1. Let X ⊂ AZd
be a SFT of the form (2.2)–(2.3).

(1) The SFT X is (topologically) mixing if σ is topologically mixing on
X, i.e. if there exists, for any two nonempty open sets O1,O2 ⊂ X, an
integer N ≥ 0 with

O1 ∩ σ−m(O2) 6= ∅
whenever m = (m1, . . . ,md) ∈ Zd and ‖m‖ = maxi=1,...,d |mi| ≥ N .

(2) Let E ⊂ Zd be a subset. An element z ∈ AE is allowed if, for every
n ∈ Zd,

πE∩(n+F )(z) ∈ πE∩(n+F )(X).

The set of all allowed elements in AE is denoted by ΠX(E). The SFT X
has the extension property if there exists an integer r̄ ≥ 1 such that

πQ(X) = ΠX(Q)

for every rectangle Q =
∏d

1=1{ai, . . . , bi} ⊂ Zd with −∞ ≤ ai < bi ≤ ∞ and
bi − ai ≥ r̄ for i = 1, . . . , d. In other words, X has the extension property
if every allowed configuration on every sufficiently large rectangle can be
extended to a point in X.

(3) Put, for every r ≥ 1 and i = 1, . . . , d,

B(r) = {m = (m1, . . . ,md) ∈ Zd : ‖m‖ ≤ r},

S(r, i) = B(r) + Ze(i) = {m + ke(i) : m ∈ B(r), k ∈ Z},

X(r, i) = πS(r,i)(X) ⊂ AS(r,i),

where e(i) = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zd is the i-th unit vector. We write

T(r,i) : X(r, i) 7−→ X(r, i)

for the homeomorphism of X(r, i) induced by the shift σe(i)
, i.e.

T(r,i) · πS(r,i) = πS(r,i) · σe(i)
,

and set, for every L ≥ 1,

PX(i, L) = {x ∈ X : σLe(i)
(x) = x},

PX(r, i, L) = {x ∈ X(r, i) : (T(r,i))
L(x) = x}.

If the SFT X has the extension property we say that X has the periodic
extension property in the direction i if there exist integers r̄ ≥ 1, L̄ ≥ 1 with

πS(r,i)(PX(i, L)) = PX(r, i, L)

for all r ≥ r̄, L ≥ L̄. If X has the periodic extension property in every
direction i = 1, . . . , d we say that X has the periodic extension property.

Remarks 2.2. Let d ≥ 1, and let X ⊂ AZd
be a SFT satisfying (2.2)–(2.3).

(1) If d = 1 then X has the periodic extension property.
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(2) If d ≥ 1 andX has the extension property then (X(r, i), T(r,i)) is a one-
dimensional SFT of the form (2.2)–(2.3) with alphabet πB(r,i)(X) ⊂ AB(r,i)

for every r ≥ r̄ and i = 1, . . . , d, where

B(r, i) = {m = (m1, . . . ,md) ∈ B(r) : mi = 0}.

For the following discussion we fix a finite alphabet A and a subshift
X ⊂ AZd

. Let G be a discrete group with identity element 1G. A map
c : Zd ×X 7−→ G is a continuous cocycle for the shift-action σ of Zd on X
defined in (2.1) if c(n, ·) : X 7−→ G is continuous for every n ∈ Zd and

c(m + n, x) = c(m, σn(x))c(n, x) (2.4)

for all x ∈ X and m,n ∈ Zd. The cocycle c is a homomorphism if c(n, ·)
is constant for every n ∈ Zd, and c is a coboundary if there exists a Borel
map b : X 7−→ G such that

c(n, x) = b(σn(x))−1b(x) (2.5)

for all x ∈ X and n ∈ Zd. The map b in (2.5) is the cobounding function of c.
Two continuous cocycles c, c′ : Zd×X 7−→ G are cohomologous, with a Borel
measurable transfer function b : X 7−→ G, if c(n, x) = b(σn(x))−1c′(n, x)b(x)
for all n ∈ Zd and x ∈ X. The cocycles c, c′ : Zd×X 7−→ G are continuously
cohomologous if they are cohomologous with a continuous transfer function.
Following [14] and [25] we call a cocycle c : Zd × X 7−→ G trivial if it is
continuously cohomologous to a homomorphism.

We write Z1
c (X,G) for the set of continuous cocycles on X with values in

G, denote by B1
c (X,G) ⊂ Z1

c (X,G) the subset of coboundaries and write

H1
c (X,G) = {[c] : c ∈ Z1

c (X,G)}

for the space of cohomology classes

[c] = {c′ ∈ Z1
c (X,G) : c′ is cohomologous to c}.

If G is abelian, the set Z1
c (X,G) is a group under pointwise addition, the

coboundaries B1
c (X,G) ⊂ Z1

c (X,G) form a subgroup, and the first cohomo-
logy

H1
c (X,G) = Z1

c (X,G)/B1
c (X,G)

is a group.

Definition 2.3. Let A be a finite set, d ≥ 1, and let X ⊂ AZd
be a SFT. A

continuous cocycle c∗ : Zd ×X 7−→ G∗ with values in a discrete group G∗ is
fundamental if the following is true: for every discrete group G and every
continuous cocycle c : Zd × X 7−→ G there exists a group homomorphism
θ : G∗ 7−→ G such that c is continuously cohomologous to the cocycle

θ · c∗ : Z2 ×X 7−→ G,

defined by θ · c∗(n, x) = θ(c∗(n, x)) for every n ∈ Zd and x ∈ X.

The paper [25] contains examples of two-dimensional SFT’s for which
every continuous cocycle with values in a discrete group is trivial. If X is
such a SFT, then the homomorphism c : Zd×X 7−→ Zd with c(n, x) = n for
every n ∈ Zd and x ∈ X is obviously fundamental in the sense of Definition
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2.3. The existence of nontrivial fundamental cocycles is, of course, more in-
teresting (cf. Theorems 6.7, 7.1, 8.1 and 9.1). Note that no one-dimensional,
mixing SFT can have a fundamental cocycle (cf. Theorem 13.1).

Remark 2.4 (Nonuniqueness of fundamental cocycles). If X is a d-dimensi-
onal SFT with a fundamental cocycle c∗ : Zd × X 7−→ G∗ then the com-
position of c∗ with any group automorphism of G∗ is again fundamental.
Furthermore, Theorem 4.2 allows us to write c∗, for every sufficiently large
r ≥ 1, as a homomorphic image of the tiling cocycle c

T
(r)
X

of the set T (r)
X of

Wang tiles corresponding to the (2r+1)-block representation of X (cf. (4.7)–
(4.8)), and c

T
(r)
X

is therefore — by definition — again fundamental. This
indicates that a d-dimensional SFT may have several non-cohomologous
fundamental cocycles.

3. Livshitz’ theorem

For our investigation of cohomological rigidity we have to introduce the
notion of a (1-)cocycle on an equivalence relation (cf. [6], [14], [25]–[26]). If
R ⊂ X ×X is an equivalence relation on X we denote by

R(x) = {x′ ∈ X : (x, x′) ∈ R}

the equivalence class of a point x ∈ X. An equivalence relation R ⊂ X ×X
is Borel if R is a Borel subset of X × X. A Borel map a : R 7−→ G on a
Borel equivalence relation R is a (1-)cocycle if

a(x, x′)a(x′, x′′) = a(x, x′′) (3.1)

for every x ∈ X and x′, x′′ ∈ R(x). Two cocycles a, a′ : R 7−→ G are
cohomologous if there exists a Borel map b : X 7−→ G with

a′(x, x′) = b(x)−1a(x, x′)b(x′) (3.2)

for every (x, x′) ∈ R, and a cocycle a : R 7−→ G is a coboundary if it is
cohomologous to the constant cocycle a′ ≡ 1G.

For every integer r ≥ 0 and i = 1, . . . , d we set

∆X(r, i) = {(x, x′) ∈ X ×X : xn 6= x′n for only

finitely many n ∈ S(r, i)},
(3.3)

where S(r, i) is defined in Definition 2.2. Then ∆X(r, i) is a Borel equivalence
relation on X. If G is a discrete group and h : X 7−→ G a continuous map,
then there exists a smallest integer r = r(h) with

h(x) = h(x′) whenever x, x′ ∈ X and πB(r)(x) = πB(r)(x
′), (3.4)

and we can define, for every r ≥ r(h) and i = 1, . . . , d, cocycles a±h : ∆X(r, i)
7−→ G on the Borel equivalence relation ∆X(r, i) on X as follows: for every
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(x, x′) ∈ ∆X(r, i) and l ≥ 1 we set

a+
h (x, x′)(l) =

(
l−1∏
k=0

h(σke
(i)

(x))−1

)
·

(
l−1∏
k=0

h(σke
(i)

(x′))−1

)−1

= h(x)−1 · · ·h(σ(l−1)e(i)
(x))−1

· h(σ(l−1)e(i)
(x′)) · · ·h(x′),

a−h (x, x′)(l) =

(
l∏

k=1

h(σ−ke
(i)

(x))

)
·

(
l∏

k=1

h(σ−ke
(i)

(x′))

)−1

= h(σ−e(i)
(x)) · · ·h(σ−le(i)

(x))

· h(σ−le(i)
(x′))−1 · · ·h(σ−e(i)

(x′))−1.

(3.5)

Since there exists, for every (x, x′) ∈ ∆X(r, i), an integer L ≥ 1 with

a+
h (x, x′)(l) = a+

h (x, x′)(L),

a−h (x, x′)(l) = a−h (x, x′)(L)

whenever l ≥ L, we obtain well-defined Borel maps a±h : ∆X(r, i) 7−→ G by
setting

a+
h (x, x′) = lim

l→∞
a+
h (x, x′)(l),

a−h (x, x′) = lim
l→∞

a−h (x, x′)(l)
(3.6)

for every (x, x′) ∈ ∆X(r, i), and (3.5)–(3.6) guarantee that these maps satisfy
the cocycle equations

a+
h (x, x′)a+

h (x′, x′′) = a+
h (x, x′′),

a−h (x, x′)a−h (x′, x′′) = a−h (x, x′′)
(3.7)

for all x ∈ X and x′, x′′ ∈ ∆X(r, i)(x).
For d = 1 the equivalence relation ∆X(0, 1) = ∆X coincides with the

Gibbs equivalence relation of the SFT X (cf. [25], equation (2.4)). The
following result is essentially due to Livshitz and is valid under more general
assumptions (G only needs to be a complete metric group with a bi-invariant
metric and h : X 7−→ G a function with summable variation).

Proposition 3.1. Let A be a finite set, X ⊂ AZ a mixing SFT, and G a
discrete group.

(1) Suppose that h : X 7−→ G is a continuous map, and that the cocycles
a±h : ∆X 7−→ G in (3.6) are equal. Then there exists a continuous
function b : X 7−→ G such that the map

(b · σ)−1hb : x 7→ b(σ(x))−1h(x)b(x) ∈ G

is constant on X.
(2) If hi : X 7−→ G, i = 1, 2, are continuous maps, and if there exists a

Borel map b : X 7−→ G with

b(σ(x))−1h1(x)b(x) = h2(x) (3.8)
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for µ-a.e. x ∈ X, where µ is the measure of maximal entropy on X,
then the map b in (3.8) may be chosen to be continuous.

The proof of Proposition 3.1 is a minor variation of that of Proposition
3.1 in [25] and will be omitted. The assertion (2) of Proposition 3.1 was
obtained independently by W. Parry (private communication — cf. also [31]
for the abelian case).

Corollary 3.2. Let d ≥ 1, i ∈ {1, . . . , d}, A a finite set, X ⊂ AZd
a

mixing SFT with the extension property, G a discrete group, h : X 7−→ G a
continuous map, and r ≥ r(h). If the cocycles a±h : ∆X(r, i) 7−→ G in (3.6)
are equal then there exists a continuous function b : X 7−→ G such that the
map (b · σe(i)

)−1hb is constant on X.

Proof. Let h = c(e(i), ·) : X 7−→ G, and let r ≥ max(r(h), 1) (cf. (3.4)). By
Remark 2.2 (X(r, i), T(r,i)) is — for sufficiently large r — a (one-dimensional)
mixing SFT, X(r, i) coincides with the set of all allowed elements in AS(r,i),
and

(πS(r,i) × πS(r,i))(∆X(r, i)) = ∆X(r,i)

(cf. Definition 2.1). Now apply Proposition 3.1. �

Corollary 3.3. Let d > 1, i ∈ {1, . . . , d}, A a finite set, X ⊂ AZd
a mixing

SFT with the periodic extension property in the direction i ∈ {1, . . . , d}, G
a discrete group and c : Zd ×X 7−→ G a continuous cocycle.

(1) If G is abelian, and if the restriction of σ to PX(i, L) is topologically
transitive for infinitely many L ≥ 1, then c is trivial;

(2) If G is finite and the restriction of σ to PX(i, L) is topologically
transitive for all sufficiently large L ≥ 1, then c is trivial.

Proof. For every L ≥ 1 and x ∈ PX(i, L) we set

wL(x) = c(Le(i), x) = h(σ(L−1)e(i)
) · · ·h(x)

and conclude from (2.4) that wL(σm(x)) is conjugate to wL(x) for every
x ∈ PX(i, L). If σ is topologically transitive on PX(i, L), then the continuity
of the map x 7→ wL(x) implies that the set {wL(x) : x ∈ PX(i, L)} lies in a
single conjugacy class of G whenever L ≥ L0, say.

Now suppose thatG is abelian and that there exists an increasing sequence
(Lk, k ≥ 1) such that σ is topologically transitive on PX(i, Lk) for every
k ≥ 1. In particular the map x 7→ wLk

(x) is constant on PX(i, Lk) for every
k ≥ 1.

For the following discussion we fix a sufficiently large r ≥ 1, assume that
(x, x′) ∈ ∆X(r, i), and put y = πS(r,i)(x), y′ = πS(r,i)(x′). Then there exists
an integer M > r such that yn = y′n whenever n = (n1, . . . , nd) ∈ S(r, i) and
‖n‖ = maxj=1,...,d |nj | = |ni| ≥ M . As X(r, i) is a mixing SFT there exists
an integer k ≥ 1 such that Lk ≥ 2M + 4r and periodic points z, z′ ∈ X(r, i)
with (large) period Lk such that zn = yn = xn and z′n = y′n = x′n for
all n = (n1, . . . , nd) ∈ S(r, i) with |ni| ≤ M + r, and zn = z′n whenever
M + r ≤ |ni| ≤ Lk −M − r. Finally we use the periodic extension property
to find points z̄, z̄′ ∈ PX(i, Lk) with z̄n = zn, z̄′n = z′n for every n ∈ S(r, i).
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We write h′ : X(r, i) 7−→ G for the well-defined map with h′ · πS(r,i) = h.
Then the constancy of the map x 7→ wLk

(x) on PX(i, Lk) guarantees that

a+
h (x, x′) = a+

h (x, x′)(Lk)

= h(x)−1 · · ·h(σ(Lk−1)e(i)
(x))−1h(σ(Lk−1)e(i)

(x′)) · · ·h(x′)

= h′(z)−1 · · ·h′(TLk−1
(r,i) (z))−1h′(TLk−1

(r,i) (z′)) · · ·h′(z′)

= h(z̄)−1 · · ·h(σ(Lk−1)e(i)
(z̄))−1h(σ(Lk−1)e(i)

(z̄′)) · · ·h(z̄′)

= a+
h (z̄, z̄′)(Lk) = a−h (z̄, z̄′)(Lk) = a−h (x, x′)(Lk) = a−h (x, x′).

(3.9)

We interrupt the proof of the abelian case for a moment and prove (3.9)
under assumption (2). If x̄ ∈ PX(i, L) with L ≥ L0, and if m ≥ 1 satisfies
that wmL(x̄) = wL(x̄)m = 1G, then wkmL(x) is conjugate — and hence equal
— to wkmL(x̄) = wmL(x̄)k = 1G for every x ∈ PX(kmL). This allows us to
repeat the calculation (3.9) with Lk = kmL, k ≥ 1, and to conclude that
a+
h (x, x′) = a−h (x, x′) for all (x, x′) ∈ ∆X(r, i) if either of the conditions (1)

or (2) are satisfied.
According to Proposition 3.1 this guarantees the existence of a continuous

map b : X 7−→ G for which (b ·σe(i)
)−1hb is constant, and we define a cocycle

c′ : Zd ×X 7−→ G by

c′(n, ·) = (b · σn)−1c(n, ·)b

for every n ∈ Zd.
By construction there exists a g0 ∈ G with c′(e(i), x) = g0 for every x ∈ X.

For any m ∈ Zd the map c′(m, ·) : X 7−→ G is continuous, and there exists
a finite partition O1, . . . ,Os of X into nonempty, open subsets of X on each
of which c′(m, ·) is constant and equal to gj , j = 1, . . . , s, say. As σe(i)

is
topologically mixing we can find, for every j = 1, . . . , s and every sufficiently
large k ≥ 1, an element x ∈ Oj ∩ σ−ke

(i)
(Oj) with c′(ke(i), x) = gk0 . The

cocycle equation (2.4) yields that

c′(m, σke
(i)

(x))c′(ke(i), x) = gjg
k
0 = gk0gj = c′(ke(i), σm(x))c′(m, x)

for every j = 1, . . . , s, and hence that g0 commutes with c′(m, x) for every
x ∈ X. It follows that c′(m, ·) is invariant under σke

(i)
, and the topological

transitivity of σe(i)
implies that c′(m, ·) is constant for every m ∈ Zd. �

4. Wang tiles

Suppose that T is a nonempty, finite set of distinct, closed 1× 1 squares
(tiles) with coloured edges such that no horizontal edge has the same col-
our as a vertical edge: such a set T is called a collection of Wang tiles
(cf. [23], [32]). For each τ ∈ T we denote by r(τ), t(τ), l(τ), b(τ) the col-
ours of the right, top, left and bottom edges of τ , and we write C(T ) =
{r(τ), t(τ), l(τ), b(τ) : τ ∈ T} for the set of colours occurring on the tiles in
T . A Wang tiling w by T is a covering of R2 by translates of copies of ele-
ments of T with non-overlapping interiors such that the following conditions
are satisfied:

(i) every corner of every tile in w lies in Z2 ⊂ R2,
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(ii) two tiles of w are only allowed to touch along edges of the same
colour, i.e. r(τ) = l(τ ′) whenever τ, τ ′ are horizontally adjacent tiles
with τ to the left of τ ′, and t(τ) = b(τ ′) if τ, τ ′ are vertically adjacent
with τ ′ above τ .

We identify each such tiling w with the point

w = (wn) ∈ TZ2
,

where wn is the unique element of T whose translate covers the square
n + [0, 1]2 ⊂ R2, n ∈ Z2. The set WT ⊂ TZ2

of all Wang tilings by T is
obviously a SFT of the form (2.2)–(2.3), and is called the Wang shift of T .
Conversely, if A is a finite set and X ⊂ AZ2

a SFT of the form (2.2) with
F = {0, 1}2 ⊂ Z2 we set T = πF (X) ⊂ AF and consider each

τ =
x(0,1) x(1,1)
x(0,0) x(1,0)

∈ T (4.1)

as a unit square with the ‘colours’ [ x(0,0) x(1,0) ] and [ x(0,1) x(1,1) ] along its
bottom and top horizontal edges, and

[
x(0,1)
x(0,0)

]
and

[
x(1,1)
x(1,0)

]
along its left

and right vertical edges. With this interpretation we obtain a one-to-one
correspondence between the points x = (xn) ∈ X and the Wang tilings
w = (wn) = (πF · σn(x)) ∈ TZ2

.
This correspondence allows us to regard each SFT as a Wang shift and

vice versa. However, the correspondence is a bijection only up to topological
conjugacy: if we start with a SFT X ⊂ AZ2

of the form (2.2)–(2.3), view it
as the Wang shift WT ⊂ TZ2

with T = πF (X), and then interpret WT as a
SFT as above, we do not end up with X, but with the 2-block representation
of X. We simplify terminology by introducing the following definition.

Definition 4.1. Let A be a finite set and X ⊂ AZ2
a SFT, T a set of

Wang tiles, and WT the associated Wang shift. We say that WT represents
X if the shift-action σ′ of Z2 on the SFT WT is topologically conjugate to
the shift-action σ of Z2 on X. Two Wang shifts are equivalent if they are
topologically conjugate as SFT’s.

Let T be a collection of Wang tiles, and let WT be the Wang shift of T .
Following [30] we write

Γ(T ) = 〈C(T )|t(τ)l(τ) = r(τ)b(τ), τ ∈ T 〉 (4.2)

for the free group generated by the colours occurring on the edges of elements
in T , together with the relations t(τ)l(τ) = r(τ)b(τ), τ ∈ T . The countable,
discrete group Γ(T ) is called the tiling group of T (or of the Wang shift
WT ). From the definition of Γ(T ) is is clear that the map λ : Γ(T ) 7−→ Z2 change
given by

λ(b(τ)) = λ(t(τ)) = (1, 0), λ(l(τ)) = λ(r(τ)) = (0, 1), (4.3)

for every τ ∈ T is a group homomorphism whose kernel is denoted by

Γ0(T ) = ker(λ). (4.4)
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We view WT ⊂ TZ2
as a SFT and define the tiling cocycle cT : Z2 ×

WT 7−→ Γ(T ) of WT (or, more precisely, for the shift-action σ of Z2 on WT )
by setting

cT ((1, 0), w) = b(w0), cT ((0, 1), w) = l(w0) (4.5)

for every Wang tiling w ∈ WT ⊂ TZ2
, and by using (2.4) to extend cT to a

map from Z2×WT to Γ(T ) (the relations t(τ)l(τ) = r(τ)b(τ), τ ∈ T , in (4.2)
are precisely what is needed to allow such an extension). At this level of
generality it is not even clear that the space WT is nonempty or consists of
more than one point, so that it is not meaningful to ask whether this tiling
cocycle is nontrivial. However, if X is a SFT then the following observation
shows that every continuous cocycle on X with values in a discrete group is
a homomorphic image of the tiling cocycle of some representation of X as a
Wang shift.

Theorem 4.2. Let A be a finite set, X ⊂ AZ2
a SFT, G a discrete group,

and c : Z2 × X 7−→ G a continuous cocycle. Then there exists a set T of
Wang tiles with the following properties.

(1) There exists a shift-commuting homeomorphism ψ : WT 7−→ X (i.e.
WT represents X);

(2) There exists a group homomorphism φ from the tiling group Γ(T ) of
T to G such that

c(m, ψ(w)) = φ · cT (m, w) (4.6)

for every w ∈WT and m ∈ Z2.

Proof. We assume without loss in generality that X is of the form (2.2)–(2.3)
and choose an integer r ≥ 1 such that the functions c((1, 0), ·), c((0, 1), ·) : X
7−→ G depend only on the coordinates in B(r − 1) (cf. Definition 2.1 and
(3.4)). Put

B(r) = {−r, . . . r}2 ⊂ Z2,

B(r)b = {−r, . . . , r} × {−r, . . . , r − 1},
B(r)l = {−r, . . . , r − 1} × {−r, . . . , r},
B(r)t = {−r, . . . , r} × {−r + 1, . . . , r},
B(r)r = {−r + 1, . . . , r} × {−r, . . . , r},

(4.7)

and regard each τ ∈ T (r)
X = πB(r)(X) as a unit square with the colours

b(τ) = πB(r)b(τ), l(τ) = πB(r)l(τ),

t(τ) = πB(r)t(τ), r(τ) = πB(r)r(τ)
(4.8)

on the bottom, left, top and right edges of τ (cf. (4.1)). Our choice of r
implies that

c((1, 0), x) = c((1, 0), x′),

c((0, 1), x) = c((0, 1), x′),

c((1, 0), σ(0,1)(x)) = c((1, 0), σ(0,1)(x′))

c((0, 1), σ(1,0)(x)) = c((0, 1), σ(1,0)(x′))
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whenever πB(r)(x) = πB(r)(x′), so that we may set

b′(τ) = c((1, 0), x), l′(τ) = c((0, 1), x),

t′(τ) = c((1, 0), σ(0,1)(x)), r′(τ) = c((0, 1), σ(1,0)(x))

for every τ ∈ T (r)
X and x ∈ X with πB(r)(x) = τ . The cocycle equation (2.4)

shows that
t′(τ)l′(τ) = r′(τ)b′(τ)

for every τ ∈ T
(r)
X . The isomorphism of the shift-actions of Z2 on X and

W
T

(r)
X

is obvious, since W
T

(r)
X

is nothing but the (2r+1)-block representation

of X, and the definition of the tiling group Γ(T (r)
X ) implies that the map

t(τ) 7→ t′(τ), l(τ) 7→ l′(τ),

r(τ) 7→ r′(τ), b(τ) 7→ b′(τ)

induces a group homomorphism φ : Γ(T (r)
X ) 7−→ G satisfying (4.6). �

Remark 4.3 (Higher-dimensional Wang tiles). The definition of Wang tiles
and tiling cocycles given here can be extended very easily to dimension
d > 2. For d > 2 a set T of d-dimensional Wang tiles is a finite set of
d-dimensional unit cubes [0, 1]d ⊂ Rd with coloured faces such that distinct
cubes are coloured differently and the the sets of colours occurring on non-
parallel faces of elements of T are disjoint. A Wang tiling is a covering of Rd

by integer translates of (copies of) tiles in T whose colours on overlapping
faces coincide, and the Wang shift WT of T is the set of all Wang tilings
obtained from T .

Define, for each 1-dimensional edge of an element τ ∈ T , the ‘colour’ of
that edge as the set of colours of all the faces of τ containing that edge (note
that each of these sets has exactly d−1 distinct elements). The tiling group
Γ(T ) is the free group generated by the set of all colours of edges of elements
in T , together with the relations resulting from the condition that, for every
τ ∈ T , every path along edges of τ leading from the vertex (0, . . . , 0) ∈ [0, 1]d

to the diametrically opposite vertex (1, . . . , 1) ∈ [0, 1]d results in the same
word in Γ(T ) (with multiplication written from right to left as for d = 2).
With this definition of Γ(T ) the tiling cocycle cT : Zd×WT 7−→ Γ(T ) for the
shift-action σ of Zd on the Wang shift WT is defined as in (4.5) by setting,
for every w ∈ WT and i = 1, . . . , d, cT (e(i), w) equal to the ‘colour’ of the
edge e(i) of the tile w0 in w covering [0, 1]d. With this definition one can
easily prove the analogue of Theorem 4.2 for every d ≥ 2.

Since all explicit examples of Wang tilings in this paper are in dimension
two we leave the details for d > 2 to the reader.

Let d ≥ 1, A a finite set, and let X ⊂ AZd
be a SFT. If G is a discrete

group, r ≥ 0 and c : Zd×X 7−→ G a continuous cocycle we say that c depends
only on the coordinates in B(r) if the map c(e(i), ·) : X 7−→ G depends, for
every i = 1, . . . , d, only on the coordinates in B(r), i.e. if

c(e(i), x) = c(e(i), x′), i = 1, . . . , d,

whenever x, x′ ∈ X and πB(r)(x) = πB(r)(x
′).

(4.9)
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The following corollary of Theorem 4.2 shows that X has a fundamental
cocycle c∗ : Zd × X 7−→ G∗ if and only if all continuous cocycles c on X
with values in discrete groups depend essentially only on a fixed range of
coordinates.

Corollary 4.4. Let d ≥ 1, A a finite set, and let X ⊂ AZd
be a SFT. The

following conditions are equivalent.
(1) There exists a continuous cocycle c∗ : Zd ×X 7−→ G∗ with values in

a discrete group G∗ which is fundamental in the sense of Definition
2.3;

(2) There exists an integer r ≥ 0 with the following property: if G is
a discrete group and c : Zd ×X 7−→ G a continuous cocycle, then c
is continuously cohomologous to a cocycle c′ : Zd × X 7−→ G which
depends only on the coordinates in B(r) in the sense of (4.9).

Proof. Suppose that there exists a fundamental cocycle c∗ : Zd ×X 7−→ G∗.
Since G∗ is discrete we can find an integer r ≥ 0 such that c∗ only depends
on the coordinates in B(r), and (2) follows from Definition 2.3. Conversely,
if there exists an r ≥ 0 satisfying (2), then the proof of Theorem 4.2 and, if
d > 2, Remark 4.3, show that every continuous cocycle c : Zd×X 7−→ G with
values in a discrete group G is continuously cohomologous to a homomorphic
image of the tiling cocycle c

T
(r+1)
X

: Zd × X 7−→ Γ(T (r+1)
X ). According to

Definition 2.3 this means that c
T

(r+1)
X

is fundamental. �

5. Cocycles, extensions of configurations, and fundamental
groups

As mentioned in the introduction, tiling groups were originally introduced
as obstructions to extending certain partial tilings of R2 by polygonal tiles
(cf. [5] and [30]). In order to describe a simple version of this extension
problem for SFT’s we assume that A is a finite set and X ⊂ AZ2

is a SFT
satisfying (2.2)–(2.3).

Let E ⊂ Z2 be a finite set, and let z ∈ ΠX(Z2 r E) ⊂ AZ2rE be an
allowed element (cf. Definition 2.1). How can one tell whether z has an
allowed extension to all of Z2, i.e. whether there exists an element x ∈ X with
πZ2rE(x) = z? A weaker form of this question is whether there exists a finite
set E′ ⊃ E and an element x ∈ X with πZ2rE′(x) = πZ2rE′(z), i.e. whether
z can be extended after possibly ‘correcting’ finitely many coordinates.

For simplicity we call an allowed element z ∈ ΠX(Z2 rE) weakly extens-
ible if there exists an x ∈ X and a finite set E′ with E ⊂ E′ ⊂ Z2 with
πZ2rE′(x) = πZ2rE′(z), and extensible if we can assume in addition that
E′ = E.

We shall concentrate on weak extensibility and may therefore take E ⊂ Z2

to be a finite rectangle. In order to avoid certain technical complications we
also assume that X has the extension property (Definition 2.1).

Let c : Z2 ×X 7−→ G be a continuous cocycle for the shift-action σ of Z2

on X with values in a discrete group G and put

rc = max(r(c((1, 0), ·)), r(c((0, 1), ·)))
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(cf. (3.4)). Suppose furthermore that n(0),n(1),n(2),n(3) = n(0) are the
vertices of a rectangular loop P in Z2 with the following properties:

(a) n(1)−n(0) and n(3)−n(2) are multiples of (1, 0), and n(2)−n(1) and
n(3) − n(0) multiples of (0, 1),

(b) if r̄ is the integer appearing in Definition 2.1 (2), then each edge
n(j−1) + t(n(j)−n(j−1)), j = 1, . . . , 4, of P has distance ≥ max(rc, r̄)
from the rectangle Q. In other words,

δ(P, Q) = min
m∈Q

min
j=1,...,4

min
0≤t≤1

‖m− n(j−1) + t(n(j) − n(j−1))‖

≥ max(rc, r̄)
(5.1)

with ‖k‖ = max(|k1|, |k2|) for every k = (k1, k2) ∈ Z2.
Under these assumptions the extension property of X guarantees that each
of the values c(n(j)−n(j−1), σn(j−1)

(z)), j = 1, . . . , 4, is well defined, and we
set

c(P, z) = c(n(4) − n(3), σn(3)
(z))c(n(3) − n(2), σn(2)

(z))

· c(n(2) − n(1), σn(1)
(z))c(n(1) − n(0), σn(0)

(z)).
(5.2)

The following proposition is an immediate consequence of the cocycle equa-
tion (2.4) and the extension property of X.

Lemma 5.1. Let Q ⊂ Z2 be a finite rectangle, and let z ∈ ΠX(Z2 r Q).
For every rectangular loop P ⊂ Z2 satisfying (a)–(b) which does not contain
Q in its interior we have that c(P, z) = 1G. If P and P′ are rectangular
loops satisfying (a)–(b) which contain the rectangle Q in their interior, then
c(P, z) = c(P′, z). Finally, if z is weakly extensible, then

c(P, z) = 1G. (5.3)

for every rectangular loop P ⊂ Z2 satisfying (a)–(b).

In view of the the last assertion in Lemma 5.1 we set

c(Q, z) = c(P, z) (5.4)

for any rectangular loop P ⊂ Z2 which satisfies (a)–(b) and contains Q in its
interior. If c = cT is the tiling cocycle of a Wang shift WT representing X,
then there exists a rectangular hole Q′ ⊃ Q such that the allowed element
z ∈ ΠX(Z2 r Q) determines uniquely a partial tiling z′ of R2 r Q′, and
the value cT (P, z) ∈ Γ0(T ) ⊂ Γ(T ) for any rectangular loop P around the change
hole Q′ is equal to the word in the tiling group formed by the product of
the colours on the edges of the tiles touching Q′ in anti-clockwise direction
starting from the bottom left hand corner of Q′ (written from right to left,
and with the colours along the top and left edges of Q′ inverted — cf. (4.4)).
This is the form in which the obstruction c(Q, z) appears in [5] and [30].
The following statement clarifies the dependence of c(Q, z) on the cocycle
c : Z2 ×X 7−→ G.

Proposition 5.2. Let A be a finite set, X ⊂ AZ2
a SFT of the form (2.2)–

(2.3) with the extension property, Q ⊂ Z2 a finite rectangle, z ∈ ΠX(Z2 rQ)
an allowed configuration, and c : Z2 × X 7−→ G a continuous cocycle with
values in a discrete group G.
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(1) If c′ : Z2 × X 7−→ G is a second continuous cocycle which is con-
tinuously cohomologous to c then c(Q, z) = h−1c′(Q, z)h for some
h ∈ G;

(2) If c is trivial then c(Q, z) = 1G;
(3) If the cocycle c is fundamental (Definition 2.3), and if c(Q, z) = 1G,

then c′(Q, z) = 1G′ for every continuous cocycle c′ : Z2 × X 7−→ G′

with values in a discrete group G′.

Proof. The assertion (1) is clear from the definition of cohomology, (2) fol-
lows from (1) and triviality, and (3) from (1) and Definition 2.3. �

By varying the representation of a SFT X as a Wang system WT we
may obtain different obstructions to the weak extensibility of a given al-
lowed configuration z ∈ ΠX(Z2 rQ). If the tiling cocycle cT is trivial, then
cT (P, z) = 1G, irrespective of whether z is weakly extensible or not: for
example, the tiling (7.1) leads to a representation of the SFT X(3) with a
trivial tiling cocycle, whereas the representation of X(3) in terms of (7.3)
has a nontrivial tiling cocycle. The representations of a SFT X by the
Wang systems W

T
(n)
X

, n ≥ 1, in (4.7)–(4.8) yields infinitely many different
tiling cocycles, each of which may conceivably give a different obstruction
to our extension problem for elements z ∈ ΠX(Z2 r Q). However, if there
exists a fundamental cocycle c∗ : Z2 × X 7−→ G∗, then c∗ contains all the
available cohomological information about the weak extensibility of z. In
some examples the fundamental cocycle can even be used to find sufficientchange
conditions for z to be extensible ([5], [30]). In general, however, the co-
homological obstructions discussed here only lead to necessary, but not to
sufficient conditions, as Example 5.3 below shows.

Example 5.3. Let WTL
be the Wang shift defined by the tiles

TL =
{ }

in (9.1). From the description of WTL
at the beginning of Section 9 we know

that WTL
⊂ WTI

is the set of all Wang tilings which do not contain a copy
of the tile , and Theorem 9.1 shows that WTL

has a fundamental cocycle
c∗ which is the restriction to WTL

⊂ WTI
of the fundamental cocycle cTI

of
the square ice shift WTI

in (8.1).
If we can find a rectangle Q ⊂ Z2 and a partial tiling z ∈ ΠWL

(Z2 rQ) ⊂
ΠWI

(Z2 rQ) which is weakly extensible in WTI
, but not in WTL

, then

cTL
(P, z) = cTI

(P, z) = 1Γ(TI) = 1Γ(TL)

for every appropriate rectangular loop P ⊂ Z2, so that the cohomological
information available is insufficient to determine whether z ∈ ΠWTL

(Z2 rQ)
can be extended weakly in WTL

. The following picture describes such a
rectangle Q and a point z ∈ ΠWTL

(Z2 rQ) which can be extended in WTI
,

but not even weakly in WTL
.

Consider the allowed tiling in Figure 1 of the set E = [−3, 4]2 r (0, 1)2 ⊂
R2 by the Wang tiles TL, with the open square (0, 1)2 shaded grey for con-
venience.

We define an allowed tiling z of R2 r (0, 1)2 with the tiles TL by ex-
tending the tiling in Figure 1 to R2 r (0, 1)2 by first tiling the rectangles



FUNDAMENTAL COCYCLES 17

AAA
AAA
AAA

Figure 1. An allowed tiling of E

[−3, 4] × [4,∞) and [−3, 4] × (−∞,−3] with copies of the top and bottom
rows and in Figure 1, respectively, and
then tiling the rest of R2 r (0, 1)2 with copies of the tile . A little bit of
thought reveals that, for any finite, open rectangle Q with integral vertices
and (0, 1)2 ⊂ Q ⊂ R2, any extension of πR2rQ(z) to a tiling x ∈ WTI

has
to contain a copy of the tile , so that z cannot be extended weakly to a
point in WT .

We leave the extension problem and turn to the connection between the
cohomology of a SFT X and its projective fundamental group πproj

1 (X, ∗)
introduced in [7]. Let A be a finite set, and let X ⊂ AZ2

be a SFT satisfying
(2.2)–(2.3). For every r ≥ 1 we consider the Wang tiles T (r)

X defined in
(4.7)–(4.8) and observe that there exists, for every r ≥ 2, a well defined,
surjective homomorphism η(r) : Γ(T (r)

X ) 7−→ Γ(T (r−1)
X ) of the corresponding

tiling groups with

η(r)(πB(r)b(x)) = πB(r−1)b(x), η(r)(πB(r)l(x)) = πB(r−1)l(x),

η(r)(πB(r)t(x)) = πB(r−1)t(x), η(r)(πB(r)r(x)) = πB(r−1)r(x)
(5.5)

and
η(r)(c

T
(r)
X

(n, x)) = c
T

(r−1)
X

(n, x) (5.6)

for every x ∈ X and n ∈ Z2. The sequence of homomorphisms η(r), r ≥ 2,
in (5.5)–(5.6) allows us to define the projective tiling group Γ(X) and the
projective tiling cocycle cX : Z2 ×X 7−→ Γ(X) as the projective limits

Γ(X) = proj lim
r→∞

Γ(T (r)
X ) ⊂

∏
r≥1

Γ(T (r)
X ),

cX(n, x) = proj lim
r→∞

c
T

(r)
X

(n, x).
(5.7)

If we furnish Γ(X) with the product topology inherited from
∏
r≥1 Γ(T (r)

X ),
then the cocycle cX : Z2 × X 7−→ Γ(X) is continuous (note, however, that
Γ(X) is not discrete).

Let c : Z2 × X 7−→ G be a continuous cocycle with values in a discrete
group G and set

rc = max(r(c((1, 0), ·)), r(c((0, 1), ·)))
as in (3.4). Assume that P = (0 = n(0), . . . , n(k) = 0) is a finite sequence of
points in Z2 with

n(j) − n(j−1) ∈ {±(1, 0),±(0, 1)} (5.8)
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for every j = 1, . . . , k. We fix an element x̄ ∈ X and an integer s ≥ rc and
choose, for every j = 0, . . . , k, a tile τ (j) ∈ T

(s)
X such that τ (0) = τ (k) =

πB(r)(x̄) and the sequence T = (τ (0), . . . , τ (k)) is consistent with P in the
sense that

r(τ (j−1)) = l(τ (j)) if n(j) − n(j−1) = (1, 0),

t(τ (j−1)) = b(τ (j)) if n(j) − n(j−1) = (0, 1),

l(τ (j−1)) = r(τ (j)) if n(j) − n(j−1) = −(1, 0),

b(τ (j−1)) = t(τ (j)) if n(j) − n(j−1) = −(0, 1).

(5.9)

We regard the pair (P,T) as a path in Z2 × T
(s)
X beginning and ending in

the point (0, πB(s)(x̄)), choose elements x(j) ∈ X with πE(s)(x(j)) = τ (j) for
j = 0, . . . , k, and set

c(P,T) = g(k−1) · · · g(0),

where

g(j) =

{
c(n(j+1) − n(j), x(j)) if n(j+1) − n(j) ∈ {(1, 0), (0, 1)}
c(n(j) − n(j+1), x(j+1))−1 if n(j+1) − n(j) ∈ {−(1, 0),−(0, 1)}

for j = 0, . . . , k − 1.
Following [7] one can define a natural notion of ‘homotopy’ between paths

in Z2 × T (s)
X which begin and end in (0, πB(s)(x̄)). As a consequence of that

definition and the cocycle equation (2.4) one obtains that

c(P,T) = c(P′,T′)

whenever (P,T) and (P′,T′) are paths in Z2× T (s)
X which are homotopic in

this sense.
By varying (P,T) over the set of all finite paths of arbitrary length in

Z2 × T
(s)
X which begin and end in (0, πB(s)(x̄)) we obtain a subgroup

Γ(s)
x̄ (c) = {c(P,T) : k ≥ 0, (P,T) = ((n(j), τ (j)), j = 0, . . . , k)

and n(0) = n(k) = 0, τ (0) = τ (k) = πE(s)(x̄)} ⊂ G,

and we set
Γx̄(c) =

⋂
s≥rc

Γ(s)
x̄ (c) ⊂ G.

The following proposition is an immediate consequence of the definition
of the subgroup Γx̄(c) ⊂ G.

Proposition 5.4. Let A be a finite set, X ⊂ AZ2
a SFT of the form (2.2)–

(2.3), and let x̄ ∈ X. If c, c′ : Z2 7−→ G are cohomologous continuous cocycles
with values in a discrete group G, then there exists an element h ∈ G with

Γx̄(c) = h−1Γx̄(c′)h.

In particular, if c is trivial, then Γx̄(c) = {1G}.

If there exists a fundamental cocycle c∗ : Z2×X 7−→ G∗ on X, then Γx̄(c∗)
determines not only the group Γx̄(c) for every continuous cocycle c, but also
the projective fundamental group πproj

1 (X, x̄) of X defined in [7].
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Theorem 5.5. Let A be a finite set, and let X ⊂ AZ2
a SFT of the form

(2.2)–(2.3). If there exists a fundamental cocycle c∗ : Z2 × X 7−→ G∗ with
values in a discrete group G∗ then Γx̄(c) is, for every continuous cocycle
c : Z2 × X 7−→ G with values in a discrete group G and every x̄ ∈ X, a
homomorphic image of Γx̄(c∗), and

πproj
1 (X, x̄) ∼= Γx̄(c∗).

Proof. We fix a point x̄ ∈ X. If c : Z2 × X 7−→ G is a continuous cocycle
for the shift-action σ of Z2 on X then there exists, by definition, a group
homomorphism η : G∗ 7−→ G such that the cocycle η · c∗ : Z2 ×X 7−→ G is
cohomologous to c. For every sufficiently large s and every path (P,T) in
Z2 × T

(s)
X of the form (5.8)–(5.9) which begins and ends in (0, πB(s)(x̄)),

η(c∗(P,T)) = c(P,T),

so that
Γx̄(c) = η(Γx̄(c∗)),

as claimed.
If we apply these observations to the tiling cocycles c

T
(r)
X

: Z2 × X 7−→

Γ(T (r)
X ) in (4.7)–(4.8) we obtain, for every r ≥ 1, a homomorphism θ(r) : G∗

7−→ Γ(T (r)
X ) such that θ(r) · c∗ is cohomologous to c

T
(r)
X

and

θ(r)(c∗) ∼= Γx̄(cT (r)
X

).

Conversely, if r is sufficiently large, then (4.6) yields a group homomorphism
φ(r) : Γ(T (r)

X ) 7−→ G∗ with φ(r) · c
T

(r)
X

= c∗ and

φ(r)(c
T

(r)
X

(P,T)) = c∗(P,T)

for every appropriate loop (P,T) in Z2 × T
(s)
X with s sufficiently large, and

hence with
φ(r)(Γx̄(cT (s)

X

)) = Γx̄(c∗).

Finally, if η(r) : Γ(T (r)
X ) 7−→ Γ(T (r−1)

X ) are the group homomorphisms ap-
pearing in (5.5)–(5.6), then

η(r)(c
T

(r)
X

(P,T)) = c
T

(r−1)
X

(P,T)

for every appropriate loop (P,T) in Z2 × T
(r)
X , and

η(r)(Γx̄(cT (r)
X

)) = Γx̄(cT (r−1)
X

).

From the definitions of these homomorphisms it is now clear that

Γx̄(c∗) ∼= πproj
1 (X, x̄). �
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Remark 5.6. Let A be a finite set and X ⊂ AZ2
a SFT of the form (2.2)–

(2.3). Then X is projectively connected if there exists, for every r ≥ 1 and
τ, τ ′ ∈ T (r)

X , a finite ‘path’ (P,T) in Z2 × T
(r)
X which begins in (n(0), τ (0)) =

(0, τ), ends in (n(k), τ (k)) = (n(k), τ ′), and satisfies the conditions (5.8)–(5.9)
above (cf. [7]).

Note that every topologically mixing SFT X ⊂ AZ2
is projectively con-

nected. If X is projectively connected and c : Z2 × X 7−→ G a continuous
cocycle, then Γx̄(c), Γx̄(c∗) and πproj

1 (X, x̄) do not depend on the specific
point x̄ ∈ X (at least up to isomorphism), so that we can suppress the
reference to x̄ and write Γ∗(c), Γ∗(c∗) and πproj

1 (X, ∗) for these groups.

Definition 5.7. Let d ≥ 2 and A a finite set. A SFT X ⊂ AZd
is co-

homologically trivial if every continuous cocycle c : Zd × X 7−→ G for the
shift-action σ of Zd with values in a discrete group G is trivial.

Corollary 5.8 (of Proposition 5.4 and Theorem 5.5). Let A be a finite set
and X ⊂ AZ2

a mixing SFT of the form (2.2)–(2.3). If X is cohomologically
trivial then

Γ∗(X) = πproj
1 (X, ∗) = {1}.

Remarks 5.9. (1) If X is a mixing two-dimensional SFT with an explicitly
determined fundamental cocycle c∗ : Z2 ×X 7−→ G∗ of X, then the calcula-
tion of πproj

1 (X, ∗) ∼= Γ∗(c∗) is usually quite straightforward (cf. the Remarks
6.10, 7.6, 8.6 and 9.2).

(2) For a d-dimensional SFT X ⊂ AZd
with d > 2 the definitions of

the projective tiling group Γ(X) and the projective tiling cocycle cX : Zd ×
X 7−→ Γ(X) are completely analogous (cf. Remark 4.3). Furthermore, if
c : Zd × X 7−→ G is a continuous cocycle for the shift-action σ of Zd on
X with values in a discrete group G, then one can again define the group
Γx̄(c) ⊂ G for every x̄ ∈ X and obtains exact analogues of Proposition 5.4
and Theorem 5.5. The (obvious) details are left to the reader.

6. Dominoes

Let TD be the set of Wang tiles

(6.1)

with the colours H, h,V, v on the solid horizontal, broken horizontal, solid
vertical and broken vertical edges. The Wang shift X = WTD

⊂ TZ2

D has the
periodic extension property (cf. Section 4, [13], [29], [3], [9] and Example 4.2
in [25]). Every tile in TD can be viewed als a half-domino, and by deleting
all broken edges one sees that every element of X determines a tiling of the
plane by dominoes — hence the name of this SFT.

Proposition 6.1. Let

Γ = Γ(TD) = 〈h,H, v,V|HV = vH, hV = VH,Hv = VH,HV = Vh〉 (6.2)

be the tiling group of TD (cf. Section 4). Thenchange
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Γ = M3 × Z2,

where

M3 =
{( a(1,1) a(1,2) a(1,3)

0 1 a(2,3)

0 0 a(3,3)

)
: a(1,3) ∈ Z, a(1,1), a(3,3) ∈ {1,−1},

∗ a(1,2), a(2,3), a(1,1) + a(1,2), a(3,3) + a(2,3) ∈ {0, 1}
}
.

Proof. Let Z be the centre of Γ. A simple calculation shows that v2 = V2 ∈
Z and h2 = H2 ∈ Z. Denote by C = 〈h2, v2〉 the central subgroup of Γ
generated by h2 and v2, put Γ′ = Γ/C, and write γ′ ∈ Γ′ for the image
under the quotient map Γ 7−→ Γ′ of an element γ ∈ Γ. Then h′2 = H′2 =
v′2 = V′2 = 1Γ′ , and one can check directly that there exists a surjective
group isomorphism ξ : Γ′ 7−→M3 with change

ξ(h′) =
(−1 1 1

0 1 0
0 0 1

)
, ξ(H′) =

(−1 1 0
0 1 0
0 0 1

)
,

ξ(v′) =
(

1 0 1
0 1 1
0 0 −1

)
, ξ(V′) =

(
1 0 0
0 1 1
0 0 −1

)
,

(6.3)

and
ξ(H′)ξ(h′) =

(−1 1 0
0 1 0
0 0 1

)(−1 1 1
0 1 0
0 0 1

)
=
(

1 0 −1
0 1 0
0 0 1

)
= ξ(v′)ξ(V′). (6.4)

From (6.2)–(6.4) one also obtains that the the group C ′ = {(h′H′)n : n ∈
Z} ⊂ Γ′ is normal and that C ′ ∼= ξ(C ′) ∼= Z. We set Γ′′ = Γ′/C ′ and denote
by h′′,H′′, v′′,V′′ the images of h′,H′, v′,V′ under the quotient map Γ′ 7−→ Γ′′.
Then h′′ = H′′, v′′ = V′′, and the relations occurring in the definition of Γ
imply that Γ′′ ∼= (Z/2Z) × (Z/2Z). Since the same is true for ξ(Γ′)/ξ(C ′)
we conclude that ξ is faithful, as claimed.

As the centre of M3 = ξ(Γ′) is trivial, the same is true for Γ′. Hence
C = Z, and (4.3)–(4.4) imply that Γ0

∼= M3 and Γ ∼= M3 × Z2. � change

We define the tiling cocycle cTD
: Z2 ×X 7−→ Γ by (4.5), identify Γ0(TD) change

with M3 (cf. (4.4)), and denote by c̄TD
= ξ · cTD

: Z2 ×X 7−→M3 = Γ0(TD)
the composition of cTD

with the group homomorphism ξ : Γ 7−→M3 in (6.3).
Then
cTD

((1, 0), x) = ξ(b(x0))× (1, 0), cTD
((0, 1), x) = ξ(l(x0))× (0, 1),

c̄TD
((1, 0), x) = ξ(b(x0)), c̄TD

((0, 1), x) = ξ(l(x0)),
(6.5)

where b(x0) ∈ {h,H} and l(x0) ∈ {v,V} are the colours on the bottom and
left edge of the tile x0.

Lemma 6.2. The cocycle c̄TD
has the property that

c̄TD
(2m, x) ∈M ′

3 =
{(

1 0 m
0 1 0
0 0 1

)
: m ∈ Z

}
∼= Z (6.6)

for every m ∈ Z2.

Proof. An elementary calculation shows that

c̄TD
((2, 0), x) ∈M ′

3, c̄TD
((0, 2), x) ∈M ′

3

for every x ∈ X, and the proof is completed by applying (2.4). �
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In view of Lemma 6.2 we define a cocycle γ : Z2 ×X 7−→ Z for the even
shift-action m 7→ σ̄m = σ2m of Z2 on X by

c̄TD
(2n, x) =

(
1 0 γ(n,x)
0 1 0
0 0 1

)
(6.7)

for every n ∈ Z2 and x ∈ X (cf. (6.6)).

Proposition 6.3. The skew-product action σ̄(γ) of Z2 on X ×Z, defined by

σ̄m
(γ)(x, k) = (σ̄m(x), γ(m, x) + k)

for every m ∈ Z2, k ∈ Z and x ∈ X, is topologically mixing.

Proof. For every m ≥ 1 and x ∈ X ⊂ AZ2
, the value γ((m, 0), x) only

depends on the bottom edges of the coordinates (x(0,0), . . . , x(2m−1,0)) of x
(cf. (6.1)), and has the following geometrical interpretation: the coordin-
ates (x(0,0), . . . , x(2m−1,0)) determine a tiling of the rectangle R = [0, 2m]×
[0, 1] ⊂ R2 by the half-dominoes (6.1), and we complete these half-dominoes
to dominoes. Denote by e(2m,x) and o(2m,x) the numbers of squares
[0, 1]2 + (k, 0), 0 ≤ k ≤ 2m− 1 in R with k even or odd, which are covered
by top halves of vertical dominoes. Then

γ((m, 0), x) = o(2m,x)− e(2m,x).

The following picture illustrates this fact: let m = 4 and

(x(0,0), . . . , x(7,0)) = ,

complete these half-dominoes to dominoes, and colour the even and odd
unit squares in the rectangle R dark and light grey for better visibility. We
obtain the picture

AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

and observe that γ((4, 0), x) = o(8, x)− e(8, x) = 0− 1 = −1.
The value of γ((0,m), x), which depends on the coordinates (x(0,0), . . . ,

x(0,2m−1)) of x, is obtained by completing the half-dominoes in the corres-
ponding tiling of the rectangle R′ = [0, 1] × [0, 2m] to dominoes, and by
taking the difference between the numbers of even and odd squares in R′

which form right halves of horizontal dominoes.
In order to prove that σ̄γ is topologically mixing it suffices to show the

following: if O1,O2 are nonempty cylinder sets in X and k ∈ Z, then

O1 ∩ σ̄−m(O2) ∩ {x ∈ X : γ(m, x) = k} 6= ∅ (6.8)

for all m ∈ Z2 with ‖m‖ = max {|m1|, |m2|} sufficiently large.
By decreasing the sets Oi, if necessary, we may assume that there exists

an integer r ≥ 0 with Oi = π−1
S (a(i)) for some a(1),a(2) ∈ AS , where S =

{−r, . . . , r − 1}2 ⊂ Z2. The coordinates a(i) ∈ AS determine a half-domino
tiling of S′ = [−r, r]2 ⊂ R2, and we extend these half-dominoes to dominoes
in the usual manner. This partial domino tiling can be extended to an
exact tiling of the square S′′ = [−2r, 2r]2 by dominoes (Remark 6.5), and
by decreasing Oi further we assume that each Oi corresponds to an exact
domino tiling of S′′.
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We shall prove (6.8) whenever m = (m1,m2) with m1 > 12r + 2|k|; the
case where m1 is small but m2 is large is dealt with similarly.

Extend the exact domino tiling of S′′ corresponding to O2 to a tiling of
the vertical strip V = [−2r, 2r]×R ⊂ R2 by filling the rest of the strip with
vertical dominoes, and shift this tiling by 2m to a tiling of the strip V +2m.
We extend this tiling to a domino tiling of the strip V̄ = [2r, 2m1 + 2r]×R
by covering the rectangle [2r, 2m1− 2r]×R with infinite columns of vertical
dominoes. For each of these columns we have two choices, since the bottom
edges of the dominoes in the strip can be either at even or at odd levels.
By combining this tiling of V̄ with that of S′′ determined by a(1) we obtain
a tiling of S′′ ∪ V̄ which, in turn, determines a nonempty subset W of X;
this set W will, of course, depend on the choices we have made in filling
the vertical strip [2r, 2m1 − 2r] × R with columns of vertical dominoes. If
all the dominoes in these columns have their bottom edges at even levels,
then γ(m, x) is an integer which is independent of m and x ∈ W , and
which depends only on the two cylinder sets O1,O2. The description of γ
given above also shows that |γ(m, x)| ≤ 4r. Every time we move one of the
columns of dominoes in the strip [2r, 2m1 − 2r] × R up or down one unit,
the resulting value of γ(m, x), x ∈ W , changes by ±1, and by adjusting at
most |k| + 4r even or odd columns we can guarantee that γ(m, x) = k for
every x in the nonempty set W ⊂ O1 ∩ σ̄−m(O2). �

Corollary 6.4. The skew-product action σ(c̄TD
) of Z2 on X ×M3, defined

by
σm

(c̄TD
)(x, a) = (σm(x), c̄TD

(m, x)a)

for every m ∈ Z2, a ∈ M3 and x ∈ X, is topologically transitive, but not
mixing.

Proof. The topological transitivity follows from Proposition 6.3 and the
definition of c̄TD

. As c̄TD
(n, x) ∈ M ′

3 if and only if m ∈ 2Z2, σc̄TD can-
not be mixing. �

Remark 6.5 (Extending overtilings to exact tilings). The following proof
of the fact that every overtiling of a 2r × 2r square in R2 by dominoes
can be extended to an exact tiling of the concentric 4r × 4r square is due
to O. Hryniv (overtiling means that the square is covered by dominoes,
but that some half-dominoes may stick out). Take an overtiling of the
square [−r, r]2 ⊂ R2, divide the tiling into four disjoint regions by drawing a
polygonal geodesic (shortest connection) along edges of dominoes from the
centre to each of the four vertices of the overtiled square, and extend the
overtiling of [−r, r]2 to a partial tiling of [−2r, 2r]2 by reflecting each of four
regions of the tiling along the appropriate edge of the square [−r, r]2. The
example of an overtiling of [−4, 4]2 in the top left picture of Figure 2 may
help to understand what is going on.

As the top right picture in Figure 2 shows, the partial tiling of [−2r, 2r]2

obtained by reflection is naturally divided into four regions. In the bottom
left picture of Figure 2 we reflect each of the ‘geodesics’ from the centre to
the four corners of the original square with respect to the appropriate corner,
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Figure 2. Extending an overtiling to an exact tiling

thereby obtaining altogether twelve disjoint regions of the square [−2r, 2r]2,
four of which are already tiled. The remaining eight regions can be tiled
exactly by dominoes parallel to the edge of the square [−2r, 2r]2 bounding
the region (cf. the bottom right picture of Figure 2). This gives an exact
tiling of [−2r, 2r]2.

The following results show that there are no nontrivial cocycles on X =
WTD

with values in abelian groups, and that the tiling cocycle cTD
: Z2 ×

X 7−→ ΓTD
= M3 is essentially the only continuous cocycle on X with values

in a discrete group.

Theorem 6.6. If G is a discrete, abelian group, then every continuous co-
cycle c : Z2 × X 7−→ G for the shift-action σ of Z2 on the domino shift
X = WTD

is trivial.

Theorem 6.7. Let G be a discrete group, and let c : Z2 × X 7−→ G be a
continuous cocycle for the shift-action σ of Z2 on the domino shift X =
WTD

. Then there exist a continuous map b : X 7−→ G and a homomorphism
θ : Γ 7−→ G such that

b(σn(x))−1c(n, x)b(x) = θ(cTD
(n, x))

for every n ∈ Z2 and x ∈ X. In other words, the tiling cocycle cTD
is

fundamental (cf. Definition 2.3).

For the proof of Theorem 6.6 we take L ≥ 1 and write

PX(1, 2L+ 1) = {x ∈ X : σ(2L+1,0)(x) = x}
for the set of points with horizontal period 2L+1. Then PX(1, 2L+1) ⊂ X
is invariant under σ. Furthermore, if Q = {(0, 0), . . . , (2L, 0)} ⊂ Z2, then
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(PX(1, 2L + 1), σ(0,1)) is a SFT with alphabet A = πQ(PX(1, 2L + 1)) ⊂
TQD

∼= T 2L+1
D .

Lemma 6.8. The SFT (PX(1, 2L+ 1), σ(0,1)) in AZ is irreducible and has
period 2.

Proof. For every a = {(a0, . . . , a2L)} ∈ A ⊂ T 2L+1
D we write

u(a) = |{k : 0 ≤ k ≤ 2L, b(ak) = H, l(ak) = r(ak) = V}|,
d(a) = |{k : 0 ≤ k ≤ 2L, t(ak) = H, l(ak) = r(ak) = V}|,

for the number of coordinates in a which are bottom and top halves of
vertical dominoes, respectively. Fix an element a(0) ∈ A and consider an
allowed string (a(−1), a(0), a(1)) ∈ A3 for the SFT Y (2L+1) with the property
that a(1) and a(−1) contain as many horizontal dominoes as possible. Then
d(a(1)) = u(a(0)), u(a(−1)) = d(a(0)), and we claim that

u(a(1)) ≤ max(u(a(0))− 1, 0), d(a(−1)) ≤ max(d(a(0))− 1, 0). (6.9)

For the proof of the first inequality in (6.9) we set m = u(a(0)), denote
by 0 ≤ l0 < l1 < · · · < lm−1 ≤ 2L the coordinates with b(ali) = H and
l(ali) = r(ali) = V, and set dj = lj+1 (mod m) − lj for j = 0, . . . ,m − 1.
According to our choice of a(1), each of the intervals [lj + 1, lj+1 (mod m)] is
filled with horizontal dominoes if dj is odd, or with horizontal dominoes
and a single bottom half of a vertical domino, if dj is even, and therefore
u(a(1)) ≤ u(a(0)). Since

∑m−1
j=0 dj = 2L + 1 is odd, at least one of the dj

must be odd, so that u(a(1)) ≤ min(u(a(0)) − 1, 0), as claimed. The other
inequality in (6.9) is proved similarly.

By applying (6.9) repeatedly we obtain an allowed string (a(−m′), . . . ,

a(0), . . . , a(m)), m,m′ ≥ 0, inAm+m′+1 with d(a(−m′)) = u(a(m)) = 0, and we
can extend (a(−m′), . . . , a(m)) to an allowed string (a(−m′−2), . . . , a(m+1)) ∈
Am+m′+4 such that

u(a(−m′−2)) = u(a(m+1)) = 2L+ 1,

i.e. ā = a(−m′−2) = a(m′+1) consists entirely of bottom halves of vertical
dominoes. It follows that the SFT PX(1, 2L + 1) ⊂ AZ is irreducible with
period ≤ 2.

Finally, since u(a(i)) + d(a(i)) (mod 2) = 1 and d(a(i+1)) = u(a(i)) we see
that u(a(i)) = u(a(i+2)) (mod 2) for every i. This proves that PX(1, 2L+ 1)
has period 2. �

Proof of Theorem 6.6. Apply Lemma 6.8 and Corollary 3.3 (1). �

We turn to the proof of Theorem 6.7 and assume from now on that G is a
discrete group and c : Z2×X 7−→ G a continuous cocycle. For the definition
of the cocycle γ : Z2 ×X 7−→ G for the even shift-action σ̄ of Z2 on X we
refer to (6.7).

Lemma 6.9. There exist a continuous map b : X 7−→ G and commuting
elements h1, h2, h ∈ G such that the cocycle c∗ : Z2 ×X 7−→ G, defined by

c∗(m, x) = b(σm(x))−1c(m, x)b(x) (6.10)
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satisfies that
c∗(2m, x) = hm1

1 hm2
2 hγ(m,x) (6.11)

for every m = (m1,m2) ∈ Z2 and x ∈ X.

Proof. Put r = max(r(c((1, 0), ·)), r(c((0, 1), ·)), 1) (cf. (3.4)),

Q = {−2r, . . . , 2r − 1}2 ⊂ Z2,

and denote by
O ⊂ X (6.12)

the cylinder set corresponding to the exact tiling of the rectangle [−2r, 2r]2 ⊂
R2 by horizontal dominoes. For every L ≥ 0 we set

S(2L) = {0, . . . , 2L− 1} × Z ⊂ Z2,

B(2L) = {x ∈ X : πQ · σm(x) ∈ O for every m ∈ {0, 2L} × Z},
Y (2L) = πS(2L)(B(2L)),

and denote by T the vertical shift on Y (2L) induced by σ̄(0,1) = σ(0,2), i.e.

(Ty)(k1,k2) = y(k1,k2+2)

for every y ∈ Y (2L) ⊂ OS(2L) and (k, l) ∈ S(2L). In terms of dominoes,
Y (2L) is the set of all exact domino tilings of the infinite vertical strip
[0, 2L] × R ⊂ R2 such that the two strips [0, 2r] × R and [2L − 2r, 2L] × R
are tiled entirely and exactly by horizontal dominoes. Note that (Y (2L), T )
is a SFT of the form (2.2)–(2.3) with alphabet

A(2L) = πQ(2L,2)(B(2L)) ⊂ T
Q(2L,2)
D ,

where
Q(m,n) = {0, . . . ,m− 1} × {0, . . . , n− 1} ⊂ Z2 (6.13)

for every m,n ≥ 0.
The SFT (Y (2L), T ) is not transitive. In order to determine the trans-

itive components we set, for every y ∈ Y (2L) and x ∈ B(2L) ⊂ X with
πS(2L)(x) = y,

γL(y) = γ((L, 0), x) ∈ Z. (6.14)
One can interpret γL(y) as in the proof of Proposition 6.3 by viewing y as
a tiling of the rectangle [0, 2L]×R by the half-dominoes (6.1), and by com-
pleting these half-dominoes to dominoes: if e(y) and o(y) are the numbers
of the even and odd unit squares in the rectangle [0, 2L]× [0, 1] which form
top halves of vertical dominoes, then γL(y) = o(y)− e(y).

By using the cocycle equation (2.4) for the tiling cocycle c̄TD
and element-

ary geometry we see that

γL(Ty) = γL(y)

for every y ∈ Y (2L) and that the restriction of T to each of the closed,
T -invariant subsets

Y (2L, k) = {y ∈ Y (2L) : γL(y) = k}, k ∈ Z,

is an irreducible, aperiodic SFT whenever Y (2L, k) 6= ∅ (note that Y (2L, k)
may consist of a single fixed point).
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We return to our cocycle c : Z2 ×X 7−→ G and define a cocycle c̄ : Z2 ×
X 7−→ G for the even shift-action σ̄ of Z2 on X by

c̄(n, x) = c(2n, x)

for every n ∈ Z2 and x ∈ X. For every y ∈ Y (2L) we choose an x ∈
B(2L) with πS(2L)(x) = y and observe that, according to our choice of the
integer r, c((2L, 0), x) = c̄((L, 0), x) and c((0, 1), x) = c((0, 1), σ(2L,0)(x)) =
c((0, 1), σ(0,l)(x)), l ∈ Z, are independent of the specific choice of x. In view
of this we set

ωL(y) = c((2L, 0), x) = c̄((L, 0), x)
and note that ωL : Y (2L) 7−→ G is continuous.

The cocycle equation (2.4) shows that

c̄((0, 1), x)nc̄((L, 0), x) = c̄((0, n), σ̄(L,0)(x))c̄((L, 0), x) = c̄((L, n), x)

= c̄((L, 0), σ̄(0,n)(x))c̄((0, n), x)

= c̄((L, 0), σ̄(0,n)(x))c̄((0, 1), x)n

for every n ≥ 0. Since T is irreducible and aperiodic on Y (2L, k) we conclude
that c̄((0, 1), x) commutes with c̄((L, 0), x) = ωL(y), and that

ωL(y) = c̄((L, 0), x) = c̄((L, 0), σ̄(0,n)x) = ωL(Tny)

for every L ≥ 2r, n ∈ Z and y ∈ Y (2L). The topological transitivity of T on
Y (2L, k) guarantees that the map ωL : Y (2L, k) 7−→ G is constant for every
L ≥ r and k ∈ Z with Y (2L, k) 6= ∅.

Any two elements y ∈ Y (2L, k), y′ ∈ Y (2L′, k′), can be concatenated to
an element yy′ ∈ Y (2L+ 2L′, k + k′) by horizontal juxtaposition, and

ωL+L′(yy′) = ωL′(y′)ωL(y).

As y′y also lies in Y (2L + 2L′, k + k′) and ωL+L′ is constant on Y (2L +
2L′, k + k′) we conclude that the subgroup H of G generated by the set
{ωL(y) : L ≥ 2r, y ∈ Y (2L)} is abelian, and is generated by the two elements

h′0 = ωr+1(y(4r+2,0))ωr(y(4r,0))−1, h′1 = ωr+1(y(4r+2,1))ωr(y(4r,0))−1,

where y(4r,0) ∈ Y (4r, 0) and y(4r+2,0) ∈ Y (4r + 2, 0) correspond to exact
tilings of the strips [0, 4r]×R and [0, 4r+2]×R in R2 by horizontal dominoes,
and y(4r+2,1) is the unique element in Y (4r + 2, 1). For example, if r = 1,
then y(4r,0), y(4r+2,0) and y(4r+2,1) correspond to the tilings

, , ,

of the rectangles [0, 4] × [0, 6] and [0, 6] × [0, 6], extended vertically with
period 2 to the strips [0, 4]×R and [0, 6]×R. With this choice of h′0, h

′
1 one

checks easily that

c̄((L, 0), x) = ωL(y) = h′0
L(h′1h

′
0
−1)γ((L,0),x)

for every L ≥ 0, y ∈ Y (2L), and x ∈ B(2L) with πS(2L)(x) = y. By setting
h = h′1h

′
0
−1 we conclude that

c̄((L, 0), x) = γ̄((L, 0), x) (6.15)
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for every L ≥ 0 and every x ∈ O ∩ σ̄(−L,0)(O), where O ⊂ X is the cylinder
set defined in (6.12), and where γ̄ is the cocycle for σ̄ defined by

γ̄(m, x) = h′0
m1hγ(m,x) (6.16)

for every m = (m1,m2) ∈ Z2 and x ∈ X.
In order to apply (6.15) we have to modify the cocycle c̄ so that c̄((n, 0), x)

∈ H for every n ∈ Z. First we observe that

c̄((n, 0), x) = c̄((n, 0), x′)

for every n ∈ Z whenever πS(r,1)(x) = πS(r,1)(x′) (for notation we refer to
Definition 2.1). This allows us to regard each c̄((n, 0), ·) as a map from
X(r, 1) = πS(r,1)(X) to G. As X has the extension property we may view
X(r, 1) as a mixing SFT with respect to the homeomorphism S induced
by the even shift σ̄(1,0) on X (Remark 2.2) and define a cocycle u : Z ×
X(r, 1) 7−→ G for S by u(n, πS(r,1)(x)) = c̄((n, 0), x) for every n ∈ Z and
x ∈ X. Then (6.15) can be written as

u(m, z) = v(m, z)

for every m ∈ Z and z ∈ O′ ∩ S−m(O′) ⊂ X(r, 1), where O′ = πS(r,1)(O),
πS(r,1)(x) = z and v(m, z) = γ̄((m, 0), x) (cf. (6.16)).

For every m ≥ 0 and z ∈ S−m(O′) r
⋃

0≤k<m S
−k(O′) we put

b′(z) = u(−m,Smz) = u(m, z)−1.

On the set
Z =

⋂
n∈Z

⋃
m≥n

S−n(O′) ⊂ X(r, 1),

which satisfies that µ(Z) = 1 for the measure of maximal entropy µ of
(X(r, 1), S), we obtain that

b′(Snz)−1u(n, z)b′(z) = u(m(Snz), Snz)u(n, z)u(−m(z), Sm(x)z)

= u(m(Snz) + n, Sm(x)z)

= v(m(Snz) + n, Sm(x)z) ∈ H,

(6.17)

where m(z) is the smallest nonnegative integer such that Sm(z)z ∈ O′. Pro-
position 3.1 (2) allows us to conclude from (6.17) that the µ-a.e. defined
map z 7→ w(z) = b′(Sz)−1u(1, z)b′(z)v(x)−1 from X(r, 1) to H satisfies that

w(n, z) = w(Sn−1z) · · ·w(z) = 1G

whenever n ≥ 0 and z ∈ Z ∩ O′ ∩ S−n(O′). According to Theorem 3.9 in
[24] there exists a Borel map b′′ : X(r, 1) 7−→ H with

w(z) = b′′(Sz)−1b′′(z)

for µ-a.e. z ∈ X(r, 1). Hence

b′(Sz)−1u(1, z)b′(z) = b′′(Sz)−1v(z)b′′(z)

for µ-a.e. z ∈ X(r, 1), and by setting b∗ = b′b′′−1 we see that

(b∗ · S)−1u(1, ·)b∗ = v(1, ·)
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µ-a.e. on X(r, 1). Proposition 3.1 (2) implies the existence of a continuous
map b : X(r, 1) 7−→ G such that

(b · S)−1u(1, ·)b = v(1, ·),
and by regarding b as a map from X to G we obtain that

c̄ ∗((m, 0), x) = γ̄((m, 0), x)

for every m ∈ Z and x ∈ X, where c∗ and γ̄ are defined in (6.10) and (6.16),
and where

c̄ ∗(m, x) = c∗(2m, x)
for every m ∈ Z2 and x ∈ X.

We have thus found two cocycles for the topologically mixing Z2-action σ̄
on X, namely γ̄ and c̄ ∗, which coincide for m = (m, 0), m ∈ Z. The cocycle
equation (2.4) implies that

c̄ ∗((0, 1), σ̄(n,0)(x))γ̄((n, 0), x) = γ̄((n, 1), σ̄(0,1)(x))c̄ ∗((0, 1), x),

γ̄((0, 1), σ̄(n,0)(x))γ̄((n, 0), x) = γ̄((n, 1), σ̄(0,1)(x))γ̄((0, 1), x),
(6.18)

and hence that

t(σ̄(n,0)(x))−1γ̄((n, 0), x)t(x) = γ̄((n, 0), x)

for every n ∈ Z and x ∈ X, where t = γ̄((0, 1), ·)−1c̄ ∗((0, 1), ·) : X 7−→ G

is continuous. As σ̄(γ) is mixing by Proposition 6.3 we conclude from the
definition of γ̄ that t(x) commutes with h′0 and h for every x ∈ X, and hence
that there exists an abelian subgroup H′ ⊂ G with c̄ ∗(m, x) ∈ H′ for every
m ∈ Z2 and x ∈ X. A look at (6.18) and (6.16) yields that c̄ ∗ and γ̄ differ
by a homomorphism, which is precisely the statement of the lemma. �

Proof of Theorem 6.7. Let b : X 7−→ G be the continuous function and h1,
h2, h ∈ G the commuting elements satisfying (6.10)–(6.11) in Lemma 6.9,
and let H ⊂ G be the subgroup generated by {h1, h2, h}. Equation (2.4)
shows that

c∗(m, σ2n(x))c∗(2n, x) = c∗(2n, σmx)c∗(m, x) (6.19)

for all m,n ∈ Z2, x ∈ X. From Proposition 6.3 it is clear that we can
find, for any specific value g of c∗(m, ·) and every cylinder set O ⊂ X
with c∗(m, x) = g for every x ∈ O, an element n ∈ Z2 and points x, x′ ∈
O ∩ σ−2n(O) with γ(n, x) = γ(n, x′) + 1. For simplicity we assume that O
is determined by the coordinates in B(r) for some r > ‖m‖ (cf. Definition
2.1). A direct calculation shows that

γ(n, σm(y)) = (−1)m1+m2γ(n, y)

for every y ∈ O ∩ σ−n(O), and (6.11) and (6.19) yield that ghg−1 =
h(−1)m1+m2 . By choosing n sufficiently large, but otherwise arbitrary, we
can also find elements x, x′ ∈ X with the properties that

c∗(m, x) = c∗(m, x′) = c∗(m, σ2n(x)) = c∗(m, σ2n+m(x′)) = g,

γ(n, x) = γ(n, x′) = 0,

and by substituting this in (6.19) for every large n we see that gh1g
−1 = h1,

gh2g
−1 = h2.
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We have proved that H is a normal subgroup of the group G generated
by the values of c∗. For the quotient group G/H we obtain that

(c∗(m, σ2n(x))H)(c∗(m, x)H) = 1G/H

for every m,n ∈ Z2 and x ∈ X. For n 6= 0, σ2n is topologically mixing, so
that c∗(m, ·)H : X 7−→ G/H must be constant. As c∗(2m, ·)H = 1G/H and

c∗(m, ·)c∗(n, ·)H = c∗(m, σn(·))c∗(n, ·)H
= c∗(m + n, ·)H = c∗(n, ·)c∗(m, ·)H

for all m,n ∈ Z2 we see that G/H a quotient of Z2/2Z2 and hence abelian.
Let x∗ ∈ X be the fixed point of σ(1,0) with b(x∗0) = H, and let

g1 = c∗((1, 0), x∗), g2 = c∗((0, 1), x∗),

g′1 = c∗((1, 0), σ(0,1)(x∗)), g′2 = c∗((0, 1), σ(0,1)(x∗)).

Then one can check that

g2
1 = g′1

2
, g′1g2 = g2g1, g1g

′
2 = g′2g

′
1, g′2g2 = h2,

that G is generated by the elements {g1, g2, h1, h2, h} with the relations

g2
1 = h1, h2g1 = g1h2, h1g2 = g2h1,

g−1
1 hg1 = g−1

2 hg2 = h−1,

and that there exist elements a, b ∈ H and α, α′, β, β′ ∈ G such that

g1 = g′1a, g2 = g′2b,

a = αα′, α = hm1
1 hm2

2 , α′ = hm3 ,

b = ββ′, β = hn1
1 hn2

2 , β′ = hn3

for some m1,m2,m3, n1, n2, n3 ∈ Z.
We increase the group G to a group G by adding, if necessary, elements√
α,
√
h,
√
b with the relations

(
√
α)2 = α, (

√
h)2 = h, (

√
b)2 = b,

√
α,
√
h,
√
b, h1, h2 commute,

g−1
1

√
αg1 = g−1

2

√
αg2 = (

√
α)−1,

g−1
1

√
hg1 = g−1

2

√
hg2 = (

√
h)−1,

g−1
1

√
bg1 = g−1

2

√
bg2 = (

√
b),

and set
g∗1 = g1(

√
α)−1(

√
h)m3 , g∗2 = g2

√
b.

A direct calculation shows that there exists a group homomorphism θ : Γ 7−→
G with

θ(H) = g∗1
√
h, θ(h) = g∗1(

√
h)−1,

θ(V) = g∗2, θ(v) = g∗2h.

Since
θ(h)θ(H) = hh1, θ(V)θ(v) = hh2,
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(6.11) implies that the cocycle c∗∗ = θ · cTD
: Z2 ×X 7−→ G satisfies that

θ · cTD
(2m, x) = c∗(2m, x)

for every m ∈ Z2 and x ∈ X. Fix m ∈ Z2 for the moment and apply the
cocycle equation (2.4) to see that

c∗(m, σ2n(x))c∗(2n, x)c∗(m, x)−1 = c∗(2n, σm(x)) = c∗∗(2n, σm(x))

= c∗∗(m, σ2n(x))c∗(2n, x)c∗∗(m, x)−1,

so that
ψ(σ2n(x))−1c∗(2n, x)ψ(x) = c∗(2n, x)

with
ψ(x) = c∗(m, x)−1c∗∗(m, x)

for every n ∈ Z2 and x ∈ X. As above we use topological mixing to conclude
that ψ(x) commutes with c∗(2n, x) for every n ∈ Z2 and x ∈ X, and that
ψ is therefore constant. This shows that there exists, for every m ∈ Z2, an
element gm ∈ G with

c∗(m, x) = gmc
∗∗(m, x)

for every x ∈ X, and that g2m = 1G for every m ∈ Z2. If

ḡ1 = g(1,0)g
∗
1

√
h, ḡ′1 = g(1,0)g

∗
1(
√
h)−1,

ḡ2 = g(0,1)g
∗
2, ḡ′2 = g(0,1)g

∗
2h,

one obtains a group homomorphism θ̄ : Γ 7−→ G with

θ̄(H) = ḡ1, θ̄(h) = ḡ′1,

θ̄(V) = ḡ2, θ̄(v) = ḡ′2,

and the cocycle θ̄ · cTD
: Z2 × X 7−→ G coincides with c∗. It follows that

θ̄(Γ) ⊂ G ⊂ G. This completes the proof of the theorem. �

Remark 6.10. By using the fundamental cocycle cTD
: Z2 ×X 7−→ Γ(TD) to

calculate the group Γx̄(cTD
) ∼= πproj

1 (X, ∗) (cf. Theorem 5.5 and Remark 5.6)
we obtain that

πproj
1 (X, x̄) ∼= πproj

1 (X, ∗) ∼= Γ∗(cTD
) ∼= Γx̄(cTD

) ∼=
{(

1 0 m
0 1 0
0 0 1

)
: m ∈ Z

}
∼= Z

for every x̄ ∈ X (cf. [7]).

7. Chessboards

Let n ≥ 3, and let X(n) be the set of all colourings of the lattice Z2 with
n colours {0, . . . , n − 1} so that no two horizontally or vertically adjacent
lattice points have the same colour. Equivalently, X(n) can be described as
the set of all colourings of an infinite chessboard with n colours in which
adjacent squares are coloured differently (cf. [1], [19] and Examples 4.3–4.4
in [25]). It is easy to check that X(n) ⊂ {0, . . . , n − 1}Z2

has the periodic
extension property. If n ≥ 4, then Example 4.4 in [25] shows that every
continuous cocycle c : Z2 ×X(n) 7−→ G for the shift-action σ of Z2 on X(n)

with values in a discrete group G is trivial (cf. Example 10.6). However,
there are nontrivial cocycles on X(3) with values in, say, Z (cf. [25]). In
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order to investigate the continuous cocycles on X(3) we consider the set T ′C
of Wang tiles

(7.1)

with the colours

h0 = , h1 = , h2 = , v0 = , v1 = , v2 = (7.2)

on the horizontal and vertical edges. The Wang shift WT ′C
is isomorphic to

X(3): an explicit shift-commuting isomorphism is given by identifying the
sets {0, 1, 2} and {h0, h1, h2}, and by mapping each (τn) ∈ WT ′C

⊂ TZ2
to

(b(τn)) ∈ X(3) ⊂ {h0, h1, h2}Z2
. The tiling group Γ(T ′C) is of the form

Γ(T ′C) = {hi, vi, i = 0, 1, 2|v1h0 = v2h0 = h1v0 = h2v0,

∗v2h1 = v0h1 = h2v1 = h0v1, v0h2 = v1h2 = h0v2 = h1v2}.

Since h0 = h1 = h2, v0 = v1 = v2 and h0v0 = v0h0, Γ(T ′C) ∼= Z2, and the
tiling cocycle cT ′C : Z2 ×WT ′C

7−→ Γ(T ) in (4.5) is a homomorphism.
With a different representation of X(3) as a Wang shift we obtain a much

more complicated tiling group and a nontrivial tiling cocycle. Let T ′′C be the
set of Wang tiles

1 0
0 1

1 2
0 1

2 0
0 1

1 0
0 2

2 0
0 2

2 1
0 2

0 1
1 0

0 2
1 0

2 1
1 0

0 1
1 2

2 0
1 2

2 1
1 2

0 1
2 0

0 2
2 0

1 2
2 0

0 2
2 1

1 0
2 1

1 2
2 1

(7.3)

with the colours hij = [ i j ] on the horizontal and vji =
[
j
i

]
on the vertical

edges, where i, j ∈ {0, 1, 2} and i 6= j (cf. (4.1)). The isomorphism between
the Wang shift WT ′′C

and the SFT X(3) is given by sending each (τn) ∈
WT ′′C

⊂ T ′′C
Z2

to the point (an) ∈ {0, 1, 2}Z2
with

τn = cn dn
an bn

∈ T ′′C

for every n ∈ Z2.
The tiling group Γ(T ′′C) of X(3) = WT ′′C

has the generators

{hij , vji : 0 ≤ i, j ≤ 2, i 6= j} (7.4)

and the relations arising from (7.3): for example, the first tile in the second
row of (7.3) leads to the relation h01v

0
1 = v1

2h12.
The group Γ(T ′′C) is nonabelian: if F3 is the free group on the three gener-

ators γ0, γ1, γ2 then there exists a surjective group homomorphism φ : Γ(T ′′C)
with

φ(h01) = φ(v1
0) = γ1, φ(h10) = φ(v0

1) = γ−1
1 ,

φ(h12) = φ(v2
1) = γ2, φ(h21) = φ(v1

2) = γ−1
2 ,

φ(h20) = φ(v0
2) = γ3, φ(h02) = φ(v2

0) = γ−1
3 ,

(7.5)

and the homomorphic image φ · cT ′′C : Z2 ×X(3) 7−→ F3 of the tiling cocycle
cT ′′C is easily checked to be nontrivial.

While the Wang tiles (7.1) lead to a trivial tiling cocycle, the tiles (7.3)
generate a tiling group which is too big. In order to find a more suitable
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candidate for a fundamental cocycle we set γ1 = γ2 = γ3 in (7.5) and define
a cocycle ζ : Z2 ×X(3) 7−→ Z3 by

ζ(m, x) = (m1,m2, γ̄(m, x)) (7.6)

with

γ̄((1, 0), x) =

{
1 if b(x0) ∈ {[ 0 1 ] , [ 1 2 ] , [ 2 0 ]},
−1 otherwise,

,

γ̄((0, 1), x) =

{
1 if l(x0) ∈ {[ 1

0 ] , [ 2
1 ] , [ 2

0 ]},
−1 otherwise

(7.7)

for every m = (m1,m2) ∈ Z2 and x ∈ X(3). Since the cocycle γ̄ is continu-
ously cohomologous to a cocycle taking values in 3Z we have to replace it
by the closely related cocycle γ′ : Z2 ×X(3) 7−→ Z in (7.9).

RepresentX(3) ⊂ {0, 1, 2}Z2
as the set of allowed colourings of Z2 with the

colours {0, 1, 2}, where ‘allowed’ means that no two adjacent lattice points
have the same colour, and define a cocycle γ : Z2 ×X(3) 7−→ Z by setting

γ((1, 0), x) =


1 if (x(0,0), x(1,0)) = (0, 1),
−1 if (x(0,0), x(1,0)) = (1, 0),
0 otherwise,

γ((0, 1), x) =


1 if (x(0,0), x(0,1)) = (0, 1),
−1 if (x(0,0), x(0,1)) = (1, 0),
0 otherwise,

(7.8)

for every x = (xn) ∈ X(3) = WTC
⊂ TZ2

C . Let b′ : X(3) 7−→ Z be the map

b′(x) =

{
1 if x0 = 2,
0 otherwise

and set
γ′(m, x) = γ(m, x) + b′(x)− b′(σm(x)) (7.9)

for every m ∈ Z2 and x ∈ X(3). Then the cocycle γ′ : Z2 × X(3) 7−→ Z
satisfies that

γ′(m, x)−m1 −m2 = 0 (mod 2) (7.10)
for every m = (m1,m2) ∈ Z2 and x ∈ X(3).

Theorem 7.1. Let G be a discrete group, and let c : Z2 ×X(3) 7−→ G be a
continuous cocycle for the shift-action σ of Z2 on the space X(3) of three-
coloured chessboards. Then there exists a continuous map b : X(3) 7−→ G
and commuting elements h, h1, h2 ∈ G such that

b(σm(x))−1c(m, x)b(x) = h
(m1+m2−γ′(m,x))/2
1 hm2

2 hγ
′(m,x)

for every m = (m1,m2) ∈ Z2 and x ∈ X(3). In other words, the cocycle
c∗ : Z2 ×X(3) 7−→ Z3, defined by

c∗(m, x) =
(m1+m2−γ′(m,x))

2 ,m2, γ
′(m, x)

)
for every m = (m1,m2) ∈ Z2 and x ∈ X(3), is fundamental (cf. Definition
2.3).
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We begin the proof of Theorem 7.1 with a proposition.

Proposition 7.2. The shift-action σ of Z2 on X(3) is topologically mixing.
Furthermore, if k ∈ Z and O ⊂ X(3) is a nonempty open set, then

O ∩ σ(γ′)
(−2m,0)(O) ∩ {x ∈ X(3) : γ′((2m, 0), x) = 2k} 6= ∅,

O ∩ σ(γ′)
(−2m−1,0)(O) ∩ {x ∈ X(3) : γ′((2m+ 1, 0), x) = 2k + 1} 6= ∅

(7.11)

whenever |m| is sufficiently large. Finally, if the skew-product action σ(γ′)

of Z2 on X(3) × Z is defined as in Proposition 6.3 by

σm
(γ′)(x, l) = (σm(x), γ′(m, x) + l)

for every m ∈ Z2, x ∈ X(3) and l ∈ Z, then σ
(1,0)
(γ′) is topologically transitive,

but not mixing.

Proof. Every allowed colouring of a square {−r, . . . , r}2 ⊂ Z2 can be ex-
tended to an allowed colouring of a larger square which contains only the
colours 0 and 1 along its boundary (cf. Example 4.3 in [25]). If O1, O2

are nonempty cylinder sets in X(3) we may therefore decrease these sets, if
necessary, and assume that there exists an integer r ≥ 0 such that each Oi
is determined by a colouring of the square {−r, . . . , r}2 containing only the
colours 0 and 1 along its boundary. Then it is clear that O1∩σ−m(O2) 6= ∅
whenever m = (m1,m2) ∈ Z2 with max(|m1|, |m2|) > 2r, which shows that
σ is mixing.

In order to prove (7.11) we fix k ∈ Z and assume that m > 12r+6|k|+6.
By colouring each of the columns {j} × Z in the rectangle R = {2r +
2, . . . ,m − 2r − 2} × Z with only two appropriately chosen colours we can
construct an allowed colouring of the region

{−2r−1, . . . , 2r+1}2∪R∪({m−2r−1, . . . ,m+2r+1}×{−2r−1, . . . , 2r+1})

such that any x ∈ X(3) with this partial colouring satisfies that x ∈ O1 ∩
σ(−m,0)(O2) and

γ′((m, 0), x) =

{
2k if m is even,
2k + 1 if m is odd.

This proves (7.11) and implies that σ(γ′)
(1,0) is topologically transitive. Note

that σ(γ′)
(1,0) is not mixing by (7.10). �

Let L ≥ 1, and let

PX(1, L) = {x ∈ X(3) : σ(L,0)(x) = x}

be the set of points with horizontal period L. Then (PX(1, L), σ(0,1)) is a
SFT with alphabet A(L) = πQ(L,1)(PX(1, L)) ⊂ {0, 1, 2}Q(L,1) ∼= {0, 1, 2}L
(cf. (6.13)). Put

γL(a) = γ′((L, 0), x) = γ((L, 0), x)

for every a ∈ A(L) and x ∈ PX(1, L) with πQ(L,1)(x) = a and observe that

γL(a) (mod 2) = γ((L, 0), x) (mod 2) = L (mod 2),
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γ((L, 0), x) = γ′((L, 0), x) = γ′((L, 0), σ(0,1)(x)) = γ((L, 0), σ(0,1)(x))

(cf. (7.10) and (2.4)). It follows that

P
(k)
X (1, L) = {x ∈ PX(1, L) : γ((L, 0), x) = k}

is invariant under σ(0,1) for every L, k, and is a SFT with respect to σ(0,1)

with alphabet

A(L, k) = πQ(L,1)(P
(k)
X (1, L)) = {a ∈ A(L) : γL(a) = k}

whenever it is nonempty.

Lemma 7.3. If P (k)
X (1, L) 6= ∅ then the SFT (P (k)

X (1, L), σ(0,1)) is irredu-
cible and aperiodic.

Proof. Fix k, L with P (k)
X (1, L) 6= ∅, write every a ∈ A(L, k) ⊂ {0, 1, 2}Q(L,1)

∼= {0, 1, 2}L as a = (a0, . . . , aL−1), and set

fm(a) = γ̄((m, 0), x)

for every m = 0, . . . , L and x ∈ P (k)
X (1, L) with x(j,0) = aj for j = 0, . . . , L−1

(cf. (7.7)). Then fL(a) = 3γL(a) for every a ∈ A(L, k).
Call a string (a(0), . . . , a(l)) ∈ A(L, k)l+1 allowed if there exists an element

x ∈ P
(k)
X (1, L) with πQ(L,1)(σ(0,j)(x)) = a(j) for j = 0, . . . , l. Then a pair

(a(0), a(1)) ∈ A(L, k)2 is allowed if and only if |fm(a(0)) + a
(0)
0 − fm(a(1)) −

a
(1)
0 −α| = 1 for everym = 0, . . . , L, where α is the unique integer with α = 0

(mod 3) and |a(0)
0 − a

(1)
0 − α| = 1 (this interpretation is due to O. Hryniv).

If we represent a(0) as an L-step walk on Z which starts in a
(0)
0 and moves

by ±1 to the position a
(0)
0 + fm(a(0)) at each time m = 1, . . . , L, then the

possible allowed ‘successors’ a(1) of a(0) correspond to all possible L-step
walks on Z which start either in β = a

(0)
0 + 1 or β = a

(0)
0 − 1, end in

β + fL(a(1)) = β + fL(a(0)), and whose positions β + fm(a(1)) at each time
m = 0, . . . , L have distance 1 from the position a

(0)
0 + fm(a(0)) of the walk

associated with a(0).
By using this observation we can construct, for every a ∈ A(L, k), an

allowed sequence (a(−m′), . . . , a(0), . . . a(m)) such that a(0) = a and a′ =
a(−m′) = a(m) is the unique element in A(L, k) with

a′m =


m (mod 2) if 0 ≤ m ≤ L− 3|k|,
m− L+ 3|k| (mod 3) if L− 3|k| ≤ m ≤ L− 1 and k ≥ 0,
−(m− L+ 3|k|) (mod 3) if L− 3|k| ≤ m ≤ L− 1 and k ≤ 0

(note that L − 3|k| must be even by (7.10)). This shows that P (k)
X (1, L) is

irreducible. The aperiodicity follows from the existence of allowed words in
A(L, k)3 and A(L, k)4 beginning and ending in a′.

A second proof of Lemma 7.3 can be derived from the proof of Lemma
8.3. �
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Put r = 2max(r(c(1, 0), ·)), r(c((0, 1), ·)), 1) (cf. (3.4)) and denote by O ⊂
X(3) the cylinder set defined by the unique allowed colouring of the rectangle
Q = {−r, . . . , r}2 with the colours {0, 1} in which the colour of 0 is equal to
0. Let L ≥ 0, and let

Z(L) = {x ∈ PX(1, L) : σ(0,n)(x) ∈ O for every n ∈ Z},
Z(L, k) = {y ∈ Z(L) : γ((L, 0), y) = k}

(7.12)

for every k ∈ Z. Then Z(L) and Z(L, k) are invariant under the even
vertical shift T = σ(0,2) for every k ∈ Z. Furthermore, if Z(L, k) 6= ∅, then
(Z(L, k), T ) is a SFT with alphabet

A(L, k)′ = πQ(L,2)(Z(L, k)) ⊂ {0, 1, 0}Q(L,2)

(cf. (3.4)). An insignificant modification of the proof of Lemma 7.3 yields
the following result.

Lemma 7.4. If Z(L, k) 6= ∅ then the SFT (Z(L, k), T ) is irreducible and
aperiodic.

Proof of Theorem 7.1. For L ≥ 0 we define Z(L) by (7.12) and deduce
from Lemma 7.4 almost exactly as in the proof of Lemma 6.9 that the
set {c((L, 0), y) : L ≥ 1, y ∈ Z(L)} generates an abelian subgroup H ⊂ G
with generators g2g−1

1 and g3, where

g1 = γ((2r + 2, 0), y(1)), g2 = γ((2r + 4, 0), y(2)), g3 = γ((2r + 3, 0), y(3)),

and where

y(1) ∈ Z(2r + 2) = Z(2r + 2, 0), y(2) ∈ Z(2r + 4, 0), y(3) ∈ Z(2r + 3, 1)

are determined by the conditions

y
(1)
(r+1,j) = y

(2)
(r+3,j) = y

(2)
(r+2,j+1) =

{
1 if j is even,
0 if j is odd,

y
(3)
(r+1,j) =

{
1 if j is even,
2 if j is odd.

We increase H to an abelian group H̄ by adding, if necessary, an element
h′ with h′2 = g2g

−1
1 . Then Lemma 7.4 and the proof of Lemma 6.9 imply

that
c((L, 0), y) = h′

L
hγ((L,0),y) = h′

L
hγ

′((L,0),y) (7.13)

whenever L ≥ 1 and y ∈ Z(L) 6= ∅, where h = g3h
′−2r−3. Put

γ∗(m, x) = h′
m1+m2hγ

′(m,x) ∈ H (7.14)

for every m ∈ Z2 and x ∈ X(3). From (7.10) and (7.13) it is clear that (7.14)
defines a continuous cocycle γ∗ : Z2 ×X(3) 7−→ H with

c((L, 0), y) = γ∗((L, 0), y) ∈ H

whenever L ≥ 1 and y ∈ Z(L). Since H is abelian and X(3) has the periodic
extension property we can apply Theorem 3.9 in [24] and Proposition 3.1
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exactly as in the proof of Lemma 6.9 to obtain a continuous map b : X(3) 7−→
H with

c∗(m, x) = b(σm(x))−1c(m, x)b(x) = γ∗(m, x)

whenever x ∈ X(3) and m = (m, 0) for some m ∈ Z.
From (7.11)) we obtain as in the proof of Theorem 6.7 that c∗((0, 1), x)

commutes with h′2 = g2g
−1
1 and g3 for every x ∈ X(3), and that c∗((0, 1), ·)

and γ∗((0, 1), ·) differ by a constant which commutes with H, i.e. that there
exists an h2 ∈ G which commutes with H such that

c∗((0, 1), x) = h2γ
∗((0, 1), x)

for every x ∈ X. After replacing h by hh′ and h′2 by h1 we obtain the
statement of the theorem. �

Remark 7.5. The cocycle γ : Z2 ×X(3) 7−→ Z in (7.8) is asymmetric in the
symbols {0, 1, 2}. The symmetric version γ̄ of γ in (7.7) is continuously
cohomologous to 3γ (and hence also to 3γ′).

Remark 7.6. By using the fundamental cocycle c∗ : Z2 × X(3) 7−→ Z3 in
Theorem 7.1 to calculate the group Γx̄(c∗) ∼= πproj

1 (X(3), x̄) in Remark 5.6
we obtain that

πproj
1 (X(3), x̄) ∼= πproj

1 (X(3), ∗) ∼= Γ∗(c∗) ∼= Γx̄(c∗) ∼= Z

for every x̄ ∈ X, in accordance with [7].

8. Square ice

We continue with a SFT closely related to the three-coloured chessboards,
the square ice model. Consider the set of Wang tiles TI of the form

(8.1)

with the colours H, h,V, v on the solid horizontal, broken horizontal, solid
vertical and broken vertical edges, let Y = WTI

be the Wang shift of TI ,
and observe that Y has the periodic extension property. If we consider the
configurations

obtained by drawing arrows orthogonal to the edges of the tiles (8.1) in such
a way that the edges H,V, h, v are crossed by arrows pointing down, right,
up and left, respectively, then we obtain a shift-commuting isomorphism
between the SFT Y = WYI

and the ‘square ice’ model, which consists of all
configurations of arrows between horizontally or vertically adjacent points
in (1

2 ,
1
2) + Z2 with the property that each lattice point has exactly two

arrows pointing towards it, and two pointing away from it. Furthermore, if
we represent X(3) in the form (7.3), then the map of colours

[ 0 1 ] , [ 1 2 ] , [ 2 0 ] 7→ H, [ 1 0 ] , [ 2 1 ] , [ 0 2 ] 7→ h,

[ 1
0 ] , [ 2

1 ] , [ 0
2 ] 7→ V, [ 0

1 ] , [ 1
2 ] , [ 2

0 ] 7→ v
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induces a continuous, surjective, open, three-to-one, shift-commuting map
ψ : X(3) 7−→ Y (cf. [19], [7] or Example 4.5 in [25]). The tiling group

Γ(TI) = 〈H, h,V, v|HV = VH, hv = vh, hV = Vh,

Hv = vH, hV = vH, Hv = Vh〉
(8.2)

is easily checked to be isomorphic to Z3, with generators

H, V, H−1h = V−1v.

We write cTI
: Z2×Y 7−→ Γ(TI) for the tiling cocycle of Y = WTI

and obtain
the following result.

Theorem 8.1. Let G be a discrete group, and let c : Z2 × Y 7−→ G be
a continuous cocycle for the shift-action σ of Z2 on the space Y = WTI

.
Then there exist a continuous map b : Y 7−→ G and a group homomorphism
θ : Γ(TI) 7−→ G such that

b(σm(x))−1c(m, x)b(x) = θ(cTI
(m, x))

for every m ∈ Z2 and x ∈ Y . In other words, the tiling cocycle cTI
is

fundamental (cf. Definition 2.3).

The proof of Theorem 8.1 is quite similar to that of Theorem 7.1. Ac-
cording to (4.5), the tiling cocycle cTI

is given by

c((1, 0), x) = b(x0) ∈ {h,H}, c((0, 1), x) = l(x0) ∈ {v,V},

and we define a second cocycle γ : Z2 × Y 7−→ Z by setting

γ((1, 0), x) =

{
1 if b(x0) = H,

−1 otherwise,
γ((0, 1), x) =

{
1 if l(x0) = V,

−1 otherwise

for every x ∈ Y .

Proposition 8.2. The shift-action σ of Z2 on Y = WTI
is topologically

mixing, and the skew-product transformation σ(1,0)
(γ) : Y ×Z 7−→ Y ×Z, defined

as in Proposition 6.3, is topologically transitive, but not mixing.

Proof. The first assertion is clear from Proposition 7.2 and the existence
of the shift-commuting, surjective, three-to-one map ψ : X(3) 7−→ Y . The
second assertion is equivalent to an elementary statement about the standard
random walk on Z in which one moves at each step by ±1. �

Lemma 8.3. For every L ≥ 1 and −L ≤ k ≤ L, put

PY (1, L) = {x ∈ Y : σ(L,0)(x) = x},

P
(k)
Y (1, L) = {y ∈ PY (1, L) : γ((L, 0), y) = k}.

Then σ(0,1)(P (k)
Y (1, L)) = P

(k)
Y (1, L), and the SFT (P (k)

Y (1, L), σ(0,1)) is ir-
reducible and aperiodic whenever P (k)

Y (1, L) 6= ∅.



FUNDAMENTAL COCYCLES 39

Proof. We write A(L) = πQ(L,1)(PY (1, L)) ⊂ TLI
∼= T

Q(L,1)
I for the al-

phabet of the SFT (PY (1, L), σ(0,1)) (cf. (6.13)) and set, for every a =
(a0, . . . , aL−1) ∈ A(L),

b(a) = (b(a0), . . . , b(aL−1)),

N(a) = |{m : 0 ≤ m ≤ L− 1 and b(a(0)
m ) = H}|.

Then
{b(a) : a ∈ A(L)} = {h,H}L,

and we put

A(L, k) = {a ∈ A(L) : γL(a) = k} = {a ∈ A(L) : 2N(a)− L = k}
for every k = −L, . . . , L, where γL(a) = γ((L, 0), x) for every a ∈ A(L)
and x ∈ PY (1, L) with πQ(L,1)(x) = a. As in the proof of Lemma 7.3
we call a string (a(0), . . . , a(l)) ∈ A(L, k)l+1 allowed if there exists a point
y ∈ P (k)

X (1, L) with πQ(L,1)(σ(0,j)(y)) = a(j) for j = 0, . . . , l.
If we fix a ∈ A(L), then we can find elements a′ = (a′0, . . . , a

′
L−1), a

′′ =
(a′′0, . . . , a

′′
L−1) in A(L) such that (a, a′) and (a, a′′) are allowed,

l(a′0) = l(a′′0) = r(a′L−1) = r(a′′L−1) = v,

t(a′m) = b(a′m) for every m = 0, . . . , L− 1,

αH(a′′) ≤ max(N(a), αH(a)− 1),

where
αH(b) = max{m : 0 ≤ m ≤ L− 1 and t(bm) = H}

for every b = (b0, . . . , bL−1) ∈ A(L). Similarly we can find elements b′ =
(b′0, . . . , b

′
L−1), b

′′ = (b′′0, . . . , b
′′
L−1) in A(L) such that (a, b′) and (a, b′′) are

allowed,

l(b′0) = l(b′′0) = r(b′L−1) = r(b′′L−1) = V,

t(b′m) = b(b′m) for every m = 0, . . . , L− 1,

αh(b′′) ≤ max(L−N(a), αh(a)− 1),

where
αh(b) = max{m : 0 ≤ m ≤ L− 1 and t(bm) = h}

for every b = (b0, . . . , bL−1) ∈ A(L, k). By applying this observation re-
peatedly we can find, for every a(0) ∈ A(L, k), an allowed string (a(−m′), . . . ,

a(0), . . . a(m)) such that

a(−m′) = a(m) = a∗ = (a∗0, . . . , a
∗
L−1)

with
b(a∗) = (b(a∗0), . . . , b(a∗L−1)) = (H, . . . ,H, h, . . . h)

and l(a∗i ) = r(a∗i ) = V for every i = 0, . . . , L− 1. Since the string (a∗, a∗) is
allowed we have proved the lemma. �

As in the proof of Theorem 7.1 we have to verify an analogue of Lemma
7.4. Let r = 2 max(r(c(1, 0), ·)), r(c((0, 1), ·)), 1), and let O ⊂ Y be the
cylinder corresponding to the allowed tiling of the square [−r, r]2 ⊂ R2 in
which we only use the tiles and , with the tile covering [0, 1]2 (the
set O ⊂ Y is the image under the shift-commuting, open map ψ : X(3) 7−→ Y
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described at the beginning of this section of the open subset O ⊂ X(3)

appearing in (7.12)). For every L ≥ 1 and k ∈ Z we set

Z(L) = {x ∈ PY (1, L) : σ(0,2n)(x) ∈ O for every n ∈ Z},

Z(L, k) = {x ∈ Z(L) : γ((L, 0), x) = k} = Z(L) ∩ P (k)
Y (1, L).

(8.3)

Then
σ(0,2)(Z(L, k)) = Z(L, k)

for every L, k. The proof of Lemma 8.3 can be modified easily to yield the
following result.

Lemma 8.4. If Z(L, k) 6= ∅ then (Z(L, k), σ(0,2)) is an irreducible and
aperiodic SFT with alphabet πQ(L,2)(Z(L, k)) (cf. (6.13)).

Proof of Theorem 8.1. A slight adaptation of the proof of Theorem 7.1 shows
that the set

{γ((L, 0), y) : L ≥ 1, y ∈ Z(L)}
generates an abelian subgroup of G with generators h1, h such that

c((L, 0), x) = hL1 h
γ((L,0),x)

whenever L ≥ 1 and x ∈ Z(L). Furthermore there exists a continuous map
b : Y 7−→ G and an element h2 ∈ G such that the group H generated by
h1, h2, h is abelian and

b(σm(x))−1c(m, x)b(x) = hm1
1 hm2

2 hγ(m,x)

for every m = (m1,m2) ∈ Z2 and x ∈ Y . We denote by θ : Γ(TI) 7−→ G the
homomorphism with θ(H) = h1, θ(V) = h2 and θ(H−1h) = h and obtain the
assertion of the theorem. �

Remark 8.5. The factor map ψ : X(3) allows us to define a cocycle

c(m, x) = cTI
(m, ψ(x))

for the shift-action σ of Z2 on the three-coloured chessboards with values
in Γ(TI) ∼= Z3. According to Theorem 7.1, there exist elements h1, h2, h ∈
Γ(TI) such that c is continuously cohomologous to the cocycle

c′(m, x) = h
(m1+m2−γ′(m,x))/2
1 hm2

2 hγ
′(m,x)

for every m = (m1,m2) ∈ Z2 and x ∈ X(3), where γ′ : Z2 × X(3) 7−→ Z
is defined in (7.9). A possible choice of h1, h2, h in terms of the generators
H,V,H−1h of Γ(TI) is

h1 = 1Γ(TI), h1 = 1Γ(TI), h = H−3h3.

Remark 8.6. By using the fundamental cocycle cTI
: Z2 × Y 7−→ Z3 to cal-

culate the group Γȳ(cTI
) ∼= πproj

1 (Y, ȳ) in Theorem 5.5 and Remark 5.6 we
obtain that

πproj
1 (Y, ȳ) ∼= πproj

1 (Y, ∗) ∼= Γ∗(cTI
) ∼= Γȳ(cTI

) ∼= Z
for every ȳ ∈ Y , as in [7].
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9. Lozenges

Denote by TL the set of Wang tiles

(9.1)

and write X = WTL
for the corresponding Wang shift. In Example 4.6 in

[25] it was pointed out that WTL
is isomorphic to the set of lozenge tilings

discussed in [30]: re-draw the tiles (9.1) as

and delete the broken edges in the corresponding tilings as in the following
picture:

−→ .

The resulting patterns correspond to the set of all tilings of the plane by the
tiles

,

which are, in turn, obtained by shearing the usual lozenges

.

A comparison of (9.1) with (8.1) shows that WTL
⊂ WTI

is the set of all
tilings which do not contain any translate of the tile , and that the Wang
shift WTI

is again a SFT with the periodic extension property. By using the
same colours on the edges as in (8.1) we obtain the tiling group

Γ(TL) = 〈H, h,V, v|HV = VH, hV = Vh, Hv = vH,

hV = vH, Hv = Vh〉 = Γ(TI) ∼= Z3.
(9.2)

The tiling cocycle cTL
is the restriction of cTI

: Z2 × WTI
7−→ Γ(TI) to

Z2 × WTL
. With a proof essentially identical to that of Theorem 8.1 we

obtain:

Theorem 9.1. Let G be a discrete group, and let c : Z2 × Y 7−→ G be
a continuous cocycle for the shift-action σ of Z2 on the space X = WTL

.
Then there exist a continuous map b : X 7−→ G and a group homomorphism
θ : Γ(TL) 7−→ G such that

b(σm(x))−1c(m, x)b(x) = θ(cTL
(m, x))

for every m ∈ Z2 and x ∈ X. In other words, the tiling cocycle cTL
is

fundamental (cf. Definition 2.3).

Remark 9.2. By using the fundamental cocycle cTL
to calculate the fun-

damental group Γx̄(cTL
) ∼= πproj

1 (X, x̄) in Theorem 5.5 and Remark 5.6 we
obtain that

πproj
1 (X, x̄) ∼= πproj

1 (X, ∗) ∼= Γ∗(cTL
) ∼= Γx̄(cTL

) ∼= Z
for every x̄ ∈ X (cf. [7]).
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10. Examples with trivial cohomology

Let d ≥ 2, A a finite set and X ⊂ AZd
a SFT. A sufficient condition for

cohomological triviality (cf. Definition 5.7) of X was given in Theorem 3.2
in [25]; here we present a simplified version of this condition which can be
verified quite easily in specific examples.

Definition 10.1. Let d ≥ 2, A a finite set, and let X ⊂ AZd
be a SFT

satisfying (2.2)–(2.3).
(1) The set

∆X = {(x, x′) ∈ X ×X : xn 6= x′n for only finitely many n ∈ Zd} ⊂ X ×X
is the Gibbs equivalence relation of X.

(2) For every m = (m1, . . . ,md) ∈ Nd and every r ≥ 0 we set
〈m〉 = min

i=1,...,d
|mi|,

Q(m) =
m∏
i=1

{0, . . . ,mi} ⊂ Zd,

∂Q(m)(r) = {n = (n1, . . . , nd) ∈ Q(m) :

ni ∈ {0, . . . , r} ∪ {mi − r, . . . ,mi}
for some i = 1, . . . , d}.

(10.1)

For m ∈ Nd and r ≥ 1 with 〈m〉 > r we call an element z ∈ A∂Q(m)(r)
allowed

if πk+F (z) ∈ πk+F (X) = πF (X) for every k ∈ Zd with k + F ⊂ ∂Q(m)(r),
where F = {0, 1}d ⊂ Zd. The SFT X has the box extension property if
there exist integers m∗ > r∗ ≥ 0 such that we can find, for every r ≥ 0,
every m ∈ Nd with 〈m〉 ≥ m∗, and every allowed element z ∈ ∂Q(m)(r

∗+r),
an element x ∈ X with π∂Q(m)(r)(x) = π∂Q(m)(r)(z).

Remark 10.2. If a SFT X ⊂ AZd
has the box extension property then it

also has the extension property. It follows that X(r, i) = ΠX(S(r, i)), and
that (X(r, i), T(r,i)) is a mixing SFT for every r ≥ m∗ and i ∈ {1, . . . , d} (cf.
Definition 2.1).

The following result is closely related to (and in fact a simplified version
of) Theorem 3.2 in [25]. Its proof is left to the reader.

Theorem 10.3. Let d > 1, A a finite set, and let X ⊂ AZd
be a mixing

SFT with the box extension property. Then X is cohomologically trivial (cf.
Definition 5.7).

Remark 10.4. For d > 2 the box extension property in Definition 10.1 is
unnecessarily strong. Indeed, if d > 2, A is a finite set and X ⊂ AZd

a
mixing SFT of the form (2.2)–(2.3) with the extension property, then X is
cohomologically trivial whenever the projection Y = πH(r)(X) of X onto
the coordinates in H(r) is, for every r ≥ 1, a two-dimensional SFT with the
box extension property. Here

H(r) = {n = (n1, . . . , nd) ∈ Zd : |ni| ≤ r for i = 3, . . . , d}.
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We illustrate Theorem 10.3 with a list of examples, most of which are
taken from [25].

Example 10.5 (The full shift). Let d ≥ 2, A a finite set, and let X = AZd

be the d-dimensional full shift with alphabet A. As X has the box extension
property with m∗ = 1, r∗ = 0, every continuous cocycle c : Zd × X 7−→ G
with values in a discrete group G is trivial by Theorem 10.3 (cf. [10] and
Example 4.1 in [25]).

Example 10.6 (Chessboards with n ≥ 4 colours). We define the n-coloured
chessboards X(n) with n ≥ 3 as in Section 7. If n ≥ 4, then X(n) has the
box extension property with m∗ = 8 and r∗ = 0 (cf. Example 4.4 in [25]),
and is therefore cohomologically trivial.

Example 10.7 (The golden mean). The d-dimensional golden mean (call-
ed the d-dimensional hard core model in [4]) is the subshift X ⊂ {0, 1}Zd

consisting of all configurations in which the 1’s are isolated. In other words,
X is the set of points x = (xn) ∈ {0, 1}Zd

with xn±e(i) = 0 for i = 1, . . . , d
whenever xn = 1. It is clear that X has the box extension property with
r∗ = 0, so that X is cohomologically trivial whenever d > 1 (cf. Theorem
10.3 and Example 4.7 in [25]).

Example 10.8 (The iceberg model). Let M be a positive integer, put A =
{−M, . . . ,M} ⊂ Z, and let X ⊂ AZ2

be the SFT consisting of all x ∈ AZ2

in which no positive coordinate is adjacent to a negative coordinate (cf. [4]).
In other words, if x ∈ X, n ∈ Z2 and xn > 0 (xn < 0) then xm ≥ 0
(xm ≤ 0) for all four neighbours m of n. As in the preceding example one
sees immediately that X has the box extension property with r∗ = 0 and is
therefore cohomologically trivial.

Example 10.9 (Long dominoes). Consider the set of Wang tiles (6.1), aug-
mented by the tiles . The resulting Wang shift X consists of all
coverings of R2 by ‘dominoes’ of arbitrary length. The SFT X has the
box extension property with m∗ = 5 and r∗ = 2, since we have to remove
or modify some tiles if, for example, the configuration in one of the inner
corners of ∂Q(m)(r) looks like the following picture:

.

By Theorem 10.3, X is cohomologically trivial. The same conclusion holds
for the set X ′ of all tilings of R2 by dominoes of length 2 or 3, i.e. by integer
translates of rectangles of the form [0, 2] × [0, 1], [0, 3] × [0, 1], [0, 1] × [0, 2]
and [0, 1]× [0, 3].

Example 10.10 (Dominoes in three dimensions). Let X be the set of all
tilings of R3 by integer translates of copies of the three-dimensional ‘domin-
oes’ [0, 2]× [0, 1]× [0, 1], [0, 1]× [0, 2]× [0, 1] and [0, 1]× [0, 1]× [0, 2] in R3.
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By translating each element of X by (1
2 ,

1
2) we obtain a one-to-one corres-

pondence between X and the set of all partitions of Z3 into ‘dimers’, where
each dimer is a subset of Z3 consisting of exactly two adjacent lattice points.

We can represent X as a three-dimensional Wang shift of the form (2.2)–
(2.3) by cutting each of the three ‘dominoes’ into two unit cubes with suit-
ably coloured faces as in dimension 2 (cf. Section 6 and Remark 4.3) and
obtain that X is a mixing Wang shift with the extension property. Since X
has the two-dimensional box extension property described in Remark 10.4
it is cohomologically trivial.

11. Factors of shifts with trivial cohomology

Theorem 11.1. Suppose that X and Y are topologically mixing d-dimen-
sional SFT’s, and that φ : X 7−→ Y is a continuous, surjective, constant-to-
one, open, shift-commuting map. If X is cohomologically trivial (cf. The-
orem 10.3) then Y has a fundamental cocycle (cf. Definition 2.3).

Proof. The proof of Corollary 3.5 in [25] yields a finite group G, a subgroup
H ⊂ G, and a continuous, nontrivial cocycle c : Zd × X 7−→ G such that
the shift-action σ of Zd on X is topologically conjugate to the skew-product
action

σ̄n
(c)(y, gH) = (σ̄n(y), c(n, y)gH) (11.1)

of Zd on Y ×(G/H), where σ̄ is the shift-action of Zd on Y . Every continuous
cocycle c′ : Zd × Y 7−→ G′, where G′ is a discrete group, induces a cocycle
c̄′ : Zd × X 7−→ G by c̄′(n, x) = c′(n, φ(x)), and c̄′ is trivial by hypothesis.
In particular there exists a continuous map b : Y × (G/H) 7−→ G′ and a
homomorphism η : Zd 7−→ G′ with

c′(n, y) = b(σ̄n(y), c(n, y)gH)−1η(n)b(y, gH)

for every n ∈ Zd and (y, gH) ∈ Y × (G/H). Fix an open set O ⊂ Y with
b(y, gH) = b(y′, gH) for all g ∈ G and y, y′ ∈ O, and modify b by a constant
and η by the appropriate conjugation so that b(y,H) = 1G′ for every y ∈ O.

Since σ̄(c) is topologically mixing we can find an integer N ≥ 1 such that

O ∩ σ̄−n(O) ∩ {y ∈ Y : c(n, y) ∈ gH} 6= ∅
for every g ∈ G and every n = (n1, . . . , nd) ∈ Zd with ‖n‖ = maxi=1,...,d |ni|
≥ N . In particular we can find, for every n ∈ Zd with ‖n‖ > N , every h ∈ G,
and every i ∈ {1, . . . , d}, elements y ∈ O∩ σ̄−n(O) and y′ ∈ O∩ σ̄−n−e(i)

(O)
with c(y,n) = c(y′,n + e(i)) = h. By varying g we see that

b(y, hgH)−1η(n)b(y, gH),

b(y′, hgH)−1η(n + e(i))b(y′, gH)

are constant in g for every h ∈ G. Hence

η(n)−1b(y, hgH)b(y, hH)−1η(n) = b(y, gH)b(y,H)−1,

η(n + e(i))−1b(y, hgH)b(y, hH)−1η(n + e(i))

= η(n + e(i))−1b(y′, hgH)b(y′, hH)−1η(n + e(i))

= b(y′, gH)b(y′,H)−1 = b(y, gH)b(y,H)−1
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for every y ∈ O and g, h ∈ G. We conclude that η(n) commutes with
b(y, hgH)b(y, hH)−1 for every y ∈ O, g, h ∈ G, n ∈ Zd, and that the map
h 7→ b(y, hgH)b(y, hH)−1 from G to G′ is, for any fixed y ∈ O, constant in
h, and equal to θ(g)−1 = b(y, gH)b(y,H)−1 = b(y, gH), say. The resulting
map θ : G 7−→ G′ is a group homomorphism satisfying that

c′(n, y) = θ(c(n, y))η(n) = η(n)θ(c(n, y))

whenever n ∈ Zd and y ∈ O ∩ σ−n(O), and by arguing as in the proof of
Lemma 6.9 we conclude that c′ is continuously cohomologous to the cocycle

(n, y) 7→ θ · c(n, y)η(n). (11.2)

Put G∗ = G× Zd and define a cocycle c∗ : Zd × Y 7−→ G∗ by

c∗(n, y) = (c(n, y),n)

for every n ∈ Zd and y ∈ Y . Then (11.2) implies that the cocycle c∗ is
fundamental. �

Remark 11.2. Suppose that the map φ : X 7−→ Y in Theorem 11.1 is continu-
ous, surjective, constant-to-one, shift-commuting, but not open (at present
no examples of such maps φ are known — cf. [7] for a more detailed dis-
cussion). Then the shift-action σ of Zd on X is Borel conjugate to a skew-
product of the form (11.1) over the shift-action σ̄ of Zd on Y , but the cocycle
c appearing in (11.1) is Borel, but not continuous. By repeating the argu-
ment of Theorem 11.1 we obtain the following result. Let c′ : Zd× Y 7−→ G′

be a continuous cocycle on Y with values in a discrete group G′. Then there
exist a group homomorphism θ : G 7−→ G′ and a Borel map b : Y 7−→ G′

such that, for every n ∈ Zd and every fully supported, shift-invariant, er-
godic probability measure µ on Y ,

c′(n, y) = b(σ̄n(y))−1θ(c(n, y))b(y) for µ-a.e. y ∈ Y.

Does Y have a fundamental cocycle? More generally, let X and Y be
topologically mixing d-dimensional SFT’s, and let φ : X 7−→ Y be a con-
tinuous, surjective, shift-commuting map. If X possesses a fundamental
cocycle c : Zd ×X 7−→ G, is the same true for Y ?

Example 11.3 (Factors of the full shift). Let n ≥ 2, A = Z/nZ, X =
(Z/nZ)Z2

, denote by σ the shift-action of Z2 on X, and let Ξ ⊂ X be
a finite, shift-invariant subgroup of X. Then σ induces a continuous Zd-
action on Y = X/Ξ, and Example 5.2 (4) and Theorem 3.8 in [27] imply
that (Y, σ̄) can be represented as (or is topologically conjugate to) a SFT
with some finite alphabet A, and the Theorems 10.3 and 11.1 imply that Y
has a fundamental cocycle.

Example 11.4 (Factors of n-coloured chessboards). Let n ≥ 3, and let

X(n) ⊂ {0, . . . , n− 1}Z2
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be the SFT defined in Section 7. As was described in Example 4.5 in
[25], there exist a SFT Y (n) and a continuous, surjective, n-to-one, shift-
commuting, open map φ : X(n) 7−→ Y (n): let T be the set of Wang tiles

T =
{

c
d b
a

: 1 ≤ a, b, c, d ≤ n− 1 and a+ b = c+ d (mod n)
}

with b(τ) = a, r(τ) = b, t(τ) = c and l(τ) = d for every

τ =
c

d b
a

∈ T,

and define φ : X(n) 7−→ Y (n) = WT by

φ(n)(x)m =
cm

dm bm
am

for every x = (xn) ∈ X(n) and m = (m1,m2) ∈ Z2, where

am = x(m1+1,m2) − x(m1,m2) (mod n),

bm = x(m1+1,m2+1) − x(m1+1,m2) (mod n),

cm = x(m1+1,m2+1) − x(m1,m2+1) (mod n),

dm = x(m1,m2+1) − x(m1,m2) (mod n).

If n = 3, Y (3) = Y is the ‘square ice’ SFT of Section 8. The SFT Y (n) has
a fundamental cocycle by Theorem 8.1 (if n = 3) or by Theorem 10.3 (if
n ≥ 4).

Example 11.5 (More factors of full shifts). This variation of Example 11.4
is taken from [7]. Let G be a finite group, and let X = GZ2

be the full shift
with alphabet G. Put

T (G) =
{

c
d b
a

: a, b, c, d ∈ G and cd = ba

}
with b(τ) = a, r(τ) = b, t(τ) = c and l(τ) = d for every

τ =
c

d b
a

∈ T (G),

and define φ : X 7−→ Y (G) = WT (G) by

φ(x)m =
cm

dm bm
am

for every x = (xn) ∈ X = GZ2
and m = (m1,m2) ∈ Z2, where

am = x(m1+1,m2)x
−1
(m1,m2),

bm = x(m1+1,m2+1)x
−1
(m1+1,m2),

cm = x(m1+1,m2+1)x
−1
(m1,m2+1),

dm = x(m1,m2+1)x
−1
(m1,m2).

The tiling cocycle cT (G) : Z2 × Y (G) 7−→ G of WT (G) = Y (G) is fundamental
by Theorem 10.3.

If G is abelian and H ⊂ X = GZ2
is the shift-invariant subgroup of fixed

points of the shift-action σ of Z2 on X then Y (G) ∼= X/H (cf. Example 11.3).
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12. Ledrappier’s example

In this section we consider a two-dimensional SFT introduced by F. Le-
drappier in [18]. Consider the closed, shift-invariant subgroup

X = {x = (xn) ∈ (Z/2Z)Z2
:

x(n1,n2) + x(n1+1,n2) + x(n1,n2+1) = 0 (mod 2)

for every (n1, n2) ∈ Z2},
(12.1)

and denote by σ the shift-action (2.1) of Z2 on X. Then σ is mixing, and
every continuous cocycle c : Z2×X 7−→ G with values in a discrete, abelian
group X is trivial, but there exist nontrivial cocycles for certain nonabelian,
discrete groups G (Proposition 5.5 in [25]).

Unlike the examples in the preceding sections, this SFT has a fairly com-
plicated first cohomology. However, all known continuous cocycles on X
with values in discrete groups arise in a particular way, and if this list of
known cocycles is exhaustive (which seems possible), then X possesses a
fundamental cocycle as a consequence of Corollary 4.4.

Denote by R = (Z/2Z)[u±1
1 , u±1

2 ] the ring of Laurent polynomials in the
commuting variables u1, u2 with coefficients in Z/2Z = {0, 1}. We write
every f ∈ R as f =

∑
n∈Z2 cf (n)un with cf (n) ∈ Z/2Z and un = un1

1 un2
2 for

every n = (n1, n2) ∈ Z2, and with cf (n) 6= 0 for only finitely many n. For
every f ∈ R we define a group homomorphism f(σ) : X 7−→ X by

f(σ) =
∑
n∈Z2

cf (n)σn

and set
Kf = ker f(σ) = {x ∈ X : f(σ)(x) = 0X}. (12.2)

Then f(σ) : X 7−→ X is surjective if and only if f is not divisible by 1+u1+u2

or, equivalently, if f does not lie in the ideal p = (1 + u1 + u2)R; if f ∈ p
then f(σ)(X) = {0X} (cf. [17] and equation (5.9) in [27]).

Lemma 12.1. Let Y ( X be a closed, shift-invariant subgroup, and let
σX/Y be the Z2-action induced by σ on X/Y . The following conditions are
equivalent.

(1) There exists a continuous group isomorphism φ : X/Y 7−→ X such
that φ · σn

X/Y = σn · φ for every n ∈ Z2;
(2) Y = Kf for some f ∈ Rr p.

Proof. This lemma is essentially contained in [17] (cf. also Remark 31.4 in
[27]), and we restrict ourselves to a brief outline of the proof. Identify R with
the dual group of (Z/2Z)Z2

by setting, for every f ∈ R and x ∈ (Z/2Z)Z2
,

〈f, x〉 = eπi(f(σ)(x))0 = eπi
P

n∈Z2 cf (n)xn .

Then
X⊥ = {f ∈ R : 〈f, x〉 = 1 for every x ∈ X} = p,

and hence X̂ = R/p. Furthermore, the automorphism of X̂ = R/p dual to
σn is multiplication by un for every n ∈ Z2.



48 KLAUS SCHMIDT

If Y ( X is a closed, shift-invariant subgroup, then q = Y ⊥ ⊂ R is a
subgroup which is invariant under multiplication by monomials, hence an
ideal which strictly contains p, and X̂/Y = q/p.

Suppose that φ : X/Y 7−→ X is a group isomorphism satisfying (1). Then
the dual isomorphism φ̂ : R/p 7−→ q/p commutes with multiplication by un

for every n ∈ Z2 and is thus an R-module isomorphism. In particular, if
f ∈ R satisfies that f + p = φ̂(1 + p), then f /∈ p, q = fR+ (1 + u1 + u2)R,
and φ̂ consists of multiplication by f . By translating this back to X we see
that (1) and (2) are equivalent. �

Lemma 12.2. For every f ∈ Rr p there exists a polynomial

ψf = 1 + c1u1 + · · ·+ cl−1u
l−1
1 + ul1 ∈ (Z/2Z)[u1] ⊂ R

with the following properties.
(1) ψf (1) = 1;
(2) Kψf

= Kf ;
(3) If Z = {(n, 0) : n ∈ Z} ⊂ Z2, and if W = πZ(Y ) ⊂ (Z/2Z)Z is the

image of Y under projection onto the coordinates in Z, then

W = kerψf (σ̄) ⊂ (Z/2Z)Z,

where σ̄ is the shift on (Z/2Z)Z defined by σ̄(z)(k,0) = z(k+1,0), and
where

ψf (σ̄) =
∑
k∈Z

cψf
(k, 0)σ̄k = idW + c1σ̄ + · · ·+ cl−1σ̄

l−1 + σ̄l;

(4) There exists, for every (a0, . . . , al−1) ∈ (Z/2Z)l, and for every x ∈
X, a unique element y ∈ X with

σm · f(σ)(y) = ψf (σ)(y) = x for some m ∈ Z2,

y(k,0) = ak for k = 0, . . . , l − 1.

Proof. Let f ∈ R r p. After multiplying f by a monomial we may assume
that f is a polynomial, and by replacing each power of u2 by the corres-
ponding power of (1 + u1) we obtain a polynomial ψ ∈ (Z/2Z)[u1] with

ψR+ p = fR+ p. (12.3)

We multiply ψ by a power of u−1
1 , if necessary, and assume that in addition

ψ(0) = 1. If ψ(1) = 0 the sum of the coefficients of ψ is even, and ψ is
divisible by a power of 1 + u1. By setting ψ = (1 + u1)lψf with ψf not
divisible by 1 + u1 we obtain a polynomial ψf ∈ (Z/2Z)[u1] ⊂ R which
satisfies the conditions (1) and (12.3).

As a consequence of (12.3) (with ψf replacing ψ) we know thatKψf
= Kf .

Define W ⊂ (Z/2Z)Z as in (3) and observe that there exists, for every
w ∈W , a unique point y ∈ Kψf

= Kf with

πZ(y) = w,

πZ(σmy) ∈W for every m ∈ Z2.

This proves (3).
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Finally, if we regard ψf as an element of R, then the definition of ψf shows
that umf−ψf ∈ p for some m ∈ Z2, and hence that σm ·f(σ)(y) = ψf (σ)(y)
for every y ∈ X. As f(σ) is surjective, the same holds for ψf (σ), and we
choose, for a given x ∈ X, an element y ∈ ψ−1

f ({x}). According to (3) there
exists a unique z ∈ Kψf

= Kf with z(k,0) = y(k,0) for k = 0, . . . , l − 1, and
by replacing y with y − z we have proved (4). �

For every Laurent polynomial f ∈ R r p with Kf 6= {0X} one can con-
struct a continuous cocycle c(f) for the shift-action σ of Z2 on X with values
in a finite group, and all known cocycles of σ on X arise in this manner.
In order to describe c(f) we define the polynomial ψf = 1 + c1u1 + · · · +
cl−1u

l−1
1 + ul1 ∈ (Z/2Z)[u1] ⊂ R according to Lemma 12.2 and set

Y = Kf = Kψf
.

Lemma 12.2 (4) implies that there exists, for every x ∈ X and a = (a0, . . . ,
al−1) ∈ (Z/2Z)l, a unique point y = κ(a, x) ∈ X with

ψf (y) = x,

y(k,0) = ak for k = 0, . . . , l − 1.
(12.4)

For a = 0 = (0, . . . , 0) the map

x 7→ κ′(x) = κ(0, x) (12.5)

is obviously a continuous group homomorphism from X into X. The first
equation in (12.4) implies that

κ′ · σn(x)− σn · κ′(x) ∈ Kψf
= Kf (12.6)

for every n ∈ Z2 and x ∈ X. Put

Φf = {n ∈ Z2 : σn(y) = y for every y ∈ Kf},
Hf = Z2/Φf , Gf = Hf ×Kf ,

and furnish Gf with the group operation

(m, x)(n, y) = (m + n, x+ σm(y))

for every m,n ∈ Z2 and x, y ∈ Kf , where k = k+Ψf ∈ Hf for every k ∈ Z2.
Then the map c(f) : Z2 ×X 7−→ Gf , defined by

c(f)(n, x) = (n, κ′ · σn(x))− σn · κ′(x)), (12.7)

is a continuous cocycle for the shift-action σ of Z2 on X.

Lemma 12.3. For every f ∈ Rr p with Kf 6= {0X},

c(f)((1, 0), x) = ((1, 0), βf (x(0,0))),

c(f)((0, 1), x) = ((0, 1), β′f (x(0,0)))

for every x ∈ X, where βf , β
′
f : Z/2Z 7−→ Kf are nonzero group homo-

morphisms.
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Proof. A calculation shows that

κ′ · σ(1,0)(x) = σ(1,0) · κ′(x)

if and only if x0 = 0 (cf. (12.5)–(12.6)), so that

ker(κ′ · σ(1,0) − σ(1,0) · κ′) = {x ∈ X : x(0,0) = 0}.

This shows that c(f)((1, 0), ·) is a function of x(0,0). Similarly one sees that

σ(0,1) · κ′(x) = κ′ · σ(0,1)(x)

if and only if x(0,0) = 0, that

ker(κ′ · σ(0,1) − σ(0,1) · κ′) = {x ∈ X : x(0,0) = 0},

and that c(f)((0, 1), ·) is a function of x(0,0). �

Theorem 12.4. There exists a continuous cocycle c∗ : Z2 ×X 7−→ G∗ with
values in a discrete group G∗ such that, for every f ∈ R r p, the cocycle
c(f) : Z2 ×X 7−→ Gf in (12.7) is of the form c(f) = θf · c∗ for some group
homomorphism θf : G∗ 7−→ Gf .

Proof. According to Lemma 12.3, the cocycles c(f) all depend only on the
coordinates in B(0) (cf. (4.9)), and the proof of Theorem 4.2 shows that
each c(f) is a homomorphic image of c

T
(1)
X

. �

Problem 12.5. Is the cocycle c∗ fundamental? More generally, does every
higher-dimensional mixing SFT possess a fundamental cocycle? The answer
to this question is probably no, but I don’t have an explicit counterexample.
It is, however, not difficult to construct topologically transitive, but nonmix-
ing two-dimensional SFT’s without fundamental cocycles (cf. e.g. Theorem
13.1).

13. One-dimensional shifts of finite type

Theorem 13.1. Let A be a finite set and X ⊂ AZ an aperiodic and mixing
SFT. Then there is no fundamental cocycle for the shift-action σ of Z on
X.

Proof. Corollary 4.4 shows that it suffices to find continuous cocycles on X
which depend essentially on arbitrarily many coordinates.

Assume without loss of generality that A = {0, . . . , n − 1}, that X is of
the form (2.2)–(2.3), and that the element 0 ∈ A has two distinct successors
i∗, j∗ (i.e. that i∗ 6= j∗ and (1, i∗), (1, j∗) ∈ π{0,1}(X)).

Let M,N ≥ 2 be chosen so that there exist allowed strings

(i0, . . . , iN , . . . , iM+N−2),

(j0, . . . , jN , . . . , jM+N−2)

in AM+N−1 with i0 = j0, iN 6= jN , and iM+N−2 = jM+N−2 = 0 (it is clear
that there exist arbitrarily large integers M with this property). Denote by
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G the free abelian group generated by the finite set π{0,...,M−1}(X) ⊂ AM

and define a continuous cocycle c : Z×X 7−→ G by setting

c(1, x) = h(x) = (x0, . . . , xM−1) ∈ G

for every x ∈ X.
We recall the definition of the Gibbs relation

∆X = {(x, y) ∈ X2 : xn = yn whenever |n| is sufficiently large}

in (3.3) and define a cocycle ah : ∆X 7−→ G by setting

ah(z, z′) =
∑
k∈Z

h(σk(z))− h(σk(z′))

for every (z, z′) ∈ ∆X (cf. (3.6)). Note that, if c′ : Z×X 7−→ G is continu-
ously cohomologous to c and h′ = c′(1, ·), then

ah′(z, z′) = ah(z, z′)

for every (z, z′) ∈ ∆X .
Choose points x, y, x′, y′ ∈ X with the following properties:

xk = x′k = yk = y′k for k ≤ 0,

xk = yk and x′k = y′k for k ≥M +N − 2,

xM+N−2 = yM+N−2 = x′M+N−2 = yM+N−2 = 0,

xM+N−1 = yM+N−1 = i∗ and x′M+N−1 = y′M+N−1 = j∗,

where i∗ and j∗ are the distinct successors of 0 mentioned at the beginning of
this proof. Since (x, y), (x′, y′) ∈ ∆X , ah(x, y) and ah(x′, y′) are well defined,
and a direct calculation shows that

ah(x, y) 6= ah(x′, y′). (13.1)

If c were continuously cohomologous to a cocycle c′ : Z × X 7−→ G for
which h′ = c′(1, ·) depends only on M − 1 successive coordinates (e.g. the
coordinates 0, . . . ,M − 2), we would obtain that

ah(x, y) = ah′(x, y) = ah′(x′, y′) = ah(x′, y′),

contrary to (13.1). As explained above, this shows that there is no funda-
mental cocycle for the shift-action of Z on X. �
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