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LECTURES ON COCYCLES OF LRGODIC TRANSFORMATION GROUPS

Klaus Schmidt

Preface

These notes cover the mabterial of a course jointly arranged

by the Indian Statistical Institute and the Indian Institute
of Technology, New Delhi, during the academic year 1975/76,

and a series of seminars given at a number of Indian Uni-

rch Institubese My aim in these lectures

ct

versities and Rese

o

namely the study of the first cohomology of ergodic trans-
formation groups. Very regretfully I have restricted myself
to the purely measure theoretic aspects of the theory without
ever mentioning the closely related fascinabing results
achieved by A.Connes, W.Krieger and others in the theory of
von Neumann algebras. Bub even within the relatively small
scope of these nobtes there are many serious omissions, of
which 1 am well aware and for which I apologize. To name Just

-

one example, I have left oub a discussion of

4.

the criteria
for hyperfiniteness, the problem of classification of both
hyperfinite and nonhyperfinite actions, and in particular

WeKrieger's complete description of weak equivalence classes
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of hyperfinite actions. I have also made no mention of the higher
cohomology of Qctions.
Having indicated what is not in these notes, let me now bturn

to the contents of this volume.
PART T

§ 1 conbains some basic definitions and properties con-
cerning actions of countable groups on (standard)
measure spaces., In particular we inbroduce H,A.Dye's
notions of full groups aﬁd of weak equivalence of

group actions,

§ 2 gilves an introductory discussion of the first coho-
mology of a countable group action and gives two

equivalent definitions of the group of cocycles.

Al

is devoted to two cohomology invariants which will

N

play a fundamental role throughout the following
sections, namely the set of essential values (or

the asynptotic range) and the notion of recurrence

of a cocycle., In a series of lemmas we prove the bagic

£.

properties of these invariants.

& 4 shows that Radon Nikodym derivatives are always
recurrent (Theorem 4.2) and derives some further

properties of this important class of cocycles,
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introduces skew products, which are important both as

a tool and as an application in the study of cocycles.
There we investigate the connectlon between properties
of the skew product arising from a cocycle and between

the invariants defined in § 3%,

studies the ergodic decomposition of a countable group
action. We give a purely measure theoretic proof of
the existence of such a decomposition, using skew

ion is completed by proving some

<t

products. Tne sec
well known results on the uniqueness and further proper-

ties of these decompositions,.

is one of the most crucial sectiors of these notes,
Here we give a detailed analysis of cocycles whose

set of essential values is equal to {O,fﬁg . The
structure of such cocycles is described in Theorem
Ve22e Ibs proof depends on a close investigation of
the ergodic decomposition for the skew product defined
by such cocycles (Lemma 7.24), The somewhat technical
analysis of this section derives its Justification
from btwo corollaries at the end of § 7. These co-
rollaries (7.23 and 7.25) establish a connection bet-
ween recurrent cocycles with essential values {O,mﬁL

on one gide and certain classes of nonatomic, o=

finite and ergodic measures for the underlying group
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action on the other gide. This connection allows a
systematic approach to the following problem: Given

an ergodic action of a countable group G on a measure

>
space (X,ﬁg,%&)g what other measures do there exist on

(Xﬁr%/

G? We will invesbtigatbte this quesbion further in § 10.

) which are also quasi-invariant and ergodic under

At this stage one should bear in mind that we have notb
vet proved the exisbtence of recurrent cocycles with

essential values {0O,a«} !
PART IT:

§ 8 During the first seven sechbions we have always looked
at actions of arbitrary countable groups. From now on
we specialize our investbtigabtion to those actions whose
orbits arise from a single aubomorphism of the measure
space. This brings us closer to classical ergodic theory
which is, after all, mainly interested in single ergodic
transformations. In this section we show thatb hyperfinite-
ness can be characterized by the existence of btransient
real valued cocycles for the action (Theorem 8.7), The
remaining part of § 8 describes a general model for
hyperfinite actions. We introduce a standard Borel
space (§Z,§;S and a countable group / of Borel auto-
morphisms of (fz,;gb such that every hyperfinite action
is weakly equivalent to the action of /[ on (52,3523;)

]

for some suitably chosen probability measure » (Theorem 8e15)
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As a corollary one obtains the celebrated result of
HeAoDye which states that all finite measure preserving
ergodic aubtomorphisms are weakly equivalent., & 8 is
completed by showing that every ergodic action of a
countable group conbains an e¢rgodic aubomorphism in its

full group (Theorem 8.22),

describes the cohomology of a hyperfinite action.
In particular we prove that 'most' cocycles of a

hyperfinite action give rise to an ergodic skew product.

In this section we study the following problem: Let
(X, %) be a standard Borel space, V a Borel aubomorphismn
of (X, 5), and £:X-7 K a Borel map. When does there
exist a nonatomic, @-finite measure u on (X,5)

4

which is quasi-invariant and ergodic under V and which
dfﬁv

sabtisfies log

LA

parbicular one can pub £ = 0 and ask for invariant

(x) = £(x) for /f«aaesxc1X? In

measures, Using the tools developed in § 7 we give

a partial solubion to the general problem and prove

among other things that every nonsingular ergodic
automorphism of a nonatomic measure space has non-

atomic, infinite, ¢ =finite, invariant ergodic

measures, These results are based on two deep consequences
of a certain recurrence property. The first one

is that every sufficiently recurrent cocycle for a

hyperfinite action is a coboundary for a large number
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of nonatomic and ergodic measures for the group action,
and the second one is a characberization of Radon

Nikodym derivatives purely in terms of recurrence -
thus giving a partial converse to Theorem 4,2, For
the precise statements of these results we refer o

Theorem 10.5 and Corollary 10.6.

Now we really turn to classical ergodic theory and
look at cocycles for for finite measure preserving
ergodic transformations. Here bthe characterization
of recurrence takes a much simpler form (Corollaries
1.2 and 11.3), and becomes particularly nice for
integrable cocycles (Theorem 11.4). Proposition 11.5
deals again with the ergodic decomposition of skew
products and shows that (for example) a real valued

cocycle is a coboundary if and only if ite skew

4

(87

€

i~

neasure preserving

e
T

product decomposes inbto fin
transformations. As a consequence we get the probably
simplest criterion for a cocycle to be a coboundary:

A cocycle 1s a coboundary if and only if its sequence

of distributions is uniformly tight (Theorem 11.8).

deals with some examples. We look abt certain cocycles

)

arsising from random walks and from uniform distribution

(modulo 1), and give an explicit computation of +their

esgsential values.
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Many of the results in these notes have not been published
elascwhere., After § 12 there ig a short list of comments
indicating +the sources of the results presented here. AL
the end of most sectlions bthere are some exercises and an
occasional problem. some of these exercises are really

-

guite trivial and are included just as illustrations of
definitions and theorems preceding them,

I have tried to keep these nobes fairly self contained,

so that anybody with a good background in measure theory
should be able to read them. I am, however, assuming
familiarity of the reader with standard Borel spaces

first two chapters in fﬁ#] contain all the necessary
material (and it is not necessary to understand all the
proofs in Chapter I of {34] 1),

Finally L would like to thank the Indian Statistical
Institute and in particular its Direcltor, Professor C.R.Rao,
for inviting me Go Thelir New Delhi Campus and for their
gsenerous and warm assistance during my stay in Delhi,
Calcutta, and during my travels in India., T am also grate-
ful for the pleasant hospitality I encountered on visits to
the Universities of Bombay, Chidambaram, Madurai, lMysore and
Privaendrunm, and to the research centres at Bangalore and
LIER, Bombay. These notes have greatly benefited from comments,
suggestbions and criticism made by a number of Indian mathemati-
cians, and in particular by Professor K.R.Parthasarathy,

Mre.Bhatia, Mr.Rana, and lMr.subramaniam, all of ITIT, New Delhi.
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PART L. THE FIRST COHOMOLOGY OF A COUNTABLE GROUP ACTION

§ 1 Introduction

In these notes the term measure space will always stand for

a btriple (X, S,/M), where (X,S) is a standard (and, in general,
uncountable) Borel space and where/u is a o -finite measure

on (X,5). A probability space is a measure space (X, ,‘E{,/A)

with /(/1<A. = 1, The measure space (X, ¢ ,/Le) is said to be
nonatomic if ,1,& is nonatomic, i.e. li//i( f ﬁ ) = 0 for every

X E KXo Let V be a Borel automorphism of (X,S ). We call V an

automorphism of (X, & ,/u) ii‘/bi is quasi-invariant under V.

/i(};, ,/u) will denote the group of all automorphisms of

&, s ,/u) If B,y,B, € S we say that B, B, (mod O) (or more
precisely, (/u -mod O) ) if /u (b J_,.ng) = 0. By = B, indicates
that the sets are actually equal. Similarly we shall assume

relations between funtions to hold everywhere except when

explicitly stated otherwise. If Be S is a set of positive

measure we write SB = cnb : C 655 and /“’B for the

restriction of u to ’%jB‘ The same symbol /’lB will be used to
J ' :

- s . . - .. o

denote the measure on (X,S) given by C-» /,u(Cf\B), ce s,
.. — ol . -
Consider now two measure spaces (X.,5. . 1= 1,2 A ma
P 10249 My 9 P
qf} :4y 2%, is called an isomorphism from (Xﬁ, S,l,/l,a/i) to
(s oy ) if
2120 M2

(a) (ﬁ is a Borel map, (1.1)
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bt A N o v . Y 7, ) —
(b) there exist subsebts N € i:ni with /Mi(ﬂi) = O
such that ¢ is a Borel isomorphism from

X/‘\ N’I onto Xg N\ I\Tg, (1.2)

(c) Hq ?‘)“q is equivalent to /{2 (in symbols: /U,‘ gg"/‘

N/ug). (1.3)

1f both X,] and £, are uncountable, we can modify gé on a

set }NE:U«%/I of /M,]-measure zero to get the additional condition
(a) (}’7 is a Borel isomorphism from X, onto X,. (1e4)

Let now (X,;":‘:’;,/u) be a fixed measure space and let G be a
countable groﬁp with identity element e. An action ‘I‘G of G on

" g& G, from G into %(‘X, S,/Lf’ De
X = {Tgx: g€Gl and 1.3 = (U 7 3B.

G G 2 G o
If the action of G on (X,,S,/L{) is understood we shall write

%, 5,/17« ) is a homomorphism g -»T

If xeX and BC':,S, we put T

gx, Gx and GB instead of Tgx, Tax and TGB.

Consider now two actions Tél) of a countable group G on measure
spaces (Xi,Si,/‘i), i=1,2, respectively. We call these actions
conjugate if there exists an isomorphism ¢: (X,},ﬁg;/i,//uq) —

(XE,S’é,/ug) (efe (1.1) = (1.3)) with

g (i) {2 b (1.5)

for every ge& G and for /u,i—a.e.x. Again, if X’l and XP are un-—

countable sets, we may assume }f? to satbisfy (1.4).

We now return to a fixed action T, of G on (X,SF,/L« ). A set

B &S is called To-invariant if T,B = B. If BE.S has the



property'thattf4(BA§TGB) = 0, then there exists a Tp-invariant
o e Lo e e e

set B € S with fA(bLAB ) = 0. I, is said to be ergodic if

every Iy-invariant set B €.Y satisfies either /%(L) or

%ﬁ( Cd) = 0, Instead of saying thatb Tq is ergodic on (X, S /u)

we shall often refer to /u an ergodic measure for T HG (ox

as
Tg=ergodic measure) on (X, SOR is called conservative if,

for every BE S with fi(B>
/}(g@;@ (13"\mg3 B fx:l xdx xt))»o. (3.6)

Using a theorem of Xuratowski on the existence of Borel crosgs-—
sections (cf. LQ?:], § T.4) one can show that (1.6) is equi-
valent to the following condibion: For every B e S with

fé(B) > 0, and foxn%&—a.e.X<§B, Tthe set

m T r
TXN B (1e?7)

is infinite. The opposite extreme of a conservative action
. o C o g . s o
is & type I action: LG 18 called a type I action if there

exists a sebl)éé§ with

o (a1 Dn{x'ﬂ X%x}) # (1.8)
€G

g

and

0. (1.9)

i

/a (X~ TGD)

Note that every ergodic action on a nonatomic measure space
must be conservative. In general, if TG is an action of G on
(A,f&,/d), we can find complementary TG~1nvar1ant sets Bq,Bgé S

with the following properties:
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(a) There exists a Borel set DCB, which satisfies (1.8) and

T.D = By, (1.10)
(b) if /U(B2)> O, then the (obvious) restriction of Ty to
<B2’§§B2’«#B ) is conservabvive. (1.11)
/72
Another important notion is that of a free action: TG is saild
to be free if
XM x=x§) =0 1.12
PASESE (1.12)
for every gé& G, gfe.
Hor the following we shall consider a fixed action T} of G
on (¥,8,u). Let
R(D,) = {(x,@gx): xE%, g€GY . (1.13)
R(TG) is a Borel subset of XX X and is called the equivalence
relation of T,. Tor BES, put
Ry(Zy) = R(1;) N BXB. (1.14)
We also define
R(2>(TG) = {(X,TgX,ThX): XEXL, g&G, necy ’ (1.15)
and
rR(P (2, = - (2,)nBxBxE. (1.16)

ol
One can define natural measures on R(TG) and R<“>(TG), but we
only need the following simpler concept: Let B € .5 with %u(B)>-O.
4 property is said to hold M-a.e. on Ry(ly) (R§2>(@G)) if
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there exists N €, with /u(N) such that the property

holds everywhere on KB\‘I(TG> <h§*\N(mG>) (1.17)

The full group [T, ] of T, ie defined by

T ] EK/CHA(A ,f{): (x, VY)Q.&(‘G) for every a:Xj (1.18)

If Be S and /u(b);> 0, the induced full group LU‘V}TW is

given by

LLG;}B EVC. g(b, b’; B) (x,Vx)e R (TG) for every XGTB} (1.19)

We now come To one of our most ilmportant definitions. Let Tél)
i

P

be an action of a countable group Gi on a measure space

( i,é?.,/s.) for i=1,2. T<q> and T<£) are called weakly equi~-
1 a

valent if there exists an isomorphism ¢? (‘{’1’ ,S,‘,/u,i) —ip

(Aa, 2,/A2) such that

d; (n(’l) - Téi)qé (x) (1.20)

for /,f,]ua.e.xéi}{,].

We conclude this section with a series of exercises which may

illustrate the definitions.

Lxercise 1.1. Let T, be an action of G on (X,E?v%k). Show

that the following conditions are equivalent.

mve [r,],
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(2) there exists a Borel partition {Bg, gé’(}j of X
such that fw’l‘ng, [,LG} is again a Borel partition

of Xy and Vx = ‘l‘éyx for every XéBg, &G,
-l

Lxercise 1.2, Suppose //{ is invariant under TG. ohow that/u

is invariant uander every V& [;T(J:]

Lxercise 1.5. Lebt Ty be an action of G on (2{,5,/w), and let

V be a Borel automorphism of (X, ) such that
(Vx,x) € R(TG)

for every x&£X. Show that V& Zﬁm‘f(}j .

ixercise 1.4, Let T, be an action of G on (X,S’p,/u), and let
QCR(‘I‘G) be a nonempty Borel set. Suppose Q is an equivalence

relation, that is

(a) (x,y) €Q implies (¥y,x) and (x,x)&Q,
(b) (x,y) and (y,z)& Q implies (x,2) €& Q.

Show that bthere exists a countable group H(TC},Q) <
[TGJ {x:(x,x)eqQ} with
{(x,Ux): (x,x)eq, VEH(TL,QY = Q. (1.21)
In parbicular, let BES with /M(B) > 0, and pub
(QB = }RB<TG)° <q 022>

Then there exists a countable group
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T(G,B) = H(Dy,Q) € [2,] 4 (1.23)
of automorphisms of the measure space (B,é?B,/MB) satisfying
[ﬁf(@,}s)] = [TG]B. (1.24)

Abusing notation we shall call T(G,B) the action induced by

TG on B. bhow That the following is true:

(¢) T(G,B) is ergodic on (B,ﬁSB,/ﬁB> whenever T, is

ergodic on (X,ﬁg,%f)o
(4) ©7(G,B) is conservative whenever Tq is conservative.

(e) Suppose that Lo is ergodic. If fiB is equivalent
o a T(G,B)=-invariant measure, show that /A is

equivalent to a TG-invariant Measure.

(£) Suppose that5/4(X‘\TGB) = 0 and that T7(G,B) is

ergodic. Show that T, is ergodic on (X,ﬁg,}a).

- . - i) fob '
Lxercise 1.5, Let Téi be an action of Gi on (Xi,§§i,/ﬁi),
i=1,2. Show that the following conditions are equivalent:

(a) qu) and T<2> are weakly equivalent
G G ’
1 2
(b) there exists an isomorphisnm ¢:(Xq,§;“,M1)w%
(X5, 5:52,/12) and sets I, & ,.S’i with /Ai(Ni) = 0
such that
i) <ﬁ is a Borel isomorphism from LN, to

Lo\ Ng,
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i1) (PLTM)jX,]\N ¢ - n@)»]x S\, (1.25)

(c) there exists an isomorphism ¢* (&4, 4,%A1)w@
(Xpy 8 ps pp) and sets I, €S, wibh S0 =0
202 Mo ,
such that
N ; i L. ] /l v
f (¢, PG <x,y>e’.a<m§1>>X4\N [

1 (1.26)

% N, °

o (2)
r(2$e)),
G2 Xg o

Exercise 1.6, Let Tn be an action of G on (X,ﬁs,}x). Show that

the following stabements are invariants of weak equivalence.

(a) T, is ergodic,
(b) 2, is conservative,
(e) Tg is type I,

m

(a) M is equivalent to a Tq-invariant probability
measure,
(e) M is equivalent to an infinite, & -finite, Lo~

invariant measure.

Exercise 1.7. 1Let ”G be a conservative action of G on a

measure space (X,f%,/w). Show thatafﬁ is nonatomic.

Lxercise 1.8, Let TG be an action of G on a measure space

(X,g?bya) and suppose thatl%ﬂ is purely atomic. Show that
TG is type I,
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§ 2 The first cohomology of an action

Let TG be an action of a countable group G on & measure space
(%,gj,fi), and let A be a locally compact second countable

abelian group with identity O and addition as composition.

Definition 2.1. A Borel map a:GxX X A is called a cocycle

for TG 1f the following conditions are satisfied.

(1) Tor every 8418, €G and for every x€ X we have

a(ganQZX) - a(gqgg,x) + a(gz,x) = 0O, (2.1)
(2) /u <gé¥6( {X:Tgx=X} n {x:alg,x)#01)) = 0. (2.2)

A cocycle a:Gx X - A is called a coboundary if there exists

a Borel map c:X—> A with
a(g,x) = c(Tgx) - c(x) (2.%)

for every g€ G and for/p<~a.e.x:éxg Two cocycles &, and as

for L are cohomologous if their difference is a coboundary,

and eguivalent if

//‘( U {X: aq(g9x> # ag(gax)j‘) = O, (24)
y ge G
We shall write

8, = a, if a, and a., are equivalent, (2.5)
1= o 1 2
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a4 o~ a, it &, and a, are cohomologous. (2.6)

To motivate (2.2) we first remsrk that it is trivially

satisfied whenever TG is a free action. The simplest and
most important example of a cocycle for a general action
gives another reason for imposing (2.2): There exists a

cocycle a/, :Gx X > [R such Ghat

Apu
& (8,%) = log -—8 (x) 2.7
/ I

for(/4~a.e.xm§X and for every ge¢ G. If ?/* and %;( both
satisfy (2.7) we must clearly have %M — %& . If we replace
/A by an equivalent measure ¥, then %ﬁ4hv &, o loreover,
i/$ is a coboundary if and only if/}A'is equivalent to a

¢ —finite invariant measure on (X,S ).

The real reason for (2.2) will be clear from the following
discussion. Let a:Gx X-» A be a cocycle for TG. Then there

exists a cocycle aO:Gx‘Xw%>A with

a, = a (2.8)
and with
{X: ao(g,x)%oﬁ’(x {x: TgX=X‘% = @5 (2.9)

for every gé& G. For every (X,y>e£R(TG), put
u, (x,7) = a,(g,7) (2.10)
o

whenever g€ G satisfies

X = Tgy, (2.11)



(2.9) shows that u, 1s defined unambiguously, and u,
<
o} 0
R(TG)«§.A is easily seen to be a Borel map. For every

(X,y,Z)é?R(E)(TG) we have

uao(x,y) - uao(x,z) + uao(y,z) = 0 (2,12)

from (2.1).

Definition 2.2. A Borel map u:R(TG)a>.A is called an orbital
cocycle for TG if

u(x,y) - ulx,z) + u(y,z) = 0 (2.13)
for every (x,y,z)e;R<2>(TG). An orbital cocycle ig said to be
a goboundary if there exists a Borel map c:X-» A such that

u(x,y) = c(x) - c(y) (2.14)

}t~a.e. on R(TG). Lwo orbital cocycles are cohomologous if

their difference is a coboundary, and equivalent if they

coincide//&ua.e. on R(TG). We write

Uy = U if u, and u, are equivalent, (2:15)

and

Uy~ Uy if u, and u, are cohomologous. (2.16)

Proposition 2.3. Let Ty be an action of G on CX,ﬁiuu,) and

let a:Gx X~>4 be a cocycle for TG. Then there exists an

orbital cocycle ua:R(TG)M$>A such that

ug (T x,%) = a(g,x) (2.17)
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for/u -2.€.Xx € and for every g€ Ge. u, is determined up to
equivalence. Furthermore, U, is a coboundary if and only if
a 1s a coboundary. Conversely, let u:R(TG)m% A be an orbital
cocycle for TG. Then there exists a cocycle au:G;<X“€?A such

that
au(g,x) = u(TgX,x) (2.18)

is again determined

for every ge G and forl/d—a.e.xéfx. a,

up to equivalence, and it is a coboundary if and only if u

is a coboundary.

Proof: The first statement follows from (2.8) - (2,12), and

the rest is evident.

Remark Z.4. Proposition 2.7 establishes an isomorphism bet-

ween equivalence classes of cocycles for TG on one side and
equivalence classes of orbital cocycles on the other side.
This isomorphism carries coboundaries to coboundaries. We
have thus two equivalent definitions of cocycles for o, one
in terms of G itself, and one purely in terms of the orbits
of TG. While Definition 2.7 seems to be preferable in ergodic
theory, where one is interested in specific actions of a parti-
cular group G, Definition 2.2 is more elegant, allows many
proofs to be shortened, and is particularly useful for sppli-
cations of cocycles in the theory of von Neumann algebras.

In the following sections we shall freely change over from

one notion to the other if such a change offers any advantage.
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We conclude this section by showing that bthe first cohomology
of a group action is an invariant of weak equivalence. Leb
A (X,/,'L,A) stand for the set of all Borel maps from X to A
where we identify maps which coincide M-a.e. on X. B (X.,/m,.[fx,)

is a group under pointwise addition of functions.

Lemma 2.5. Let Mo be a probability measure on (X, S) with
/u ~ #h , and consider @(X,/Lx JA) = @(X,/{,A) under the
o7, o ,
topology of convergence in M measure. [hen @?(X,/MO,A) is
/ /
a complete separable metric vopological group. Moreover the

topology of & (X,/MO,A) is independent of the choice of /(;{O.

/£

Proof: Since A is a locally compact second countable abelian
group, A is metrizable, and we can find an invariant metric
/" on 4 which is bounded by 1 (invariant means that /‘(o(‘ ,/% )

= (0«'+?/,/£+?/) for every oc’,/i’,{/;?’c%A). For ¢,‘,¢2 E
(B (Xy pys4), put

[ ! (%
@ (Bar o) = [ a6, ot a0 (2.19)
Clearly 4 is a metric, and B (X,/u,A) is a complete separable
o /
gpace under d . oince the metric 4 is invariant on the

o 0
group B (X.,/,ui JA), 7 (X,/u: »A) Dbecomes a topological group. If
/u q 1s another probability measure on (X, 8) with /u,i ~ /AO
and if (gﬁk, k20) is a sequence in @(X,/M,A) with d‘/wo(?ék’ /?290)
/,,,l<¢k,¢o>m> O, so that the

topology is indeed independent of the measure /L(O. The proof

-—» 0, 1t is easy to see that 4

is complete.



We now fix a metric d = d/’{o on B (X,‘/M oA ) 71 (TG,@(ZXL?//,A))
will stand for the group of all (equivalence classes of)

cocycles a:Gx X~»A for TG under addition., We define a topo=-

logy on 7,1 (’J."G,(g (X,/{,{,A)) by introducing the following notion

of counvergence, If L(ak, k > 0) is a sequence in 7 (TG,@ (X,/M‘,A)),

we say bthat

1132111 ay = 8y (2.20)
if
lim d<ak<b,->sa (8y0)) = O (2.21)

k

for every g& G. Again 7] ('l‘G,@ (X,/L,g,A)) is a complete separable
metric group in this topology. In future we shall always bthink
of 7" (Tg, B (x, //f JA)) as a topological group with the topology
just defined., B (WG,ég(k,/%,A)) will denobe bthe subgroup of
coboundaries in 2 (TGr,f)7 (A,/M »A))e If no confusion is possible,
we shall abbreviate Z (mg,ég(A te o A)) and B (TGJug(A,}X JA))

by 7 (‘jD ,A) and B (CLG,A), reﬁpectlvely. When the action of G

is understood, we shall also write A (G,A) and B’ (GyA).

Lemma 2.,6. Let a:Gx X~2»A be a cocycle for ’ZL‘G. Then there

exists a map a: [’I‘Gj X X-%» A such that
(1) a(Vye):X=A is a Borel map for every V€ ETG] ,
(2) a(‘])g,x) = a(g,x) for every g¢G and for M-a.e.x, (2.22)
(3) a(V,Vox) = a(V,Vo,x) + a(Vsy,x) = O (2.23)

for every V/],V2 € f‘I‘Gj and for every x& X.
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Proof: Choose an orbital cocycle u, as in (2.17) and put
a(V,x) = ua(Vx,x) (2.24)

for every V€ [1,1 and x€X. a will then satisfy (1) - (3),
by (2.13) and (2.17).

(1)

Let us again consider two actions TG of groups Gi on measure
. i N N E)
spaces (A. ﬁf.,/i.) respectively. Suppose Tj ‘ and Tg~7 are
1 2

weakly equivalent, and choose an isomorphism ?ﬁ (xq,c§1,/41 -
(Aa, 2,/ﬁ2) satisfying (1.20). If u: R(T( ))w%_ﬁ is an orbital
Gq
cocycle, we can find an orbital cocycle ¢)(u) h(T<a>)w§z&
G

satisfying

%(u) (?5(72), ?5(;57)) = u(x,y) (2.25)

for /uq—a.e. (X,y)éfR(Téq>). Qé(u) is determined up to equi-
‘ 1

valence by (2.25)., Similarly, if a:G X X, —>4A is a cocycle

for ”(1>, we can use (2.17) and (2.18) to obtain a cocycle

L\

/‘
¢(a):@2x Ly=>A for 'ﬂé2>, by setting
2

q5<a) = a $<ua) (2.26)

g
Again we note that ¢3(a) is determined up to equivalence,

and that

(;é (a,}) = ¢(a2) whenever 8, = 8o,
and

/¢ (a,])fv ¢(a2) whenever — a; ~- ag.

The following assertion is easily verified.
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Proposition 2.7. Q§:Zq(Té:)yA)wé»Zq(Téi),A) is a topological
group isomorphism, which carries coboundaries to coboundaries.

In particular, if Ta 1s an action of a countable group G on a

measure space (X,S, ), the groups
’ 9/“:

it

1 , il
71 gy B (%, pa8)) = 3 (Tg,4)

Bq(Tg,A)

il

B/l (TG, (@O{’/"’A))

and hence

it

' (@, B (X, 4y8)) = 71 (Bg,4)/8" (Tg,4)

are invariants of weak equivalence,

Remark 2.8. The quotient group Hq(TG,Qg(anA,A)) = Hq(TG,A)

in (2.27) is called the first cohomology group of the action

T.o Since Bq(T A) is in general not a closed subgroup of
G G?

Zq(TG,A), Hq(TG,A) is usually considered as a purely alge-

braic group without any topology or Borel structure.

Lxercise 2.9, Let TG be an ergodic action of a countable

group G on (X,ﬁ§,/A). Iir fpi has an atom, show that Zq(TG,A)

1
= B (TG,A)O

Exercise 2,70. Let T, be an action of G on <X’§rﬁfﬁ)’ and

let B &S with /;(B) > 0. We write

up = u/RB(TG)

for the restriction of u to RB(TG). If T(G,B) denotes the

(2.27)

(2.28)



no
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0

group defined in Exercise 1.4, show that ug is an orbital

cocycle for T(G,B). Moreover, if we put
aB<V,X) = uB(VX,IX?> (2.29)

for every x& B, Ve 7(G,B), then 85:T(G,B) x B—>4 is a co-
cycle for T(G,B) on (B,ﬁgB,/uB) (more precisely: ap is a
cocycle for the obvious action of T(G,B) on (B,ﬁ?B,/uB)).
Conversely, suppose that uB:RBCTG)M} A is an orbitai cocycle
for T(G,B) on (B,SB,/uB). Show that there exists an orbital

cocycle u:R(Ty) ~» A for T, on CX,ﬁ{vAA) such that
u(x,y) = uy(x,y)

fox*/iB-a.e.(X,y)é;RB(TG).

bxercise 2.11. Let TG be an action of G on a measure space

(X,£§{/4), and let 2 u be the cocycle (2.7). Denote by 9/4 =

u,  the orbital cocycle (2.17) and by %L the extension of
M - !
a}{ to [TG] defined in Lemma 2.6. Show that, for every

we [1.],

~ d/u W
u  (Wx,x) = a_ (W,x) = log (x) (2.30)
a

s



§ 3 Some cohomology inveriants

Let A be a locally compact second countable group. If A is
noncompact, we put K = Ay {ef , the one point compactification
of A, ¥or compact A let K = A. We fix a countable group G and

a nonatomic measure space CX,§§%%1).

Definition F.1. Iet T be an ergodic action of G on (X,Sgpu )
and let a:Gx X ~» A be a cocycle for Tpe An element o ¢ &

is called an essential value of a if, for every neighbourhood

N(x) of & in &, and for every B €.5 with /A(B) > 0,

£

/A(g%{G(B(iTéqB;W {x:a(g,x)@}ﬁ(m')% ) > 0. (3.1)

The set of all essential values of a will be denoted by E(a),
and we put E(a) = i(a)!ﬁA.
It u:R(TG)*%>A is an orbital cocycle we put E(u) = §(3u> and

Elu) = E(au), where a  is given by (2.18).

To determine the properties of g(a) we need a few lenmas,
Until these assumptions are changed explicitly, TG will
denote an ergodic action of G on (X,£§>%ﬁ) and a:G XX —»A
a fixed cocycle for TG.

=

Lemma 5.2. Let b:Gx X-3A be a coboundary. Then E(a+b) = £(a).

rroof: Because of symmetry we only have to show that E(a)e E(a+b).



We choose a Borel map c:X -» A such that b(g,x) = O(Tg}{) -
c(x) for every g ¢ G and for/( ~0.C X E Ko LT & € ﬁ(a), N(ec)
a neighbourhood of & in K, and let B .S wi'th/\ (B) > 0.
We choose neighbourhoods ]iif,](o( YC K and 1\?2(0)@!& with

N, Coc )+ N5(0) € W(x ) (we adopt the convention /5 too =
for every /@ &€ A). Next we choose C B with /M(C) > 0 such

that ¢(x) - c(y)¢ N2<O) for every x,y&C. Tet 8,6 G be given
1

O
D& Y such that /u(D) > 0, Dv®

with/u CHE { x:a(g,,®) €N,(w )} ) > 0. We can find

DCC, and a(g,x)éNq(@()
8o °
for all x¢ D, and get

a(go,x)-z-b(go,x) = a(go,x)»%«c(‘l‘gox)mo(x) £ Nq( (}Y)+N2(O) < N(ex )

for/,s ~8.6.x €D, This shows that o€ E(a+b) and proves the lemma.

Lemma 5.5, E(a) is a closed subgroup of A.

Proof: Clearly we have O€ E(a), so that E(a) # ¢), Since E(a)
is obviously closed, it will be enough to show that, for

every g;s(’,/ié;E(a), we also have i —/55»:13(&). Indeed, let o,
neighbourhcod of O in A. We choose a symmetric neighbourhood

N, (0) with N, (O)+N,l (0) ¢ H(0) and an element gqe G for which

Bn1'B A fxialg,®) el (0)+x] ) > 0. I£ C = Bar>'B 4
/U 29 1 1 81
[('X:a(g,],:{)él‘i",’ (O)+«) , we have /L.,(O') > 0, CuT,_ C ¢ B,

/ t:)/]

and a(gg,],}:) ell, (0)+« for x& C. Applying the same argument
to C and/.l s We choose an element g, £G and a Borel set D
i

with w« (D) > 0, DU, D C C, and a(gy,x) & I, <O)+/6 for

&2
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every xé& Do Put DY = T D, @hen./y(D') > 0, D'y T, gqu'<: B,
e1e2

and
R T N EUN
algq8y »¥) = aleq, T, y)+aley »y) € g (O)+ &+ (1, (0)= )
< N(O)+ m-/ﬁ
for every ye D', Since B and W(0) were arbitrary, we have

proved that & -4 €L(a). The proof is complebe.

We now modify our assumptions and assume for the following
four lemmas that ‘J‘}G is an arbitrary (not necessarily ergodic)
action of G on (}i,,S",/z,e), and thatb u:R(TG‘)@A is an orbital

cocycle.
Lemma 5.4, Leb ¢r:X~»~f§»X be a Borel map with

(f) (x) & L,x for /—-a.e.:»cé‘:}’;. (%3.2)

‘‘hen there exists an orbital cocycle u¢ :R(‘I‘G) - A such that

"

O
L]
N

s

uy Gy = Py, b ) (:

~8,8, O R{(T~)e 1 is unigue up o equivalence, and it is
G ¢ 9

cohomologous To u.

ey

1l

Proof: DPub I, f}:: ;/; (X)%TGX} and N

= Tgﬁq' The map

i 3 A with

u(ex, !}5 (%)) for x € X\,
c(x) = -
O otherwise ,



%ol
is Borel. ¥We define
u(p ), ¢ for (o) € Ry (Te),
Y (%,5) = (3.5)

O on RN(TG) .

u?ﬁ :R(TG)@ A is an orbital cocycle, and

i

wg (my)re()=e(y) = ulx, $G)+al g, ¢)+ald ),y

u(x,y) (3.6)

ii

for every (x,y)é& RX\I\'I'(TG>‘ Since M (8) = 0, (3.56) implies
that qu ig cohomologous to u. (%.%) shows that uq_g is unigue

»

up to equivalence. The proof is complete.

Lemna 5,5, Let B,i,B?. e S with /«,«(B,1 n TGBc?) > 0, and let W

be a set and N(0) a neighbourhood of 0 in A. Suppose that

AN
L]

~1
e

u(x,y)é i} (5

for every (:{,y)gRB (C’DG). Then there exists a set C<cB,
1

with /,4 (¢) » 0, ¢ &%, and
u(x,y) € W+N(0) (%.8)
for every (x,y)@;RC('_{‘G).

. . L. . 3 . . .
Proof: By assumption we can find D €5 and By €G with
//x (D) = 0, DeBy, and T, DCB,. Tet CcD be a Borel set

- S
0
of positive measure such that u(x,T

L, x)-uly,T, v)& N(0)
8o 8y

for all x,y& C. Ve get



u(x,y) = u('i‘{ Xyl y)+ulx, :x.)-uQ,“‘ v)e W+l {(0)
e €o “0

for every (x,y)gRO(TG). ‘fhe proof is complete,

Lemma 7.6. Let B €5 with Ji/ﬁ(gx NIgB,) = O. Then there
exists a Borel map ¢B :X—> X such thab
o
) -~ N 2 Z
¢)]50<A) € “LG:AHEO ().9)
for /u-a.e.}:@}{.
Proof: Let (r*"o= ,prga-»-) be an enumeration of G. Pub
B =B, and
k-1
B, =T B\ (T B
kooTe T ixo' 8y

I

for k > 1. By assumption we have /[A(X N UBV) = 0, and it is

clear Ghat By nBy = /@/ for i#j. Put

j’T:qX for x€By, k = 0,7,000,
; Sk -
¢ﬂ(:{) - (3.
& o oo 1
x for xe X ~(UB,,
o) % Tk

where %, is an arbitrary, but fixed, point in BO, fﬁB then
o

satisfies (5.9).

Lemnma 5.7. Let W ,W, be subsets of A, and suppose the follow-

ing is true:

(1) u(:@:,y)g‘viq for /uua.e,(x,y)g}}i@@), (7.

1

(2) for every C €5 with w(C) > O there exists a
/

A9

10)

11)
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BeS with p(B)> 0, BeC, and with
u(x,y)%‘zig for every (x,y)e& RB(‘JL‘G_). (%.12)
Then there exists a Borel map c:X—%A such that
(3) u'(x,y) = u(x,y)m(zc%—c(y)% W, (%.13)
for /4,4 ua.e.(x,y)ERCTG), and
4) elx) e W, for /t{«a.e.ziéX. (3 14)

Proof: Ve define a sequence (Bk’ k>1)¢ S by induction. Pub
C=X% and apply (2) to find B, e S with M (B4) » 0 and with
u(x,y)éwg for all <X’y>é’RB,‘ (TG). Suppose we have constructed
ByyeeeyBy €5 with /4(33.) > 0, DBy ALB, = £, and u(x,y)%W
for all (Y,S/')CRB (Tg)y 121,j£k, ifj. L)ut C =X~ um B

If /u (C) > 0 we anply (2) to £ind B = By 1 uatleylngD (5 12) .
This procedure either terminates, or we can find a sequence
(Bi, k31) with /44(51:) > 0, 1By NT4B; = ¢ for k#1l, and
u(x,y) ¢ | Wy for all (x,y)eé Ry l(J? ) and k=1,2,... An exhaustion
argumez;ﬁ: shows that we may assume /,4 (X \(J T.B k) = 0, Put

BO k(;j/! Kk (or, if the procedure t@rrﬂlna"beu after n steps,

n
{J Bk> B, satisfies the following conditions:

/(X\ TGBO) = 0 (3.15)
and

u(x,y)é W, for every (x,y)e Ry (TG). (3.16)
~o

By (3.15) and by Lemma 3.6 we can find a Borel map q'j: éB :
)

L X satisfying (3.9). Applying now Lemma 3.4, we choose



an orbital cocycle ud} :R(TG)w) A such that U (x,y) =
u((ﬁ (x), (f)(‘y)) /yma.e. on R(TG). From (%.,6) we see that

ué (x,y7) = uX,y)+c(x)=~c(y)
with

c(x)e«;\ﬁ,] for /u-a.e.x.ggx.
The definition of qu together with (%.16) shows that
u?? (x,y)g# W, for /m-a.e.(x,y)é; R(Tg) .

We now put u'mu¢ , and the lemma is proved.

Proposition 3.8. Letb Ty be an erpodic action of G on (X, S ,/;{)
and let a:GxX—-»=A be a cocycle for 'I‘G. Suppose KCA is a

compact set with Knk(a) = qﬁ . Then the following is true:

(1) Tor every ¢ &.§ with Ve (C) > O there exists a
Borel set B¢ C with /(,1 (B) > 0 and with
B!’)T;B/} {xia(g,x)E€K]} = & (3.17)

for every gé& G

(2) There exists a coboundary b:GxX —»A for TG such

that
/w U {x:ia(g,x)+(g,x)e Kkt ) = o. (3.18)
/ BeG
Moreover, if WCA is a set with

/4( (U {x:a(g,x)¢ul) =0 (3.19)
, geG
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we can choose b of the form

b(g,x) = c(’l‘gx) - ¢(x) (%.20)
wibth
c(x)e W (3621)

for every x€X.

Proof: Let u, be given by (2.17). According to the definition
of B(a) we can find, for every w € K, a neighbourhood Mo (0)
in A and a Borel seb B, with /u(i‘%< ) > 0 and with

U ;. n" 30( N $x:a(g,x) ¢l {0);»@;}) = ?ﬁ.

seG *

Equivalently, we have
ua(x,y) % M (O)+x

for every (x,y)eRB« (‘D ). Choose, for each « g K, a
neighbourhood Wy (0) with N, (0)+lN, (0)C M, (0), and use
the coamac”t*noss of X to select finitely many Hggesey X é,k
with U (N ((;)+ &{i) D K. Let CE€S with /L{(C) > 0. By
Lemma ;.J we can find a Borel seb C,cC wiibh /u (C,x):> 0

such that
u, (%,5) ¢ N(Xq(OM x4

for every (x,y)€ R (C‘L‘G). Repeating this procedure we
1 .
construct a decreasing seqguence G,];:)CE;D oo ;DCm with Gi ES

and M (Cm) > 0 such that

1
u_ (x,y) & N (0)+ e
a0 U ey k



3.9

on R (TG), 1=1,e0e,4ls In particular we geb

1
ua(x,y) ¢ K

for (x,y) & R (TG). Lf we put C =B, we have proved (517)
m .

and hence (1). (2) follows now from Lemma 5.7, and (%.19) -

(32421) 1is clear from (5.11), ($.1%) and (3.14). The proof

is complete.

We can now state the first btheorem in this section.

Theorem 5.9, Let TG be an ergodic action of a countable

gproup G on a nonatomic measure space (X, S, #4), and let

A be a locally compact second countable abelian group.

Tor every cocycle a:G xX—> A for T, we define E(a)
according to Definition 2.7. Then the following conditions

hold.
(1) E(a) is a closed nonempty subset of &,
(2) E(a) = E(a)n A is a closed subgroup of A.
(%) If 8, " 8y, We have g(aq) = E(ag).

(4) a is a coboundary (i.e. a ~/0) if and only if

B(a) = Jol.

Proof: (1) is obvious from the definition of E(a) and from
the fact that O€E(a). (2) is Lemnma 3.%, (%) is Lemma 3.2,
and one half of (4) also follows from Lemma 3.2, To complete

the proof we have to show that a ~ O whenever ﬁ(a) = {O} o



Ir ﬁ(a) = {O} s, We can find a compact set K<CA and a B %
e —i‘_; ‘ o -A - o 7 ~ o€ o ':;:)_ m 0 o
xm_klfa(ﬁ)‘>-0 uch that uac.m‘/g Ae€s ON LB(lG), where

u, is given by (2.17). Let now % be an invariant metric
on & and let Ny (0) = foc @ a: Alec,0) < 2757 | By Temma

5.4 and 5.6 there exists a Borel map cO:K»Q%A such that
U, (2,5) = vy (x,y)+e (x)-c (¥) ek

for’//—a.e.(x,Y)éiR(TG). Now pub quK‘\Nq(O). Applying
Proposition 2.8 we find a Borel map C iE —»A with cq(X)

C K and with uq(u,§) ua(X,y)+co(X)+cq(X)-co(y)wcq(y)e:Nq(O)
/J—a.e. on R(T ). Proceeding by induction, we define a

seguence (c :X-» A, kK >=0) of Borel functions such that
ck(X) C Nk_q(O) for k=1,2,¢00

and

k k
w (%,5) = u, (x,y)+ AOCJCX) z; ¢y (y)e . (0) (3.22)
d
for %Q—a oCe (X,J)C;R(T ) and for every k=1,2,... . Since

yA(ck(x) 0) & 2 =k for every x, the series
c= 2 c
$=0 £

converges to a Borel fuanction c:X—-2 A. Moreover we have

from (%.22) that
u, (2,5) = c(x)-c(y)

/1~a,e. on R(TG). Proposition 2.7 now implies that a is a

coboundary. The proof is complete.
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Lemma 5,10, Let ’;DG be ergodic and let a:GxX—>A be a

" £ ¥ N e K’“ Ve tee A g
cocycle for T,. Consider the cocycle a :Gx X —»A/l(a)

given by
a"(g,x) = a(g,x)+E(a).
Then E(a™) = fo} .

Proof: II L(a) = A, there is nobthing Lo be proved, Assume
therefore that E(a) # A and that there exists an g)(oé-f}x,

X o@L(a) with o) = & +E(a)e B(a™). Zet B¢ S with

£ (B) > 0 and let N(O) be a neighbourhood of O in A. We
choose a symmetric neighbourhood N, (0) in A with N, (O)+N,I (0)

+I, (0)cl(0), By assumption, there exists a 8,€ G for which
/]

o}
positive measure., There exists a Borel map i :C > E(a)

the set C = B!)‘I‘é B A f}c:a(go,x)e N, (0)+ X +E(a)} has
such that, for every xe&C, a(go,X)- yf(x)ﬁ:‘f‘l\f,I (0)+ X e
We choose a Borel set DcC of positive measure such that
7 (%)~ ‘??(y)eN,] (0) for all x,y€D. Let x €D be fixed.
Since mﬁ(zio)gE(a), we can find D, €D with /M(D,l) > 0,
and an element g, &G such Ghat Tg D,cD and a(gq,x) &

51

N, (0)~ 7 (XO) for all x€D,. We then have
a(gog,] ,X) = a(go.,‘3‘:‘%1}:)—1~a(g,l yX) & N, (G‘)+N,] (O)+N,} (0)+ X,
C o +7(0)

for every XQD,]. lloreover, we see that D, U‘I‘g & D,1 C B.
0~1

This shows that % E E(a), which is absurd. The conbra-

diction shows that E(a”) = {0} , and the proof is complebe.



Definition 3.11, BSuppose T, is ergodic. Let a:GX Y—=A be
PL G &

a cocycle for TG and let a%:Gﬁfxw%»A/E(a) be given by (3.2%).
The cocycle a is called regular if E(@®) = {0} , and

nonregular if B(a) = {o,=].

Proposition 3.12., ©Let TG be ergodic and let a:Gx X —rA he a

cocycle for Tg. The following conditions are equivalent:
(1) a is regular,
(2) +there exists a coboundary b:Gx X -»A for TG with

a(g,x)+b(g,x) € E(a) (3.24)

“r

for every ge G, xe L.

) . * . o maN - . R N
Proof: Iet a” be given by (%.2%). If follows from Theorem
3.9 that a* is a coboundary 1f and only if a is regular., If
S . E 2. N .

a  is a coboundary, we choose a Borel map ¢ :X —»A/E(a) with
pra x % . - . <
a”(g,x) = ¢ (Tgx)nc (x) for all g€ G and for /u—a.e.x<iA, By
using a result of Kuratowski (cf.[ﬁ*], § L.6) we can find a
™ - =, = L] G2 En o 5 o
Borel map c:X->»A with ¢ (x) = c(x)+E(a) for every x. Define

a't:G xX -»4A by
a'(gyx) = a(g,x)=c(I_x)+c(x).
o
a' will then satisfy (3.24). The converse is trivial.

We now come to a second cohomology invariant which arises

from the theory of random walks,



,,,,,

Definition 5.1%. Let Ty be a conservative action of a count-
able group G on a nonatomic measure space (x,g%,/g). A cocycle
a:Gx LA for T, is called recurrent if, for every BeS

with /u(B)ﬂ> 0O, and for every neighbourhood N(0) in A,
/u( U(}(Bn @;113,»\ ¥xialg,x) € W)} A {'x:frgx;éxf )) > 0. (3.25)
g(: 8] &

If a is not recurrent, we shall call it transient. An orbital
cocycle u:R(TG)w%»A will be called recurrent or btransient

according as a  is recurrent or transient (cfe (2.18)),

Propogition %.14. ILet TG be a conservative action of a

countable group G on a nonatomic measure space (X,.S;fﬁ),
and let 8;:GxX— 4, i=1,2, be cohomologous cocycles for Tie

Then au,l and a, are either both recurrent or both btransient.

Proof: We have to show the following: If a is a cocycle and

b a coboundary for Tge and if a is recurrent, then a+b is
recurrent. Let c:X-—-= A be a Borel map with b(g,x) = c(Tgx)—c(x),
and let Be S be a set with positive measure., If N(0O) is a
neighbourhood of 0 in A, choose a symmetric neighbourhood

Nq(O) of O with N1(0)+N4(O)C:N(O), We now select a Borel setb
Byc B with /u(Bq)‘> O such that o(x)—c(y)éfﬂq(O) for all x,y

& B, Since a is recurrent, we can find a B, EG with

o = N e : Ot "
Y’ (B, nmgoBm {xia(gg,x) €N, (0)] A gA:rgox;éz:j ) > O.

Hence we get

Ban {X=a<€osx)+b(gogx)é,N(O)}'f: {X:Tg x#xt ) > 0.

u (B, nin
/ 17 78, o
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Since B,c B and since B and N(0) were arbitrary, a+b is

recurrent. The proof is complete.

Proposition 5,15, Let TG be an ergodic action of a counbt-

able group G on a nonabtomic measure space (X,S and
929 M)

let a:GxX=>A be a transient cocycle for TG. Then
Ea) = {o,of.

Proof: a cannot be a coboundary, since coboundaries are
recurrent by Proposition 3.14. If E(a) is not equal to ;ij R
choose o # 0 in E(a), and let Be¢,Y with /VKB):> O,

We fix a neighbourhood N(0) of O in A and a symmetric

neighbourhood Nq(o) with Nq(O)+N4(O)<:N(O). Since <kb%0

and & _e&x(a), we can find a g & G for which /M(Bn T'quﬁ
0 0 2N

1{X:a(go,x)¢;Nq(O)+ oy Fn {\X:Tg ¥#x ) > 0 (cf. (2.2)).
o

Hence there exists a Borel set D¢ B with /M(D):» 0 such

that DyZ, DCB, DT D = ¢, and algy,x) e i (0)+ O

0 ©0
for all x€&D., Since E(a) is a group, ~¢xoc§E(a), and we

can apply the same argument o Tg D and - &b to find a
=0
Borel set D, of positive measure and a g, G with D, yT_ D
7 1 g g4

cmgon, D/x"r-‘jg,ﬂ% = ¢, and with a(g,,y) €N, (0)~ K, for
1

all y&D,. Now put ¢ = T 'D,. Then n(C) » 0, CvyT, _ CcCB,
g1 M 848,
C nqugOC =g£ , and a(gﬂgo,x) = a(gq,@gox)+a(g0,x)é;Nq(O)

+N1(O)CZN(O). a is thus recurrent, contrary to our assumption.

The proof is complete, since E(a) must be eqgual to {O,oﬁ} .

The last statement shows bthat these invariants are also

invariants of weak equivalence.



Theorem 5,16, Let Té?> be weakly equivalent acbions of
countable groups Gi on nonatomic measure gpaces ( l,/xl),
i=1,2, and let A be a locally compact second countable
abelian group. Letb ¢> (X4 4 q,/aq)w@»(aa,ﬁgg,fig) be an
isomorphism satisfying (1.20), and let ¢ 17 (TCq) dg(é /Mq,A))
~%%Zﬂ(Té2>,Q§(XP,/J?,A)) be the isomorphism (2.26). Then

2272

the o:Uow:Lnb is true:

(1) If (3> (and hence T(2)> is conservatbtive, and if
aézq(mé?,@(}i,‘ ,/44,],1"1)) is recurrent, then j;f'?,(a)
is recurrent.

(2) If £(3) (and hence “k;)) is ergodic, and if
aéqu(Téﬂ,@(X,],/Lf,l,A)), then fﬁ(g(a)) = L(a).

1 ‘

The proof is left as an exercise.
We conclude this section with some more exercises.

Lxercise %,17., ILet T, be a type I action of G on a

179" . 5 ol c L e . T o it 5
neasure space (A,sz/x>. Show that every cocycle for Iy is

a coboundary.

fxenpcise 5,18, Let TC be an achtion of G on a nonatomic

measure space ((,S, ), and let B .S with B)> 0.
3 ”ﬁ ? /u

al cocycle, define up to Dbe the

restriction of u to ﬁ(m ) as in (2.28) in Ixercise 2.710,

I wsR(1 ) -» A is an or



(a) EBuppose Ty is conservative and u is recurrent.
whow that Uy is a recurrent orbital cocycle for

T(G,B).

(b) If T, is ergodic, show that L(u) = E(uB). In
particular, if u, and u~ are cohomologous orbibal
] /' 2 o
cocycles for TG, Uq and u, will be cohomologous,

B B
and vice versa,

(¢) 1If TG

u is recurrent.

is ergodic, and if up is recurrent, show that

mxercise 5.,19. Let TG be an ergodic action of G on a nonabtomic
measure space (X,;S,/g), Let, for any cocycle a:GX X—>A for

R(a) = jxe T /u( (U fxia(g,x)eW(«)y ) >0 for
BEG
every neighbourhood N(& ) of &« in K;}. (5.26)
Then R(a) is a closed subset of &, Show that

E(a) = () R(a+Db). (3.27)
b€ B/} (T(}9Q@ O{-?/ﬂ QA))

m

ixercise 5,20, Let T be an ergodic action of G on a nonabonic

-

measure space (X,E;,/ﬁ), and let a:G xX~» A be a transient
cocycle for Tne Then there exists a seb Be.S with /M(B)>» 6]

and a neighbourhood N(0) of 0 in 4 with

/u ¢ J B/\qufo fx:a(g,x)e N0} A {XﬁTgX%Xi}) = 0,

gé G_ (&
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Let N, (0) and 3‘.\?2(0) be any neighbourhoodsof O in 4 with

,](O>+N (0) cl(0), If C& 5 with /AA( C) > 0, show that

the following is true: There exists a Borel setb CqCZC

with (C4) >0 and with

Yo nalogn traGmen @) n frngnd) < f

(3.28)
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§ 4 Recurrence of Radon-Nikodym derivatbives

Let (X,é?,/ﬁ) be a nonatomic measure space, G a countable

group, and let TG be a conservative action of G on (X,§7§}4).

Lemma 4,1. Let u:R(TG}w%/R be a real valued orbital cocycle.
Suppose there exists an € > 0 and a B ES with /M(B)i> O

such that
lu(z,y) =€ (o)

whenever
(x,5) € Rpy(Ty) and  x#y. (4.2)

Then we can find a V& TG] such that

(1) VB =B and Vx = x for every x¢X- B, (443)
(2) u(vz,x) =€ for M -8eex € B, (4o 00)
(3) {Vlix:kézz;?i = TGan Tor ﬁma.e.xejB. (4.5)

Proof: (2.13) and (4.1) imply that
[u(xg,7)-ulxs,7)1 2 (4.6)
for every x,,%x, €T,y with X1¥X2 and with Xq9%5,y €B. The set
Sy.: fu(x,y):xé%TGy(WBf (4e7)

is thus a disrete subset of K for every y ¢B. Put



il

lyeB:s a(-@,0) =g T,

and

L

B = {yéB:Syﬂ(O,w} ::}24 T,

Both B+ and B_ are Borel sets. Suppose that /u (B+) > 0, Since
Ta is comservative, we can find X, EB, and éog(} with Tgoxo;éxo
and TgOXOéZB%-' (4.1) and (4.8) imply that u(TgOXO,XO);& £ .
Put y, = Tgoxo. Then y & B_, ‘I‘élyo = x €3, and u(‘l‘é;’yo,yo) =
u(xo,yo) = wu('yogxo) £ -E, which violates (4.8), This contra-
diction shows that /a (B+) = 0, and similarly one proves that

/u (B‘_) = Oo .L')U.t
B! = BNL, (B, UB_).

Then /U(B\Be):: 0 , and S_n (0,4 ) as well as Syn(—w,o)

J
is nonempty for every ye€ B'. We define Borel maps W+:B'«—“§ IR

by

il

é{/,+<y) min {tésy:ﬁf}(}j

and

W_(y) nax {13 € Sy‘t < O} *

By (#.6) and (4.7) there exist, for every yeB', unique
elements X+(y) and x_(y) in Tey 0B = ToynB' with

ux, (),y) = ¢ ()
Define Borel maps V+:B'~> B' by

Viy = Xi(y)

(4.8)

(4.9)

(4e10)

(4a11)

(4,12)

(4e13)



for every ye B's (2.13) and (4.10) ~ (%4.11) show that

V. @+ ¥ (Vy) = Y _(y)+ ¢ (V_y) =0 (4e14)
for every yE&€B's (4.14) and (4.6) now imply

V+V~y = V_V+y =y

for every y €B'. Finally we put
(V x for x€B',
Vx = (4-/]5)
[ x otherwise.
Lxercise 1.% shows that V& FTG] . furvhermore we have

w(Vx,x) 2€&

for every x&B' and hence for /uua.e.XézB. We have proved
(4.3) and (4.4). From (4.6), (4.7) and (4.10) it is also clear

that
) L e
‘f\f_fx:k& 2% - Ty n B

for every y& B', which in turn proves (4.5).
We can now state the main result of bthis section.

Theorem 4.2, Letb TG be a conservabive action of a countable

group G on a nonatomic measure space (X,é?vu Je Let

:Gx X~ R be a cocycle for T, with

Va

apum
aﬁi(g,x) = log —£i~g (x) (4.16)

s a4

for every g¢ G and for/ﬁ4~a.e.ngxg Then %%4 is recurrent.
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Proof: Let u = u, be an orbital cocycle arising from (2,17).
H

If aﬂis transient, there exists a set B €.5 with O <l (B)4 ao

and‘an € > 0 such that
fuyy)| = € (#.17)

whenever <X’y>éRB(TG> and x£y. The conditions of Lemma 4,1
are satisfied, and we condlude the existence of a Ve [:".’DGJ
satisfying (4.25) = (4.5). (4.4) and Exercise 2.11 ‘together
give

d/«tV

ap

log (x) =€

for/(y( ~de.€.X € B, We getb

T d
o > w @ = x-S a e >
p® = pm - ) 22 6o a

éeg du (%) = o* °/u(33) >~/,«(B)> 0,

which is impossible. This contradiction shows that a/u is

recurrent. The proof is complete.

Corollary 4.,%5. Let (X, ) be a probability space and
9 5/4

let Vé’.\/ﬁ{ (X,S,/w ). Consider the Z ~action n —>V* on
(%, S,#) and choose a cocycle a_: ZxX =2 R for this action
with
ap vt
ao(n,x) = log = (x) (4618)
ap

for every n € Z and for /L(-—a.e.x EXe Then bthere exist four

disjoint V-invariant Borel sets XO,X,],XE,N in X with the



following properties,
(1) LVE VI, UN = X,
(2) X = L} %1 Vi%=x |
0O ki
nz -
(%) for every x &%,y we have
lim inf ]ao(n,x)f = lim inf ]ao(n,x)i = 0,
Nt oo N = oo
(4) Tor every x €X,, we get
lim ao(n,x) = = (0,

[0l 0o

(5) M (§) = 0.

and if V (or, more precisely, the Z -action n ~>V") is

.....

conservative on X', we can easily deduce from Theorem 4,2

that (4.21) holds everywhere on X'
Nte XY of measure zeroe. Pub Xq = X'

U
A

N =

§%2==¢ . Duppose now that fi(X') > 0 and that ne-»>vh i

néZ

VRN and

TN (4.19) = (4,2%) is then satisfied with

a Gype I action of Z on (X',ﬁ?x,,/ux,). Choose a setb

DéﬁiwxﬁmnDﬂVk

For every integer m >0, let

D = ¢ for kfO and with JEcaN

U

= ferX‘: lim sup ao(n,x);> ~mf .

i o

neé £

.
3

o ’ - P I y
If /‘<Ym> > 0, we nust have /U(Ym/qv D) > O for some n,

and hence

except for a Borel set

U

viD)=0,

(4.19)

(4,20)

(He271)

(4,22)

(4,2%)

(ho28)



S (S Xl
= 2 (VH(Y_aV"D))
ez M i

by (4.24), This shows that }4(Ym) = O for every m. Pub Xq=;é,
N = U U v™r and X, = X'~ T, Again (4.19) = (4.23)

L RE€Z m21 T T . . .
will be satisfied., Finally, if n-> V" is neither conservative
nor type I on X' and /j(X') > 0O, one can find disjoint
V-invariant Borel se%é A5 and X4 dn X' with KU LL = X7,
/ACAW) /M(AD) # 0, such that the restriction of the Z -
action n-» V% to (Kﬁ,ci ,,ﬁgv,) is comnservative and that o
(Aﬁ, V‘,/ifé) type Lo By LﬂGqueCOdlﬁ” arguments we can
choose disjoint Borel sets Dq and . Aq in Aq’ both of which
are V-invariant, such that /ACNq) =0, X} = XU, and

(4.21) holds on Xq. Similarly we can deconpose Xg into

i

disjoint V-invariant Borel sets Nq and . Ag with | mg

//( (i“é)

N, N, and have again proved (4.19) — (4.23), The only
1 2 s ¥

N, Uy,

it

O, and with (4.,22) holding on XE' We put N =

remaining case /ﬁ(X' = 0 is trivial, so that the proof

is complete.



§ 5 Bkew products

Let (zf;,g,/,.f) be a nonatomic measure space and let A be a
locally compact second countable abelian group, with Haar
measure A and with Borel field & . We form a new measure

£ s
space (4, ,ff’i‘,/ff) with

= xxa, (5.1)
S-8x8 (5.2)
ﬁ 5/4,4;(/\ . (56%)

For every we A we define an aubomorphism Ry of (X, 5,m)

by

R (x,/ﬁ) = (X, «+A) (5e4)
for every (X,/f% e gf. Clearly R, preserves /A’:z , and
Ry Rg = R (5.5)
o R

for every 0(‘,/3 ¢ A. Buppose now that TG is an action of a
countable group G on (X, S,/u )e Any cocycle a:Gx X—» A for T, gives
a new action ’I‘?x of G on (‘Z,g,/?{) as follows: Ior every gé€ G,

(x, m")é:gg, put

il

Tg(x, o) (Tgx, X +a(g,x)). (5.6)

The action Tg of G on (X, ‘?5,/&’) is called a gkew product of Teo




5.2

Lemma 5.1. Let 8;:G X X~» A, i=1,2, be cohomologous cocycles
s

for Tz Then the actions ‘;L‘Gl, i=1,2, are conjugate.

Proof: Let c:X—~»A be a Borel map with a, (g,x)~a2(g,x) =

c(fi‘gx)mc(x) for every g €G and for M-a.e.x&X. We define

Y
an auvtomorphism gzéc of (X, 5 ,/u) by

Do, ) = (x, x+c(x)). (5.7)

A

<;§G preserves , and we have, for every g¢&G and for ﬁ~

a.e.(x,e()é’ﬁ}f,
0 d (x,x) = o ma2<x D = (T x, K+e(x)+a, (g,%))
g ¢C ’ B 5)50 g (Fo )= (LoX, 118, ’

by a straightforward compubation. (1.5) shows that the proof

is complete.

Lemma 5.1 shows that Tg depends essentially only on the coho-
mology class of the cocycle a. Our first aim is to relate the
cohomology invariants of § 3 to properties of Té, We put ng =
{ BeE B A(B) <.%j' and identify elements of 3 o which differ

by a null set. For every BqyBs € (Bo’ put
f~$7 (B/‘ ,Bg) = /\ <B/] L‘}B2)o (5’8)

(@O, 7) is then a complete separable metric space. The maps

from ﬁox 60 GO ﬁo given by

(B4 9 Bo) —> By By (5.9)
and

(B4sBo) ~» Byn B, (5.10)



\Ji
e
N

are both continuous, and so is the map from Ax B o to @O

defined by
(6 )B) e X +B = fg{-{»,ﬁ:/éé Bf. (5.41)

Assume now the action TG to be ergodic. We fix a cocycle

8:Gx X~ A and define 1§ by (5.6). Since R, commutes with

Tg for every v e A and for every ge¢ G, R, B will be a Té-«

v
invariant set whenever Be S is Tg—-invariant. We write &

st
for the family of Tg—-invariant elements in S and put

I(a) = faxe A R, B=B (mod 0) for every Be Z 7 . (5.12)

The following theorem gives a geomebtric interpretation of E(a).

Theorem 5.2. Let TG be an ergodic action of a countable

group G on a nonatomic measure space (X,S,/A ), and let a:
Gx X~ A be a cocycle for Tye Then I(a) = E(a), where E(a)

is given by Definition 2.1.

Proof: We first show that E(a)m I(a). If cx’oéj E(a), there
exists a set CcX with Ce g, M (¢) » 0, and a neighbourhood
N(0) of O in A such that Ca Tjg"’o,n [x:a(g,x) e W(O)+ « & = ¢
for every ge G. Choose a neighbourhood N, (0) in A with

N,](O) + N’I<O) C N(0) and define

B, mg(cxm (0))

f

and

= ceg(c ® (M (0)+ ) = R(XOB

o
I

/i‘



Dot

h = -~ v o] % 7] - ; i
Then Byn B, = }ﬁ, and /M(B’i) = /;4(1;2) > 0. Hence cxo¢]ﬁ(a),
which proves our first assertion.
For the converse we assume that M‘O(il(a). In this case we
can find disjoint sets B,,B, & & with /&’(B,}) 2/2‘:(132) £ 0
and with R‘XOB,‘ = Bg. Put

D, = (e At (x,x)é B} , xex. (5.1%)

Then A (D) # O for /u—a.e.x&“X (in fact, the map x -» )\(DX)
is constant a.e.). We choose a Borel map @:X-» B such

that, for M ~2.8.X € X,

(1) 0< A(O&E))< o ,
(5.714)
(2) © (%) < D.

For the purpose of this proof we replace /;4 by an equivalent
probability meassure /u' and identify (X,f:{) with the closed
unit interval [0,1] in R . We can find a compact set Y,cX
with /M'(Y,]) > O such that the map € is conbinuous on ¥, and
that \J\((x)) 2 £,70 for all x€Y,, where £,>0 is chosen

suitably. Let w:Y,x Y x A —> IR ve the map
W (Kyyy k) = A(OE)N(O@)+ x)).

(5.9) = (5.11) imply that w is continuous, and we have

W (x,x,0) = €, for every xé&Y,. Hence there exists a compact
set Yc ¥, and a neighbourhood N, (0) of O in A such that

W (Xyy, x ) 2 €4/2 for every x,y ¢Y and for every « e N, (0),
and. such that /u.'(Y) > O, Since B, and B, are disjoint, (5.14)

implies that



o<'o+€§7(‘l‘gx) n O (x)ralg,x) x?ﬂ (5615)

for every g€ G and for /u'«a,e.xfi'ﬁf with ‘I‘gxéY. (5.15) in
turn shows bthat, for /w'-a.e.xezY, we have a(g,x)«-cyo ¢ Nq(O)
whenever TgxéiY. From this it is clear that cvoéﬁE(a) and hence

that I(a)» E(a). The proof is complete.

We can apply Theorem 5.2 to find a criterion for the ergodicity

of Tg, but first we need a simple lemma.,

Lemma 5.5, Let Dié;’@ y 1=1,2, be sets of positive Haar measure.

Then there exists an open set ¢ < A with
p(x) = ADyn(Dy+x)) >0 (5.16)
for every xé 7.

Proof: It will obviously be enough to prove the lemma under
the additional assumption that /\ (Di) < o for i=1,2. We
write /1/9 for the characteristic function of the set Di

i

and getb

JAy A@prx)) aA () =

X 0,0 o, Bmad AN () adp) -
A(D)e A(Dy) > 0. (5.17)

' is nonnegative and continuous by (5.10) and (5.11), and
(5617) shows that ({) does not vanish identically. This

implies (5.16) and proves the lemma.
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Corollary 5.4, 'I‘g‘ is ergodic if and only if E(a) = A.

Proof: If Tg is ergodic, we must have I(a) = A, Theorem 5.2
now shows that E(a) = A, Suppose now that E(a) = A. Then I(a)
= A, by [heorem 5.2. We choose B, & Z with /?,f(Bq) > 0 and
define D, x€X, by (5.13). Again we note that the map x ->
A (D) is T,-invariant and hence constent a.e. on X. We can
choose a dense sequence (a}v Koyees) in A and a set Nes

with /A(N) = 0 such that

A >0 (5.18)
and

A(Dyad+ey) =0 (5.19)

for every xe€ X\ N and for every i=1,2,... . We fix x¢ X\ N

for the moment. If ,X(AP\I&) > 0, we can apply Lemma 5.3 to

find an open setb {?; with ,X(DX+¢% N QDX) >0 for every « € GfX.
Hence we can find a positive integer i(x) with

,&(DX+ Mi(xj s 5Dx> > O. But this violates (5.18) and (5.19),

so that A(AN\DX) = 0 for all xe X\ N, Fubini's Theorem now

implies that /ﬁ( £B1) = 0, and the proof is complete,

Theorem 5.5, Let TG be a conservative action of a countable

group G on a nonatomic measure space (X,ﬁ;a/{D and let a:
GXx¥X--»A be a cocycle for TG. Té is conservative if and only

if a is recurrent.

Proof: If a is transient, there exists a Borel set Bc X with

/ﬁ(B) > 0 and a neighbourhood N(0O) of O in A such that



De'l

Bf’)T;B!} {xia(g,x)e N} n {X:Tgx;éx} = y,/ for every ge G.
We choose a neighbourhood N, (0) in A with N4 (O)+N,l (0) ¢ w(0)

and put Dy = BXN,(0). Our assumptions imply that
a(D Am® D P, w )T (x, x)E(x, % )T ) = 0 (5.20)
/M o g-’l 0 g

for every ge G, so that ’1‘8 is not conservative.

Assume now that Tg is not comservative, and choose a set B,

cX with J( ‘%;/GB,lnTZ__,iB,] A LGy w)mBGe, a4, %) ) = 0

and }X(Bq)>»0. We define D, x €X, as in (5.13). As in the proof
of T%eorem 5.2 we can find a set Yc X with /Q(Y);> 0 and a
neighbourhood N(0) of 0 in A such thatb ,X(D%,A(Dy+rw)) > 0

for every x,y ¢ Y and for every & N(0). Our choice of B,

shows that a(g,x) é N(O) whenever x& Y, Tgx:éig and Tgx%x.

In other words, a is transient, and the theorem is proved.

Corollary 5.6. Let T, be an ergodic action of G on (X,ngu )y

and let a:Gx X ~» A be a cocycle for TG. Then Tg is a type I

action if and only if a is transient.

Proof: From Theorem 5.5 it is clear that Tg can only be type I
if a is transient. Conversely, if a is transient, we apply the
first part of the proof of Theorem 5.5 to find a set Be X
with /M(B).> O and a neighbourhood Nq(O) of O in A such that
D, = BxXN,(0) satisfies (5.20). Let (X 49 Xpyess) be a dense

sequence in A and pub

a
—
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=]
i

N = R F $ i=1 2,0.0,
i %s 0 ’
and

i-1

Finally we let

for i=1,2,..0 » Then Dif1D3=: Q/for i#j, and
M
D' = 18( D) > BXA.
: i
1=0
Since D'¢ & , and since Ty is ergodic, we must have
}:(X \D'") = 0., From the definition of the sequence DysDqseee

it is clear that
[r ¢}
p= (Jo,
i=0

satisfies (1.8) and (1.9) with Tg replacing T,. Hence Tg is

type I and the proof is complete.



6.7
§ 6 An application of skew products to ergodic decomposition

Let TG be an action of a countable group G on a probability

space (X,,&E?{/,/u). We put
; # ~ - G
S = {BeS :T:B=B § (6.1)

and write Lg(X, f%"’i/u) for the space of (equivalence classes
K ) . .

of) & -measurable real valued /u—-square integrable functions

on X. Cheoose a sequence (Zk’ k=1,24000s) of real valued & -

measurable functions on (X, S) which satisfy
(a) © :.‘ézk(x) % for every k=1,2,.0., x&X,

(b) +the linear span of (zk, k=1,2,...) is dense in

12 (%, S5 0.

We deo%ote by I = fO,’I] the closed unit interval in IR and by
2= I I, the cartesian product with I, = I for all k. 4
typilézz element z€& Z is of the form z = (z,],zg,...) with
O:ﬁ;zké;’l for all k. Z is a compact metric space in the product
topology, and we write ?: for the Borel field of Z, gz; will
stand for the Borel field of I, Q for the product space

4 %1, and S‘Mfor the product Borel field %x’ g:on 0,
‘?7”’,]:,Q,“§Z and. LY Q ~>1 denote the two coordinate projections.
We define a Borel map é,l:}{-w'?z by

D) = (24(x0),25(x)5e00), (6.2)



and choose and fix an injective Borel map ¢£fX°&%I (This is
obviously possible if X is countable. If X is uncountable,
we may even assume <ﬁ2 to be a Borel isomorphism.). If we

now pubt

$ ) = (PG, D)), xeT, (6.3)
we get an injective Borel map ?ézxﬁ%agl. Note that
=g ed (6.4)
(cf. Theorem 3.9 in [3‘1]). For every g&G, « € () ,
define
.'¢(Tgx) whenever we {J' and (ﬁ(x) = W,

Tgw - (645)
7] obtherwise.

We put

Vo= /M¢“/t (6.6)

#
and see that TG is an action of G on the probability space

(i),i?,a»>, which is conjugate to Tg. Let

T . Ise # s8] (6.7)
and. ~

F e {riimme I, 8. (6.8)

R ;X
It is clear that §?12 gzw; On the other hand it is easy to
s e =

see that for every Btﬁéﬁ , there exists a Ce£§Z#with

WV (BaC) = 0. We shall express this by saying that

~ #
$ . giw (mod 0). (6.9)
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*
. . - cx (. M > he hd he
Similarly, if a function is 7 ~measurable, 1t will coincide

o

Y —-a.c. wWith an :% ~measurable functione.

Lemma 5.1, Let P o= V'Ti"'}l"/]. There exists a family {pzzza Z}

of probability measures on (.,Q,?”’) such that

(1) z__apZ(B) is an E?,.]mmeagurable map on % for every

Be¥ , (6.10)

(2) v (BNnC) = ,{j pZ(B) dg’(z) for every ‘Bﬁgﬁz Ce g-—«)f (6.11)

(3) p, (7 {z) = 1 for every zez. (6.12)
Moreover, (1) = (3) determines P, uniguely for f»—a.e,ZéﬁZ.
Proof: This is an application of the well known theorem on

regular conditional probability.

) . =
We now choose a cocycle a,, :GxL)—» IR for TG with

awr®

a,, (g,x) = log —E (w) (613)
d
for every g& G and for VYV -—a.c. we (2. Fix g €& G for the moment,

put V = T% and write a_: Zx ()= IR for the function
g’ o
a (n,w) =a, (g%, w)
o T? Y ? ®

Applying Corollary 4.5 to V and 8,y WE obtain a decomposition
0 = ,QOU‘Q,]UFQQUN of {2 into disjoint V-invariant Borel
sets satisfying (4.19) = (4.23) with () ana ‘Qi replacing

£ and X,. To emphasize the dependence of this decomposition



on g, we put f?i = £2§g) and N = N(g>. Varying g now, we

define

By (4.23), v ()

O ( u N(%))
gé:&

}——z

O. Consider the cocycle aex) = R

i

for TG given by

<

(2)

(

)

(6e14)

aBJCg’Q)> for every gé& G and we L~ N

i

a2
0 otherwise,

following properties (cfe (4619) = (4e2%3)).
I6%
8= 8, ,
for every g€ G and for every well with
r\{’é . . I
T n_m}%éd for n#0,
&
we have either
1in inf [a(g®, @)= lim inf la(g™,w)l = 0,
03 o0 N oy« GO
or
~ '
lim  algh, w) = -w.
find=» av
. e O N ¥ .
If g G and W€ satisfies T n =w for some
0

o
(o)

n,>0, we have either
a( 1’““10,5.«)) = a(g ,(v) for every kéZ,

or there exists a real number ¢ with

(6415)

(6.17)

(6.18)

(6.19)



©eb

~ .
a(gk,w) = ket fOT every k& £ . (6,20)

&
We denote by P the set of all probability measures & on
(Q 5 gf ) which are quasi-invariant under ‘i‘i and which satisfy
agT*
log ——8 () = a(g,w ) (6.21)
dg
for d-a.e.well and for every g&l

s
Lemma 6.2, Vw& P. Furthermore there exists a set N,.'(f .Q/]

Vatd
with 14 (Nq) = 0 and with p,€ P whenever ze&Z \N’i‘

- A o~ .,
Proof: Since a =ay, , we have Y& P (cfe (661%), (6416) and
(6e21))s (6611) shows that, for every nonnegative Borel function

f on Q and for evexry Cég"
/C{f(w) av(w) = [ £(w) ap, (W) ap (=)
furthermore,

,érfcf w) dy (w) ”é f(&u)ete’a(ga@) dv(w),

_3

since ¥ e (Ef, e get
75 j‘f(T uqa}) dpz(aj) dj?(z) =d£ jsf(a}).ea(%’wd) AV (w)e (6.22)
)

Let (¢k, k=1,2,.4.) be a sequence of nonnegative conbtinuous
functions on (1 whose linear span is dense in the space C({L)
of 2ll conbtinuous real valued functions on {1 in the maximum

norm. (6.22) shows that there exists a set N,]é, ? with



9 (N,]) = 0 and with
)/“ ?gk(miq w) dPZ(W> = /kﬂgz?k(cﬁ).e:a(g’w) dpz(a:;) (6.2%)

for every k and for every zé’-N,]. It follows immediately that

(6.23) holds for all continuous realvalued functions ¢> on ‘Q,
e

and for every g€ G, zc::’Z\N/‘. Hence pz(;;'P for z €2 N,‘, and

the lemma is proved.

. : , *# ~
Remark ©6.%. If ¥ is invariant under Loy we can choose a = O

and see from (6.2%) that P, is Té-invariant for every ze Z\N,].
If v is equivalent to a & -finite 'l‘éé-invariant measure we can
choose & to be of the form g(g,w) = c(‘.’(.‘?w)-—c(::ﬁ) for every
€ G and every wé’;,@, where c¢: L. ~» R is a Borel nap. (6.2%)
now implies +that P, is equivalent to a g =finite T(iminvarian“b

measure for every zé‘Z\N,l.

¥ R
We now have to prove that P, is ergodic under ',TEG for P ~aece

Z&7Z, but we need some preparabion for that. Pub

A= 0OxR
and

An = 0 K (-n,n) for n=1,

where (-n,n) = {'bél? :—n{t&n} . @ and. a@n will denote
the Borel fields of A and ’dn’ respectively. Every G & P

defines a measure & on (A ,)) by

Q\z

48 (W,t) = 46 (w)ee~Tap. (6.24)



SN

A
o

o
We denote by T, the restriction of & to (A @n), multi-

plied by the constant (enue"n)"/] to make gn a probability

nt

measure. For every (w,t)e A, g€, put

#

oWy Ta (g, @)). (6.25)

Vg(w,'b) = (T

If ¢ is any measure in P, Vy is an action of G on (A, ,5)

3 N T . %5 L
which preserves ¢ . We now fix gé G and nz1. For every (& ,t)

& sfﬂnv put
’ﬁ[‘min {mz: Vg( wetle A ng if
3 "b‘ = s . N :
m, (& ,6) | fmz1: Vg(w,t)éﬂnz; # ﬁ,
L oo otherwise. (6.26)
and
. - ol ; .
min {m;é:O: Vg<(;f),”b>é: Anjf if
m_(@w,t) = {m{;O: Vg(w,t) & An} is a finite set,

- @  obherwise. (6427)

(617) = (6.20) imply that m_(@ ,t)> = whenever m+(w,t) = @ ,
D) vy

We can thus define a Borel automorphism V(g,n) of (An,

“Vg“"(w’t)(w,ﬁ) if m (w,b) £ oo,
V(gyn)(w,t) = (6.28)

Vg'—(th)(w ,’i’,‘) if m+(t§09t) = 00,

Since V(g,n)e& FVGEA by Exercise 1.3, gn is invariant under
n

V(g,n) (Exercise 1.2). Moreover we have
A, n {Vg(w,t): keZ) = {vig,m)¥w,b): xeZ] (6.29)

for every (w,t)e Aj\ne We put
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. .
L) (g,m) = {Be L :V(g,m)B=B].
Let (gq,gg,,..) be a fixed enumeration of G, and let
*# . 'l 3
D (1,m) = N O (Byan).
k=1
We now define
'76 } b
F (iyn) = {BeT B4 (-nm)e D (i,0)} .

For fixed n, gywii,n) decreases as i-¥» «, and for fixed i,
gywii,n) decreases as n—»w, In fact we easily see from
(6+29) that
N NFam-9.
nz1 iz

Let now f£: ﬁﬂw:’% R be a bounded Borel function, where nx="1
is again fixed. For every kz1, put

‘ ‘ 1 m-ﬂn ) i

O (£) (w,yt) = Limsup = 7 £(V(g,,n) (w,t)).

1=

@k(i‘): A > R is again a Borel map. For every j=1, let
/’\J‘(f> = 0’](6}2<“' Qj"1<@a‘<j"'/}<.’.(@4(f)>..‘>>)’°.>).
Proceeding by induction, we pub

. (/I) _ ‘.
/‘j (£) = /Ej(f)

and

yeb (1-1)
A5 @ = AgATE)

for 1 » 2. Finally we setb

;{ L . 1 & AL "
J.(f,l’l) (W,t) = llmmsup o lg 3 (£) (44,?,13),

(6430)

(6431)

(6.32)

(64%%)

(6654)

(6.35)

(6436)
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od ; p
/\j(f,n}: L\nw%' IR is again a bounded Borel map.

Lemma 6.4, For every bounded Borel map :E':L:\n‘-@% R, every j=1,
Ia%d
and for every ¢ ¢ P, we have

r~ ¥
A(gn) = Bz (2[) (5,m)) (6.37)
F 2
6”’n-—a.e. on An’ where Eg” denotes the coditional expectation
~ n
with respect to 611‘

Proof: We use a minor modification of an elegant proof of the
ergodic theorem in [3 j. Throughout this proof we shall assume
relations between functions and between sets Tto hold only
modulo sets of gnumeasure zero. Lhe Lgmergodic theorenm
implies that /\j defines a bounded, linear, self-adjoint
operator on Lg(ﬂn, g@n, gn)' We apply the spectral theorem

to this operator and see bthat a square integrable (and, in
particular, a bounded) function f satisfies /\j(i‘) = f if and
only if £ is @y(j,n)-measurable. Let now f: Anw%' R ve a

bounded measurable function, and pub
- ¥ .
£' = £ - By (£]0(3,m)). (6.38)
n

it

Yo o1 15 4D
= - 5
£ = lim sup = lé’lAj (£+),

A
we have to show that £ = O, and that will prove the lemma.

fix €> 0, and put

By = {(w,t)sﬁfﬁ(w,t):}gﬁ .
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od

; X
Since f is invariant under /\j, we have B & §), (Jon)e We

write }fBé for the characteristic function of Bg and put

#
f = (f'-—&). lB ®
é
For my1, let

s # (m=1) , ¥
S, = f-+Aj(f )+..rhAj (£%)

and
IVIH} = Max (O,S/},co.,gm)n

We shall first prove that, for every mz1,
SR SN, 2
A/ £ d.én,% Oy
i
where
C, = {(w,thﬂﬁ(aut)>0} .
Indeed, 1f 14£1&m, we have

i p [
Hm = B1
hence

AyQ) > A4

X - . # c oy -
£ o+ /ij(mm);: £ o+ //\j<ul> = 89,1

Furthermore we note that /‘J(Mm)é% O, and hence

e « o
£ 28, - /\j(nm),

Combining (6.40) and (6.41) gives

?“ K { i
f 2 max (&1"“’Sm> - /\j(mm).

(6639)

(6.40)

(6.41)



On the set Om we have

max <5/".a;,bm> = I‘VIII]_,
and hence

ﬂ " N g i W 4 B - Y Y P2 _

é/ £7a8 2 g = AsG) ad ) s [ - AsQ) & = o.

it m

The last equality in (6.42) holds because Aj is a composition

of conditional expectabions. Having proved (6.39), we pub

¢, = {(w,t): sup S (w,t)> 0% = L/C
k > k=1
Bince
. o 1 o () £ wn
Co = [Cooyt): ig% E-SK(W,tL>O§
. ” k .
bwm: o, Loz ATV >ed 0 8

and since

X ~r
sw . £ AP ED > T,

we get

The boundedness of £ implies the boundedness of f£' and £ . Ve

can therefore use the dominated convergence theorem to get
Lin ffd ffd.o‘,
and (6.39) shows that

It f%d%’/n = 0.

Be

(6.42)



We get
0 Bf £ dé’nan £ra¥ - €9 (8,)
[ &
T = ¥ ~ ~
DI NN 5 = Ee
Bgf 5 E1D°Gm)) a5, - €06, (B, )
~
= "'(f”'c ‘Jn<Bg),

by (6.%8). g;(th) must thus be zero for every &3> 0, which

Ot & ., i » o >
proves that £ £ 0, The same argument, applied to =f', gives

s 1 e 4 (1) T [ NG I W
0z lim sup —ﬁ.% Aj (--f')~-11mm1ni‘ E'Z/\J (£'),
1=1 1=
so that
= i osu 1.5 A ey o 14m dmr Ao A @ ery L
£ = lim sup E,E§%/ij (£') = lim inf m’£§%’4j (£') = 0O,

The lemma is proved,.

We choose a sequence ( ¢k’ k=1,24...) of continuous real
valued functions on L4 which is dense in C¢(£2) in the maximum

norm. For every n =1 and (&,5)€ A we put

n’
¢ D) - o).
If kyjyn=1, define

1 ~IL A
. ; [ (n)
h(k,jyn) (@) = oh_o-n /__n /\J((iékn ,n) (e,bt) db

and

hy (&7) = lim sup limjsup hik,j,n) (@),

hk:£2“3§ﬁa is & bounded Borel map for every k. From Lemma 6.4,
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(66%2), and from the dominated convergence theorem we con-

Vo
clude that, for every 6& P, and for every k>4 and every Jen,

¥
h(s,dom) = By ($[ & (5ym))  s-aue.

A
and for every S € P
. x
h, =B, (g}k/?@’) G=dec,

Note that hk is defined independently of any measure!

Lemma 6.5, There exists a set Ngé g: with jﬁ? (N2> = 0 such

that, for every z &2 1\?2,

) PZ(:?; Pa

(2) p, is ergodic under Tre

Proof: Since V& D by Lemma 6.2, we can apply (6.43) with
G =V. From the relation (6.9) between gwyand, §£ﬂit is cjﬁar
that there exists a sequence (g;, k=1,2,00s) 0f bounded 9:‘-»
measurable functions on (2 and a set Kf/é, gmwith V(ﬁ:) = 0

and with
AS
by (w) = hy (w)

for every k21 and for every w é Q\N. Let Né = {ZEZ:
p, (A0 [ . (6.10) implies that Ny € F; and ¢ (h)= 0. (6.11)
now shows that, for every zéZ‘\Né, and for every k=1,2,c00,

. K : . f 2 - T o ) g
hk 1s equal to a constant function p,~8.6. Let N, N,]u 1\2,

(6.4%)
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o . o s o - - o . 7 - - S
where N, is given in Lemma ©.2, and fix z€& Z2~N,. Then p 4G Fs

and, applying (6.43) %o p,» We see that E (¢”§ % is p, -
8.¢. equal to a constant function for @very k=T425e00 @
Since ((#k,k=4,2,...) is dense in C({2) we conclude that

L (iZ qw,p ) is one-dimensional. Bub this is the same asg

. ¥
saying that P, is ergodic for TG. The proof is complete.
We can now stabte the main result of this sectione.

Theorem 6.6 (Existence of ergodic decomposition)e. Let To

be an action of a countable group G on a probability space
(X, ,fﬁ) Then there exists a standard Borel space (Y,7 ),

a surjective Borel map i X=>T, and a family {Q ye'Y}

of probability measures on (X, ) with the following properties:

1) v qy(B) is a Borel map on Y for every BE.S .

(2) M= ‘{qy df7(y), where f==/ﬁy"q.

(3) Every Iys ye¥, is quasi-invariant and ergodic

under Tg.
(4) It /M is invarient under T,, then so is every qy.

(5) 1If M is equivalent to a g-finite T ~invariant

measure, then so is every qy.

(6) qy(lymﬂfify}) ) = 1 for every yeY. In particular,

qy and qy, are mutually singular whenever y#y'.

(6.44)

(6.,45)

(6.46)

(6.47)

(6.48)

(6.49)



¥
(7) Let ,S;E‘; denote the & -«algebra of ’J?Gu-invarian‘t setbs
in S, and let () = {W"/'(o):o ¢I 1. Then
e ] "K . »
W 1(?) is a subalgebra of & which is equal to

5’%{ modulo sets of/,4~measure ZET0 . (6450)

. #
. # )
Proof: e definme (3, Z;), (Q,¥), ¢:x->Q, 17, v, 7

A

and ? as in (6.2) = (6.8)s By Lemma 6.1 there exists a

family {pzzzéﬁ Z;'s of probabllity measures on ("Q,gw) satis—
fying (6+10) = (6.12). Lemma 6.5 implies the existence of a
set N, € ?’-l with P (1\12) = 0 (p is given in Lemma 6,1) such

e . . . - o . e )
chat P, 18 quasi-invariant and ergodic under CLG for every

zZ ELN NE' Remark 6.2 shows that we may in addition assume

that the measures p,, €7, are invariant under Té (equi~
valent to &-finite Té-invariant measures) whenever VY is
T‘g—invariant (equivalent to a 6 =finite Tté-invariant measure ),
Let 1 = Vzezip (Q) #1F , where Q' = ¢ (X). (6.10) shows

that liy & F, and (6.11) implies g () = 0. We put ¥ -

It

7\ CNEVNZ) and T= y:l’ (ieee Tthe restriction of ,,*Z: o Y)e
T
The restriction of ¢ to (Y,?w) will again be denoted by f .

We now put, for every y€i, B 65,
qy(:zs‘) = py(qﬁ(B)). (6.51)

‘gqy:y@'}[} is a family of probability measures on (X,q )
which satisfies (6.44) — (6,48)., To define y:X->Y, let y,
be an arbitrary, but fixed, point in ¥, and let

J e s P 9

T 4 .gﬁé(x) whenever x & (‘TT’,' .¢; )“1 (1),

y () = (6.52)

;\yﬁo Oti’leI‘WiS@ @
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¢ is clearly surjective and Borel. (6,49) is clear from (6.12),

and (6.50) follows from (6.9). The proof is complete.

Theorem 6.7 (Uniqueness of the ergodic decomposition). Tet T

o
be an action of a countable group G on a probability space
(X,ﬁgupi) and let ggﬁz ffﬁ&ﬁngGB=B} . Let furthermore
(11,» i P )y i=1,2, be two probability spaces and
iqé;):yéiYig, i=1,2, two families of probability measures

on (X,5 ) which setisfy the following conditions for 1=1,2:

(1) For every B¢ S , the map ywv§q§1>(B) is Borel on

(T, 75 (6.5%)
@ - y{' a$ ap; . (6.5%)

(3) q§l> is quasi-invariant and ergodic under TG for

every yE Y, . (6.55)
4
(4) For every C& S , let
GY = {ye€x <l>(G) 15 .

: %
Then ﬁ; {C el j is a sub-4 -algebra of

9ﬁ1’ wbloh is euudl to 35. modulo sets of j7l

Neasure zZero, (6.56)
then there exists a measure preserving isomorphisnm

Q‘(ﬂqugj‘i“fq)‘% (Ygsk»?;a fg) (6.57)
with

q(gzy) M) (6.58)



a1/

for yqua.e.y@ Y,].

Proof: From the ergodicity of every q,<l> it is clear that,
‘T' =) 7 O & %’% i = o <i> N t e adther
for every C& & , i1=1,2, Ay (C) is either equal to zero or

v
to ome, We conclude that, for C,, C, ES,

(¢, UO;;a)Yi = G/IY chiﬂ
i i
and
(CqaNGu)y, =0y N0y
i Tii Y:i.

loreover we have, for every C€ S5 , Be S, i=1,2,

p@aoy = | a$P (@) ap; . (6.59)
he

A standard measure theorebtic argument due to von Neumann [46]
shows the existence of an isomorphisn oF (}{.",], 7 a1 j?,})w-ap

—

(1, },72, f») with
j’2<@<cqu O«y_-g) =0 (6.60)

for every CE& SJ% (cfu euge (107, pe 825 ) (6.59) and (6.60)
now imply that fq(cz ) = fg(bv ) = 5?2(@(04\:{1)) for every
Ce S, and (6.56) ShO‘]u that is measure preserving.

Since S is countably generated, one can conclude (6,56) from

(6459). The proof is complete,

Remark 6.8. The space (¥,v , ¢) and the family {"q_y:yé‘i‘}
arising in Theorem 6.6 sabisfy (6.53) = (6.56).



Corollary 6.9. ©Let T, be an action of a countable group G on

.18

a measure space (X,gﬁ,/%). Then there exists a measure space

(Y,g?;f ) and a family {qy:y'ng} of A-finite measures on

G

(X, &) such that

<

(2)
(3)

(%)

(6)

(7

y-quy(B) is a Borel map from Y to ﬁ? for every
Be S,

/p((B) = f@y(g) d f(y) for every Be S,

every qy is quasi-invariant and ergodic under TG’
if /A isg dnvariant under TG, then so is every qy,

q.. and qyg are mubually singular whenever y#y'e

4 - E
For every ¢ € & = {BeS: 7,8 = BY, let
. ~ . K . % ¥
Oy = {ygy:qy(c);!o} . Then § 7= {eyic €8 5
is a subalgebra of éf which is equal to 5?w

modulo sets of & -measure zZero.

Ir (¥', "', ') is another measure space and
{%q§:yé§Y'3 a family of # =finite measures on
(X, %) satisfying (1) -« (6), then there exists

an isomorphisn
O: (1,7, p ) @, p 1)

with

§
Yoy) ™~ %

for £ ~8eCaY E Yo

(6.66)

(6.67)

(6.68)
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Proof: Left as an exercise,

We conclude this section with an analysis of the ergodic
decomposition for conservative and for type I actions.
For the following lemmas we assume X to be uncountable
and identify it with the closed unit interval I = [b,ﬂj

with the usual Borel sitruchture.

Lemma 6,10, Under the assumptions and in the notation of

Theorem 6.6, the set

{ngm@jﬁemmnc} (6.69)

lies in S?i

Proof: Pub By = [ke2™, (k41).2™2) for n=1,2,s0s, k=0,0..,25-2,
and. Bn,gn_1 = [(2n~1).2"n,11. If vV is a nonatomic probability
measure on X = I, we can find, for every &> O and for every
xeX, a neighbourhood of the forn (x~2“no(x>,x+2”n0<x)) with
'y((x~2“n0<x>,x+2“nO<X)))£ £/2. The compactness of X shows

that we can choose finitely many KpyeoesXy with X <«

L/(x ~p~no(xi) P %4 +2 n0@1)) Put n(£) = max n, (x;)+1.
i=/],aes’
Then
max y}(Bn(g.)’k).g €.

0 ek o€ g

We have sgshown that

a(y) = lim max v (B Y = O (6,70)
n D,k
O 04k &2 1
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for every nonatomic measure V. If y is atomic, we obviously
have

a(y) = lim mnax

v (B
D0k 22™

n,k> > O (6.71)
(6671) shows that

D = fy:l;m max . qy(Bn,k)>'O 5.
O£k £27=1

Since wayqy{Bn y) is Borel for every n,k, we have proved
¢ , Ly
the lemma.

Temma 6,11,

There exists a Borel map G :D -+ X such that

a, (£ 6 (y)§ ) > 0 for every ye D. (6.72)

Proof: TLet ﬁn Kk denote the closure of the interval B
4

in
n,k
the proof of Lemma 6.10. For every y D, we define a(qy) by

(6.70) or (6.71)s Put, for nx1, yeb,

k (y) = min ék:qy(an’k);g a(qy)§
and

G =k ().27"

¢ ,+D->»X is a Borel map for every n, by (6.45). It is easy

to see that (6’n(y), n=1,2,...) is a Cauchy sequence for
every y €D, and that

l%m ggn(y) = min {x:éx:py( ix )za(qy)f o

Hence ¢ = lim @§£ is a Borel map and satisfies (6.68).
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Lemma 6,12, Suppose iﬁ(D):> 0, and put, for every B &Y,

@) = [ 9y ap &,
Then iG is a type I action on (X,ﬁ;,/MD).

Proof: Put & = {}ﬁ(y):yezD} , where 6 has been consbtructed
in Lemma 6.11. From (6.,49) we see that, for every x£&H, and
for every geé G with TgerE, we must have Tgx = X, On the
other hand,

rE = U ng 6y = U fxexma (fxi)>07,
ye b y&ED
which means that

/U:D(X\ 1.E) = O.

We have proved the lemma,

Lemma ©e.1%. Pub C = ¥Y\D, and let 044:0 be a Borel set with

¢ (01);% 0. Put, for every Bef§,
C ‘
e 5
JROE C/‘/ a, (8) dp ().

Then TG is a conservative acbtion on (X,(g,/u q).

Proof: Since qy is nonatomic for every ye& C, and since To

is ergodic on (X,fg,q ), ¢ is conservative on (k,ﬁ?,q De

Tor every Be, S w1“h/}d 1(B);>O, and for every g€ G, pub

F(g) = {yéﬁﬁ%xBnT"B!x{m@g#Xj>>Oj.

g

Since 1, is conservative on every (X, Ay )y, y&C, we have
G_ ? 9
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U Fg) = ‘{yé;quqy(B)>()3.
geh

Prom (6.45) we get §?( (JT()) >0 and hence j}(F(go))>»O
é G
for some g €G. Applying again (6.45), we get

“ Vo 5=
,/% (B!iTg B n QX:TW x£x§ ) =
O [on]

o)

m ~
A qy(BA‘L‘%’O
F(g,)

We have proved that T, is conservative on (X,ﬁy,/u’1>.

B a f’xg‘l‘gox#x:’j) df(y);} O,

Combining Lemma 6,12 with Lemma 6.1% we geb

Theorem 6,14, Let TG be an action of a countable group G

on a measure space (X,S?np{), and let (Y,g?:f?) be a
meagure space and {qy:ye“Y} a family of &-finite measures
on (X,5) satisfying (6.61) = (6.66). Then the following

is brue:

(1) T, is type I if and only if q_ is purely atomic
G.

Y
for S?-a.e.yélY,
(2) T, is conservative if and only if dy is nonatomic

for f ~2.CeY & Yo

Proof: The statement of the theorem will not be affechted if
we replace /M by an equivalent probability measure and if
we assume (Y,§?Tf>) and fqy:yg;yg to satisfy (6.44) =

(6.50). Lemma 6.12 shows that TG is type I whenever f>~a.e.
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Uy is atomic, and Lemma 6.1% implies that Ty is conservative
if p-aee. qy is nonabomic,

Suppose now that TG is type I, but that f {y&’Y:qy is nona'tomic}

is nonzero., Lemma 6,13 then shows that we can write /x as
/M’PL/AE with //‘,] and /1/12 nutually singular, nonzero, and
gquasi-invariant under TG’ and such that TG is conservative on
(X,,g,/ﬂq). But this implies that the restriction of the type
I action Ty to some TG~invariant set of positive measure is
conservative, which is impossible. This contradiction proves

(1) completely, and (2) is proved similarly.

Lxercise 6,15, Let TG be an action of a countable group G

on a measure space (X,S,/(A), and let /u' be & measure on
(X, 8) with /u‘ /‘V/M . Suﬁpose (1Y, F/T_;j;-) is a measure space
and {qy:yé‘Y} a family of A ~finite measures on (X,§)
which satisfy (6.61) = (6.66). Suppose furthermore that
(Y',;,C;’J', f') is a measure space and {q&:er'? a fanmily
of &-finite measures on (X, 5 ) which fulfil (6.61) = (6.66)
with /Lf replacing /,4. Show that there exists an isomorphism

G : (Y:‘J' f)mﬁ’(ﬁ.',ﬁ”' s f ') such that

Vo (y) ~ 9y

for f)""aneoyg Y.

(6.7%)
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§ 7 BSkew products with nonrvegular cocycles

Let TG be an ergodic action of a countable group G on a
nonatomic measure space (X,ﬁ{z#d), and let A be a locally
compact second countable abelian group with Borel field(B
and Haar measure A . In this section we shall analyze
skew products Té, where a:GxX X~» A is a cocycle with

f(a) = {o, o},

Definition 7.1, A cocycle a:G XX -—>A for TG is called

lacunary if there exists a neighbourhood N(0O) of 0 in A

with
U fxiaemeno)n {o}f = 4. (7.1)
geG

An orbital cocycle u:R(TG)méaA will be called lacunary if

a, is lacunary (cfe (2:18)),

Proposition 7.2, ILet a:GxX—>A be a cocycle for Tge Then

a is cohomologous to a lacunary cocycle if and only if there

exists a neighbourhood NW(O) of O in A with
N.(0)nE() = {ol. (7.2)

Proof: Without loss in generality we may assume thatb
cho) has compact closure. Let ¢ be an invariant metric
on A, For every &£> 0, we write B(0, &) = {m‘é.Azaﬁ(m’ﬁ))<€}

and B(0,£) = { €A M x,002&T . We now £ix £>0 with
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E(o,55>cw,l(o). Put K = B(0,5£ )~ B(0,£ ). K is compact,

coboundary bO:G><X~¢%A Lfor TG with
pa LJ(I {xia(g,x)+b (8,x) €K} ) = 0.
/ ge G

By Proposition 2.5 we can find an orbital cocycle uO:R(TG)«@ﬁﬂ

with

2

uy (Tox,x) = alg,x)+b, (g,%) (73)
for every geG and for/ﬂ ~2.€.X € £, and such that
u, (x,5) ¢ X (7e4)
for all (x,y)eR(L ). Let
Q= [y ery) i, (x,y) B0, £)] . (7.5)

Qc:R(TG) is a Borel set. (7e4) implies that Q is also an
equivalence relation, so that we can apply bxercise 1.4
to show the existence of a countable group HO = H(TG,Q)
c[_"’f;;;‘@j with R(H)) = Q (ef. (1.21)). We westrict uj to Q
and denote this restriction by vO:Qvé,A. Vs is an orbital
cocycle for HO, and we want to prove that vy is in fact a

coboundary. One can proceed in two steps:

(a) let O<W £ € , and let £:X —»A be a Borel map with
VO(X,y)+f(x)~f(y)Q;B(O,¢?) for‘/xma.e.(x,y)é“Qe Then there
exists a Borel map c¢:X=+A with c(x)éﬁB(O,f)) for fpi-a.e.x €X,

and with vo(x,y)+f(x)—f(y)+c(x)-c(y)é:B(O,‘v/Q)Jﬁxma.e.on Qe
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Proof of (a): Put U, (x,5) = u (X,y)+f(x)-f(y) for every
(x,y)g]ﬁi(”‘e) and a, (gyx) = U, (‘1‘ xyx) for xeX, g€ G. a, is
cohomologous to a, and the set K, = B(O, 7) \B(O,‘ﬁ /2) is
compact and satisfies K’i ﬂE(aq) = ¢. Proposition %8
shows that the following is true: For every C & SJWi"bh
/MCC)>O there exists a Borel set Bc € with /L4<B)_>O and

4B . L particular

with a (g,x)¢£{4 for all geG, x@BnTg
we see that u, (X,y)géK,, for (x,y)EQNBXB = RB(HO).

Applying now Lemma %,7 with W, = ﬁ(o, 4?) and W, = A ~B(0, 4/2)
to the orbital cocycle v,:Q-—>A for H, given by v, (x,y) =

u, (%,5), (x,5)€Q, we get a Borel map c:X=A satisfying the

required conditionse.
(b) v, is a coboundary for Ho

Proof of (b): We apply (a) to 7 = & and £=0 to find a
Borel map f,=c:X —»A with c(x)& B(0, £) and vo(x,y)+c(3§)
-c(y)e B(O, £/2) /A«a s€s0n Qo Proceeding by induction,
we assume to have found Borel maps f,!,...,.L from X to A
with u’f‘(f (x) 0) < E .2 l'm, i=7,0ee,n, and with

v, (xyy) + ka(X) - ka(y) € B(0O, £.27™) H-aee. on Q

n
Put £ = }: £y y A= L 2™, and apply (a) to find c:X > A
k._

with c¢(x) e B(0, £.27%) and vo(X,y)-&»f(x)«-f(y)-r-c(x)-—c(y)é:
B(O,e.é_}"n"/') /a-a.e. on Q. This process gives a sequence

(£, k=1,2,000) of Borel maps from X 4o A. We put

k
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o

‘ ii‘k(x) if the series converges
=/‘

0 otherwise.

[o. ]
It is clear that ka(x) converges for A —-a.ec.x€X, S50
k=1

that
v, Xy )+ (x)=-£(y) = O
for /4—-8..6.(}{,37')&? Qe v, is thus a coboundary for H_.

We can now complete the proof of Proposition 7.2. Our

definition of £ implies that
£(x) € B(0,2£)

for /M—a,e.xé‘x. We choose a T -invariant (and hence HO-

invariant) Borel set N of measure zero such that

v (X y)+E(x)=-£(y) = O
and

f(x) & B(0O,2¢)
for all (x,y) in Q~ Nx N, and put

v, (%, 7)+E(x)=£(y)  for (x,y)€& Ry 5(T¢),
u' (Xay> =

0 otherwise.
If uw'(x,y)eB(0, € ) for some (X,y)éR(TG), we have either
(x,5)€ Nx N, or we see from (7.9) that uo(x,y)éB(O,B(g).
(7e%) now implies (x,y)e Q, and (7.8) gives u'(x,y) = O.

(7.6)

(77)

(7.8)

(7.9)
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Moreover, u' s u . Pub aa(g,x) = u'(‘l‘gx,x) for xeX, geaq,
and apply Proposition 2.,% to show that ang}<Xmé»A is a
cocycle for TG which is cohomologous to a. Since u'(x,y)

s

¢ B0, £)N { 0] for all (x,y)€R(Ly), we geb

" p . e " ? =
ggG {X.ag(g,x)eB(O,ﬁ) \ {O}j ¢,

8o that s is lacunary. The proof is complete.

IF'or the rest of this section we fix an orbital coecycle

uO:R(TG)‘ébA.and a neighbourhood NO(O) in A such that

E(u) = [0,0f (7.10)

and
u, (%,7) ¢No(o) {0} for all (x,y)eR(T.). (7.11)

Put
Q = [C,me Ry u (x,5)=0 § . (7.12)

By LExercise 1.4 we can find a countable group

Hy = H(2g,Q,) ¢ [T (7.13)
with
R(H,) = Q. (7614)
We write
¥ - :
S = [BES:HB=BJ. (7.15)

Choose and fix a probability measure /u' on (X,%) with

/p{'w/){ (7&‘16}
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and apply Theorem 6,6 to find a standard Borel space (Y,5r3,
a surjective Borel map %HEQW%YQ and a fanily {qy:yéjY}

of probability measures on (X, S) satisfying

(1) each ¢_ is quasi-invariant and ergodic under Ho,

3
(2) for every B&.S , the map yw%yqy(B) is Borel on
«,9), and/l,wcm - [ (8) ap (), wnere
g py
(3) qy(yluﬂ( {v1)) = 1 for every ye¥,
@) ¢ (I = {yT1©):ceT t is contained in <

. ; . ) ‘
and is equal to & modulo sets of/fa—measure ZEI0

(5) if /U is invariant under H (equivalent to a g°-
finite Ho—invariant neasure) then every qy is
invariant under H (equivalent to a g=~finite

Ho~invariant neasure) .
Finallywe put, for every ge G, xg X,
o= T T
ao(g,x) uo< gxs}d
to obtain a lcunary cocycle a,:GXxX->4 for T, with E(ao) =

V0, @],

The aim of the following analysis is a description of the skew
product Téo. In particular we want Lo investigate the ergodic

decomposition of /2f=/pﬁxx% with respect to TZO, Sinece this

(717)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)
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decomposition will turn out to be in terms of (Y,?if ) ¥ s
and {qy:yg&*} s we shall start by discussing the ergodic

decomposition of /u' with respect bto Ho in some more detail,

Lemma 7,%, S} is nonatomic.

Proof: Suppose there exists a yoe“‘f with jy(éqyo} ) >0

By (7.20), B, = q;l"q({yo}) is H_ -invariant, and every H -

: de PR NG t =
invariant Borel set GCBO satisfies Y (BO\C),/M (C) O.
Moreover, /U'(BO) = S?( {;YO} ) #£ 0, by (7.18). It follows

- . ‘ Ly e o ¥ i é 1 : e :

that the restriction of Hy ®o (Bo, SBO,/(BO) is ergodic.
Since a, is not a coboundary and hence not everywhere zero
on B,, we can find a set ¢ £S5 with /a'((‘})i& O and an ele-

" " -1 : £y TT1 - P >

ment 8, €G such that C uigoO B, and ao(go,k) # O for all

x & C. Hence there exists an D(O#O in A with /u' {x &G
aO(gO,X) e 1M( (x‘o)f > 0 for every neighbourhood M( o(o) of

X in A. We fix such a neighbourhood M( 0(0) and a Borel set
¥ . . [ - e g - . - . - o vl ; ¥

Dc B with /u (D)> 0s Put Co = {X{;O.ao(go,x)gh(wo)j .
As Tthe restriction of H, to B, is ergodic, we can find

V. &7 ; Y OTOT o v oelm a 15
VyEH, with u'(V,DaC )>0. Since V,€ [T,], we can make
use of Exercise 1.1 to select a Borel set D,CD with /“'CD”i) > 0

and a Bl € G with

V/IX = T x for every Xé’ﬁD,]
and

. D

8, CZCO.

1

Put B = Tg & D,] and apply bthe same argument to find ggé‘;G
0=
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T xéﬂox for every x e‘:“E,i,

&2
and
%quC.D.
Finally, let
D, = Tozgqiq'
Then fu'(Dg) > 0, Dgijngg qugczD , and

8, (88,84,%) = ao(gg,T A)+a (BysTy X>+a o (8q9%)

i

<go,*. x) € H(x ),

for every"xzabg. We have proved that every subset DCIBO of
positive measure and every neighbourhood M(LXO) of éXO in A
satisfy

f‘< Q/(Dn” .Dqé:ca (g,x) e Mo }}):>O

: geG
From Proposition 3.8 it is now clear that <X055E(a0), con=
trary to our assumption E(aO) = {0}. This contradiction

proves bthat ¢ is nonatomic,.

Lemma Vel HO is conservative whenever a, is recurrent,

and type I whenever a, is transient.

Proof: Suppose 2, is recurrent. We take B €85 with /u'(B)>»O

and choose a symmebtric neighbourhood Nq(O) in A with
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N, (0)+, (0) €N (0), where N,(0) is given in (7.11). Put
B = BXN,(0). Since 1,°

Theorem 5.5, we can find a g &G with

.

A oo
is conservative on (X,ﬁg,/g') by

A OS aO A aO ,
/u‘(B ar 2,8 A {(x,w’):fﬁg (%, w )A(x,0) ] ) > 0.
; 8o 0

A ao AL
But for every (x,%)&B AT _4B, we must have

S0

ao(go,x) (S N1(0)+N4(O) C NO(O),

so that

2,(8y0%) = uO(TgOX,X) = 0,

Ify in addition,
Gy ) £ 0 CGe, ) = (T x, e (g ,0)) = (2 %, ),
&q S 00 €q
we getb

T X # x.
“o

Together this implies

i, __/l . ol - 2 - . N - e O
/M(BfngoB¢ﬂ éx.IgOX%K§ A fxdag(go,x) Of ) > 0.

This in bturn shows that
pac VB A {x:VrAxf ) > 0

for some VIZHO. since B was arbitrary, HO is comnservative.
Lo prove the converse, assune a, to be transient. Combining
(3.28) with (7.11), we see that the following is true:

For every C € S with /M'(C)}'O there exists a C,]CC with

M ! (C,l ) >0 and with
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U A{D;qO N {xia (8yx)=0f A {x:0 xéx}) = ;5. (7e2%)
g@G/] g 1 o) g

We first put C=X to find C, satisfying (7.23), and set

n
¢ for all ifj, such that

quCq. Suppose we have constructed Borel setbs Dq,...,D

with /u’(Di)d> O and HODi!]HODj =

éﬂ}@) Nt I) N fx~a (g,x)= OE A P x:T X%xj ) = ¢( (7e24)

for i=1,..4n. We put ¢ = X~ i%QHODi. If /u'(O);kO, we can

again find G, satisfying (7.23) with /a'(04)>>0, and we putb
D,41=C4+ In this fashion one constructs a sequence (D, k=1,2,...)
of Borel sets of positive measure (which may terminate), each

of which satisfies (7.24), such that H oDs nH Dj = ¢[ for i#j.

An exhaustion argument shows that we may assune

/u(x\ L/HD): Put D_ = (J D.. Then it is clear that
°© iz -

véu (D, AV~ D A Tx:Vxéx}) = 55
and.

} T -
MENED) =

We have proved that HO is Ttype I.

Corollary 7.5. If a _  is recurrent =8,E is nonatonic.
fo} 4 Q.y

If a, is transient, qy is purely atomic for 5?~a.e.y€'¥.

Proof: Theorem G174 and Lemma Vo4,

We define a Borel map i:X -» X (=XX A) by setting

i(x) = (%,0), x€X, (7+25)
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and put

Ty (8) = a7 (3))

ey

for every y €Y and Be& S. Choose a probabilibty measure N '

on (4,8 ) with

Al A

and write

Y

/M = /u' X At

v ~ s
/,u is a probability measure on (X, S), and

(/r NZ/Z m/ﬁfXAa
| | o~ A
For every Vé‘HO we define an aubomorphism V of (X, S,/u)
by
o~ a
V(xyw) = (Vxya), (X, )¢ X,
Let

7~ -f‘}/“h_j_,w
H, = {V.V&io?.

P
A . » 3 - © N 2 3,
An explicit ergodic decomposition of /x with respect to

Ho can be written down as follows: Pub

y.v4
Y =3YX4,
T = Fx B,
? = fx /\j
P A
and define y :X -3 Y by

Fot

V’(Xyif) = (y/(X),“&)-

(7.26)

(7.27)

(7.28)

(7.29)

(7%0)

(7371)

(7.%2)
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It
a4 a4 st
g% [BeS:EB =3,
and
yom”] o o~
@"(y’a;) = ‘53#1 s (Fye<) e,
then the map 4/ X m-}Y, the probability space (X f ), and

the family {6‘ 82 (s o()é:Y:i satisfy all the conditions
(yy o)
(6.44) = (6.50) in Theorem 6.6, In particular, each 5(37 x)
9

is quasi~invariant and ergodic under HO,
z e
= 57 .y A g X
/M /?/E" CD, { (ys ),

/
is a o G whenever
g (74 5 ) singular € ¢ (y', ') nev
(7o XD)A(T s ')
ALl this is an immediate consequence of (7.17) = (7.,20) and
d As »/ Q7

(7e35)e Turning now to the action T, on (Xy S ,/u), we

choose and fix an enumeratbion
(ngesg2§gﬁyvco>

of Ge¢ For every yev¥, Bfﬁg’, let

oo
T (B) = 2 2 ‘<a’<m °B)
J k=1 By
- A N
and put, for (y,w )&,
T = T _ R .
¢ (379 « ) ¢ yxm

Al ot

Fach 6—( ) is a probability neasure on (X, 5 ).
‘)

(7e34)

(7e35)

(7637)

(738)

(7.40)
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Let Nq(0> be a fixed symmebtric neighbourhood

of O in A with
Nq<0)+N1(O> CTNO(O>
(cfe (7e711)), and let (y,wf)éﬁfXNA(O). Then the measure
Bz L< )(B N{LXN, (O))), BCS,

ig eqguivalent to « )
- (y,m)’

Proof: his is obvious from (7.11) and from the quasi-
ol
) undern MO.

invariance of <§(y o
9

V.
Lemma 7.7« For every (y, x)e ¥, “ﬁCy %) is quasi-invariant
a b
and ergodic under T O. Moreover, T .y is guasi-~invariant
& TG ’ (ys“ )
. o~
under Hos
&y
T .~ under TG is obvious
(ygff )V
from (7.39) and (7.40). We now fix (X,&, T (ﬂ >) as our

Proof: The quasi-invariance of

measure space, Since <V<X,gx) (y‘sx))é;P(T 0) for every
Eavd

Vel and for every (x,x‘)ﬁi’ Lxercise 1,% shows thatb

R

o

a
t:LT OJ and in particular bthat L(y x ) is guasi-invariant
9

under ﬂ . bince R, commubes with 1@0 for every &, g, it

will be enough to prove that Tk, ,0) = Tfy is ergodic under
a
TGO for every y €Y, and this will imply the ergodicity of

every Qr(y X ) On the measure space (x: % T“), consider
Y
Iad ~d
the restriction HO of HO to the ﬁ ~invariant set C= AA(N (0).

(7.11) shows that

(741)
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e

o A (Y [ . 8 .
LH(S] = Lton]c = E‘T(}OJU.

The restriction T of T_ to C is eqguivalent to & =
S e y e (y,0)
69? by Lemma 7.0. Hence the action of HO is ergodic on

(C,,SC, T& )e Since we also have
C

A a
i ot Y % Y Ox — ~
Ly(A\'l‘G C) =0

a
T”y is TGomergodic. The proof is complete,

Corollary 7.8. Let Nq(o) be given by (7.41) and let (y, &),

(y'y x') € ¥ with (y, )£ (', x') and with mmzx'equ(O).

) are mutually singular,
y’tx w') 1Y w2 (9]

b
Proof: I¥ will be enough to prove that Tf(y,o() and "T&,
are nutually singular whenever otéma(O) and (7, ¢ )#(y',0)e
Indeed, by Lemma 7.6, the restrictions of “f<y,“f) and Ly'
to XL%Nq(O) are equivalent to Oky}éx> and to <j§,,respective1y.
Since (y, x)#(y',0), (7.37) shows that T ,_ and T_, are

(yy ) J
not equivalent. But both measures are ergodic by Lemna Vo'l
and this implies that the measures are mubtually singular.
The proof is complete,.

I 4
Lemma 7.9. Let “W}:X~%>A be the second coordinate projection

Sctsucnciina

. , taed
TECX‘)@() = X, (X‘) é"Jéﬂi&&

and let, for every y&¥,
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Then the following is true,

(1) TFor every ye¢ ¥, the measure i on (4,B) is

purely atomic.
(2) F¥or every yeY, put

A(y) = fxe Aim ({0 ) >0 [
Then
card (A(y) n <N’l O)+ X)) £« 1

for every «e& A and for every ye& Y,

Proof: Let m§ denote the continuous part of my and assume
that mg}{o for some y€ Y. Choose X € A with m§(o€+l\f,‘ (0)) >0,
Since m§ is nonatomic, we can find disjoint Borel sets
o - . ¢, Gy .
B, yBy € X+, (0) with my(B,]).my(Bg)%O. Hence my(B,})gmy(Bg);fO,
and the ergodicity of “f&‘(Lemma 7¢7) implies thatb
m [x:a_(g,x)€ B,=B, } # ﬁf.

5E G o} 172
It now suffices Go observe that B4~B24:N(O)‘\ fO} s SO That
(7e711) is violated. This shows that my is purely atomic. The

second assertion is proved similarly,.

Lemma 7.70. ()= {(y,«): x€a(y),yev]

S
is a Borel subset of Y.

(704‘2)

(7.4%)

(7 o444)

(745)
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proof: Trom (7.18) and (7.26) we see that {y: 6 (B)}Oj
& ?J,or every Bé?‘? Applying this to sets of Lhe form
B = ‘l‘go(XXC), g€, ceB, we get

U ty: s NG ocwc));}oj {ver: T (xxc)>0te I . (7.46)
g€ G J

Let (c)fk, k=1,2440.) be a dense sequence in A, and put, for
i21,

Yi = 1y&Ys Ty(XX(é}(i-*-N,i(O)))}Oﬁ-

By (7.46), Yiéy, and Lemma 7.9 implies the existence of
a unique element W]i(y) € Aly)n [(x 5+, (O)) for every

y&¥; and every i. Applying (7.46) once again, we get
S .y G ) . ' A :
{eri: ‘¢7i<57'>& CJ = fy€Y~ "y((ﬂgi"‘Nq(O))«’\U))ol

for every Cé(g. Hence #.:Y.—-» A is a Borel map for every
?71 i

i. We conclude the proof by noting that

Eavg

Q= @) inea@),yerl = (J/'1 { G, ;M iyer e I .
=

We recall the definition of N, (0) in (7.41) and choose a
symmebtric neighbourhood N5(0> of O in A with

N5 (0)+13 (0)+1; (0) € 1, (0). (747)
Put
N3 (0)+1i5(0) = N5 (0). (7.48)

For every ﬁé:A, let Ni(/?;) = Ni(0)+/§, i=1,2,3, and define
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(B - g%jG fxeX:a (g,x) e‘N;(/Mﬁ , (7.49)
C(//B) = X(/g)){ N5<O>9 (7.5())

and

2,°0()n (LATL(A)). (7.51)

D(/3)
Note that X(/.S ) E g%and G(/G),D(/@) c S‘%. Recalling
(717) = (7.21), (7.26) and (7.35), we put

y(/}) = {'yer:q,m/g)) =1%, (7.52)

#
C (/3)

il

T(B)x N, (0) = {(y,ac)c;Y 2 y (CC N=15%,
f 720/ (7.5%)

and

i

DAY = {(y,x)cT: & ((AB))=1 3. (7.54)
(Fyex ) /3

It is agaln clear that \1(/’3 )€ 9’; C"%(//ﬂ) and D%(/ﬁ)é‘y«;
and D (Prexxny(f). |

Lemma 7,11, TFor every /@é?A, we have Tthe identity
() - (y eThmI (B~ P T (7.55)

Proof: If ;yCY(I/‘?), then q (%u {x:a (g,x)CN (//3)} ) =

G . ( U T 04 (x % W, (/3))) 1o Bub this shows that (Xx’N (/8)>>O,
and hence thcdc A(y)nN (/3) # ¢5 (cfe Lemma 7.9), Gonversely,

if A(y)nN (/’3);4% for some yeY, we get T (XXI\T (//3));»’*0

and hence ( U {x€x:a RETEINE N)(/@)j = @f (‘]? O(‘{xN (/6)))

g,C;G
= 1, as in the first part of the proof,
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Lemma 7.12. ILet /3é<A be fixed and define Y(/@) by (7.52)

or (7.55). For every yé& i(fg), we denote by ﬁ(/@,y) the
unique elenent in A(y)r\lw(/g) (cfo Lemma 7.,9), Then there

exists a Borel uetiNﬁ C r(%&) w1th.€?(N/3) = 0 and an
injective Borel map %; :Y(/@)‘\]igcw% Y with

“paln “@a= (B
forevww*yéY'Q§)= YQ@)\Qﬁ. lMoreover, if B is any
Borel subset of YQ/B)\ ﬁﬁ , then ?b (E) is a Borel set,

and
57(E)>»o if and only if p( VQS(E)>:>O.

Proof: If fﬁ'(X(/5>> = j?(Y(/%)) = 0, the statement is
trivial., We shall therefore aJ%ume Lhat 5)(Y(/3));70.
(7:49) = (7.51) show that m o(/g) T, OD(/Z) We put
~
Kﬂfzcﬂfﬁbga)’

and

i

K2 CZO/A.DCﬂ)’
where 01,02>>O are chosen to make £<4 and Kg probability

neasures. Leb (gq,gz,ga,...) be the enumeration (7.38) of

G, and let
4 w v
K;(B) = é@qz ¥, (Tng), Be &, i=1,2.

~ &~ s
Ksy i=1,2, are probability measures on (X,S ), and it is

easy to see that

(7.56)

(7.57)

(7.58)

(7.59)

(760)
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fﬁTaoC(/@)
Since V’q is quasi-invariant under TGO, we can find its

ergodic decomposition, Pub

with ¢, as in (7+57), and

ng) T vy (¥ c<><£§{.
ys“) (79 X)° ? 7
Bach qg;)c%) is quasi-invariant and ergodic under TGO
$
" y I B q) é/]) a1 e
(Lenma /e'?) quﬁ «) and g ¥, w) are nutually singular
whenever (y,o ) # (y', x') (Corollary 7.8), and

;2(1<B> = %,[ g/o )(B> dquVQm)
1

for every B C‘§ by (7e36), (7.58), (7.39) and (7.60).
fact, (14, ﬁq, fq) and fq(y )’ (y,«’)g;xa 3 satisfy all
the cenditions (6.53) - (6.56) of an ergodic decomposition

of Kq with respect to ”GO. Let us now decompose b

= D%(/g),
T

2= T,

20

N ﬁﬁ?

#oe A
§o= 2r [T,

and

We s

(7.61)

(7e67ea)

(7667.D)
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2) . g
= A ¢ -~ &
qu,g() (Fo0¢ )? (y’\%)éfg
ar L o
Again one verifies quite easily, that (Yg, 32,592) and
i Uy %,>:<y,m')é,xg} satisfy all the conditions (6.53) -
H
A
(6.56) for an ergodic decomposition of £{2 with respect to
a
TGO. Applying Exercise 6613 and (7.61) we conclude the
existence of an isomorphism :(Yﬂ, Vq, fq)”ﬁ*(lga' 2,5?2)
with

(2) ~ 1)
d (ygoe) qu9 )

e N4 : i E o
fox*iyq-a.e.(y,&:)élqe Lemma 7.% implies that 74 and 592

A
Yg are uncountables

A
are nonatomic and hence that Yq and
We may thus assume & to be a Borel isomorphism from

o g ~ B
(angf%) to (Yg,gré). Fubini's theorem now implies the

existence of an 0<OéfN5(O) with

(2) o1
q@(iy'; 0(0> ‘ q(lYa c?(o)

for fu-a.e.y@*i(,ﬁ). We pub

S 2) L o 1) ‘

N == : ( ) ) .
l_ﬂ fyéY(/@) q@(yso‘o>’)&q(y9 0‘0)}

It is not difficult to verify bthat ﬁﬁ is a Borel set.
We putb

Y‘(/B) = Y(/’S)\N/g

and write

IGarg) = (' )y (9))

for every yeY'(B ) with ¢'(y)e¥ and  (y)€ L. If
, 'd

(7.62)
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w' )= - oy, (7.63)
we getb

@, onY o

for every yeY! (/3 Je It follows that

T&@)“z?¢ﬁﬁ&fvtzm~w%W):T§%ﬂ@) (664)
for every ye:Y'(/ﬁ). (7.64) implies in particular
Clyym gt ) EXT03) = T lx {y' () >0
and hence
g ealy.
Since
O xo) = (§ @ D () cTx(f)
for every'y‘éY"(/G), (7.62) implies
y'(y)éN‘g(/z)ﬂﬁa(/@)dﬂq(/?).
Lemma 7.9 now shows that
py' )= (/hy), (7.65)

since both g{y'(y) and 4 (/4,37) lie in A(y) NN, (!,/3) for

e vET! . W i pub bt o= e 1 obtain (7.

very ve (/Q) e can now pub ¢; gﬁfa and obbtain (7.56)
from (7.64) and (7.65). Corollary 7.8 implies immediabely thatb

qé‘ is injective.

/
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To prove (7.57) we proceed as follows: For every (¥, )

' (7aw) = (pg ()47 (foy)+ w).

Then @'(y,x)e ¥ "'Xi\a(/B), and q(0)<y x ) ngyza> for

every (y,x )EY!' (/3 ) x NBCO), Comparing this with (7.62)

and applying once again Corollary 7.8, we getb
') = O(yye )

for pa-a.e.(y, ®)e £'(B)xW5(0). It follows immediately
that for every Borel set FgyY! (/3);(1\{ (0), f,l(b)>0 if

and only if fg((ﬁ (F))> 0. Note that €&'(F) is a Borel set,
since @' is injective. If we now choose F of the form I =
EXN (O) with B écfand Ecy! (/6) we get (7.57). The proof

is complete,

Lemma 7.1%, There exists a Borel seb NO(;Y with P(No> =

which satisfies the following conditions: Put YO = 1~ NO and
Qo= 1) yer,, xea(m].
Then there exists a Borel map gf?: “Qo - I with
T WY T R,
¢y ) y o
for every (y, o) éﬁQo. qé is uniquely determined by (7.67).

Proof: Choose and fix a dense sequence (/31,/3?,...) in A.

For every /@i we define ”i('(/gl), I , 4,7(/3 ,y) and aff/g
¢ § i €

(7.66)

(767)



by Lemma 7.12, Put N' = u /3 and Q =¥ (v, &)
i
yEINNT'y x € A(y) nN; (/3 )fi . Since Q' = f(y,ﬁ(/@i,y)):

JE€ SL(I/? RN I\I'j s We can define injective Borel maps

¢ 1:L! >71 by
DLy (Bysm)) - gfa}g,

L

@)y Gy Cfysynell.
From (7.56) we get

‘Pl ) oyt
for every i=1,2,... and for every (y, a’)é‘,Qj". If (y, «) ¢

Qi ﬂ.Qé, i#j, we can once again apply Corollary 7.8 to

see that

4?’:{(27', &) = d?fj(y, o).

Tet now (' = U O—' = { Ty )iyeY N, x €Ay} , and
iz
define qu ' =7 vy

qﬂ'(y, ) = qéj‘_(y,@() whenever (y, X)¢€ Qi,

(7.70) shows that (j}' is defined unambiguously on LQ,.,', and
(769) and (7.71) together imply

T ~ T R,
“¢' ¥y ) y¥
for every (y,of )¢ Q_‘. We now put
$rQn

Each #ji is injective on ,QJ!-, so that %i(Qi) is a Borel

(7.68)

(7.69)

(7.70)

(771)

(772)
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It

set., Hence [ (/;<$i(£2i) is also a Borel set, and ibs

>
~

i=
Y YO will have §7~measure Z2eT0. We now wanb

i

complement NO
to extend the map 4:1' to ""Qo = {(y, %)y RIS €A(y) Y. 1r

(yo x) & L), we define
¢y n) = 1y, w).

Suppose now that y'é“Yo\~Y' and x'€A(y')s. Then bhere exists

(yy x)e (' with %'(y,@<) = y's (7e72) implies

and hence

e A T N
f»thO(t é,y_{(x,+%_,

Since «'e A(y'), we must have o + '€ A(y). Applying

(7.72) once again, we geb

A

[
L

R A N A T Ok

If we now set

#(yis x') = #"(yytf’(.’*ﬁ"),

we have constructed a map %:,ﬁ% >Y, satsifying (7667)
Note that the definition of é is unambiguous and uniquely
determined by (7.67), again as a consequence of Corollary
748¢ We leave it to the reader to verify that ¢ is a

Borel map., The proof is complete,

Lemna 7,11. Let /EG’A, and let
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il

fyey :a(y) iz /8 )# $i. (7.7%)

1)
For every yeé YO(/A) we define "’70(57’/3) to be the unique ele-~
me; e L - T o Ny = S' :_ y !_1» e T - :"\, o hY
ment in A(y) a Iva(/ﬁ Je Consider the map 7§,ﬂ xfo(/? ) = X,

given by

qéﬁ ) = ?w, %(y,/w, ye’*z'o</s>. (7.74)

subset D (';'ffo(/3) we have
¢(D)>0 if and only if p( ¢‘Z/3 (D)) >0, (7.75)

Proof: If ”q ;Q ~» ¥ denotes the projection onto the first
coordinate, bthen 7 1 is a Borel map and injective when
restricted to QOA YO X N5</3>° Hence the restriction "Fi";T

of 'ﬁ’,} to \QOAYOX N5</Q> is a Dorel isomorphism between
Q Ny, x 1\'17(//3} and Y (/3). Since is also injective on
Q nY x Nz (/ﬁ) by Corollary 7.8, and since (ﬁ/s = gé."’ii",}"q,
@Kg is indeed an injective Borel map on Y (/ﬁ ‘\). Let now

D be a Borel subset of Y (/3), and let 3”(/3) be defined

as in Lemma 7.12. Then p (D) = ? (D/ll'(/ﬁ)) The unigueness
of 915 shows Tthat %f/g (y) = %{ﬁf (y) for every vy€71' (//3)
(cfe(7656)), and (7.57) now implies that ¢ (D ﬂY'(ﬁ )) =0
if and only if 5‘7(@,3 (D/‘)Y'(/;?)) = @ ( ?5/5 (Dny! (/QD?’O
We conclude thatb g‘} ( ‘?%8 (D))> O whenever P<D>>’ Oe

)(_‘.J

To prove the converse, assume that ¢ D)) > 0, From
k 9 A

the definition of ¢9 ({;@ and YO(/ﬁ) it is clear +That
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P (X (A)) =X (w/@)
9%/3 0 /g o
and
75“/3 (71/7/3 (y)) = v
for every y@;Yo(ﬁ Je We apply the first part of the proof

to m}}g and to the Borel seb g‘f’/g (D)e X ( /5) to see that
y (D) »0 whenever .§7< %z (D)) > 0. The proof is complete.

We now pub

*

7 7
e}
and

it

fo fi’o°

£

. . i~
Proposition 7.15, 'here exists a countable group  of

aubomorphisms of the measure ce (Y N, fo> with
My = Z‘;ﬁ(ys ¥ )ieke A(y) ]
for every yéﬁ'i’oe

Proof: Choose and fix a dense sequence (ﬁq’ﬁg’“*‘) in A,
For every i>1, put Eél) = {yéYo(/ﬁi): gzé/g (v) =579,

{ A
where Yo</?1') and 56/3 are defined as in Lemma 7.1,

Next we choose a sequence (E<l),_x:’l,2,“..) of Borel subsetus

of YO(/Qi) such that ?ﬁ/&i(gélbnﬁéi) = 75 for every k=1,

and

(7.76)

(7:77)

(7.78)
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(J <l>~ﬁ%(ﬁi),i%1.

For every i,k, letb V(i k):y“o -3 YO be the Borel aubtomorphism
¥

given by

o)
Vii,x)? = ¢/5i<§f) for yeBb 1§:>’

(y) forye (“(l>)
pp s 7

(7.75) shows that v(i K) is an auvbtomorphism of the measure
space ("‘i 9} fo> Let 7 be the countable subgroup of

‘;{(Yo,g’w,fo) generated by {V<l 1) dd = k:f»ﬂ} e Lt is
clear that [° will satisfy (7.76). The proof is complete,

Lemma 7,16 Let yéfYO, let (qu,cx?,.,.) be an enumeration

of A(y), and let (g,[,gg,...) be the enumeration (7.38) of G.

Then the following sbtabements hold:
1 Ify is equivalent to the measure

ok 1 §§
Beip 2 275 &5, (R7' B), Be o,
I 1 ACTE SR S

(2) 'The measures on (X,5) given by

on (/!> " _ = ""k- -
050 « Z 0 p, )
and.
0)m) - = 2™ (2, B),
J k= Sy

(7479)

(7.80)

(7:81)



Béﬁﬁﬁ, are equivalent, and they are guasi-invariant

and ergodic under TG.

Proof: (1) is clear from Lemma 7,6 and Lemma 7¢14. (2)
follows by applying (1) to two sets of the form B = Bq>(A

with B, es.

Proposition 7.17. Let I° be the group of aubomorphisms of

. - v — | .
YO, 9cﬂk?o) consbructed in Proposition 7.15. Then | is

ergodic.

Proof: Let CCY_  be a Borel set with /7 C = C. If Fo(o).

¢ O(CG) # 0, we can define two measures on (X,¥) by

m .

quy d ¢y

and

i

m, C@fqy df?(y).

m, and m, are mutually singular, and m4+m2=‘/ﬁ (cfe (7e17) =

(7621))e (780)y (7.81) and (7.78) togebther imply that
1

are nutually singular for every 819ggé§G.
ol
Lo

] -
qugq and. mng

It follows thabt the measures

m{‘(B) = ;E: 2mkmq(T B)
k 21 Sk
and
* T 4=k .
w (B) = 2 2 1m2(teg B),

k =21 k

B €55, are mutually singular. On the other hand it is clear
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M, + M, = 2. 2 i
T e o /A E

$o that we are violating the ergodicity of 'y This contra-
& N /U

diction proves the proposition.

Corollary 7.18. A(y) is an infinite set for f}v-a.e.yé“’fo.

Proof: If A(y) is finite for some yeY, | y is a finite seb.
(. el . . . .
Since | is ergodic on a nonatomic measure Space, f, =8.e,

yel, must have an infinite orbit. The proof is complete,

Lemma 7,19, The set Fo = f'ychO: qﬁ(y,a( )=y for some o« #0

in A(y) | is a Borel set, and fﬁ(Fo) = 0

Proof: Tor every /3(, A we define ?5/3 (/@ )—3> Y, as in Lemma
714 by (7.73) and (7.74). If WC A is a Borel sebt, pub

EM,A) = {yvey (/3): 7675 /3)6‘1‘1 and 55ﬁ(y>=y§ o It is
clear that I'(W, /_’3) is a Borel set for every W & @3 and for

every /gé As We choose a seqguence (/:’?,],/32,...) which is

dense in A, The set
W) = (j }E(W //3 )
is again Borel, and we have
(W) = {yé:Yo: #?(y, )=y Tfor some « & A(y)ﬁW} .

Let now yeP(W) and x' EA(y). From (7.67) we geb
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T AT T .
?(y,‘cxﬂ yRo«”'

By assumption, there exists an W €A(y)AW for which

Consequently one has
Tqﬁ(y, ') "~ TyRa"' ¥ TyRoH Xt : 4? (7, ')

which shows that é(y, x')EeFW)e (7.78) now implies thatb

FW) = F(W) for every Wé?é?, and Proposition .17 yields
P oG p o (ran) = 0
Turning now to the assertion of this lemma, we assume thatb
¢ o) # 0. Since Foo= F(AS £0%), we conclude from the
first part of this proof that ¢ (F.) = 1. Let N be an
invariant metric on A. We choose sequences (/3§4), k=142400a)
of points in A and (e, k=1,2,¢0.) Of positi&e real numbers
such that the closed balls E(/3é1>,ok) = {a@é.ﬁ:gA(mf, (1>)
together cover A\ {0% for eﬁery k, bubt bthat Oéfg(/qu),ck)
for every k »1. Since F(AN {0 %) = (b(/ﬁ(q),o », and.
since the measure of every & (B(/3(1>h:}) is either gero or
one, there exists a k, 21 with Po (B(B(%3(q),ck D)) = 1.
We can agein find a sequence (/3<£>, k=" c,...)qin A such

that L/ B(/3<2>,c /2)> B(/g(q),ck ), and conclud@ the
k=1 1

cep §

existence of an 1nteger kyz1 w1tn .F (r( f)B(/zcl),ckl.2“1+4)))

=1, In this fashion we consbtruct a sequence

lﬂ(ﬂ/il yeed) € A
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for which

el f‘)B(/z i hoy 2T =

for everymz1. The completeness of A implies the existence
of a point « & f} B(//& (D,ck 2_1'”). It follows immedistely

that
S)OCFCB( O(O’ £ ))) =

for every € > O, where B( o £) = (e A 5/4(1;(’,960) 4&;}
Note that &ngo by construction. We now claim that oﬂjéjﬁGa),
Indeed, if Oﬁ’oef}ii}(a), there exists a setb J)(,,S with /4‘(D)> 0
and an & >0 for which |
U DntT bn {x:a (%,X>éB(NO,é“)3 = ;!5
gEG &)
7 (7.18) there exists a T4 €FB, £)) with a (D) 0.
/‘
7.7 o - o e g T . » < 3 - R s
We chooso an element X 1€ B( PN £) fir which ryq‘xq’" Z”yq.
Ir D = Dx 103 c X X, we see that <§y,(D);>O and hence that
o 1T ~

. (D)s>0, It follows that T_ (R . D)>0. The ergodicity

J a Jq A 9 °,
of “Ty under TGO implies the existence of a point (x,0)& D

1 & A
and of a g,€& G for which Tgo(x,o)é;Rgx D. In other words,
> 1
we geb x €D, T x€D, and a_(g,x)= o, ¢B( K _,€ ). This
%q o) 1 o]

violates our choice of D and shows that o(o is an esgential
value of & e We have proved that the assumptbtion ~F0<Fo>>k0
leads to a contradiction to condition (7.10) and (7.22).

Hence Sf;o(’ﬁ‘o) = 0, and the lemma is proved.



Lemma V.20, Let Fo be given by Lemma 7.19 and let Y,l =

N T T L] Loood - G — my b
fo\" Fye We pub 9&1 = (/Yq’ Eq = ?Yﬁ‘ The regtriction of
and R(/”q> will

™ to (Yq, 9:, (4) will Dbe denoted by /},
stand for the equivalence relation of iﬂq. Then the following

is true:

(1) Tor every (yq,yg)é R(qu) there exists a unique
element X (y,,y5) € A(yy) with y, = qé(ygg X(Fq550))

(2) The map u%:R(]”q)-ﬁ>A.given by
X - ~t
u <y43y2> = X (;Y/},YB), (f‘fq ,y2)é R(/ 4)9 (7.82)
is a transient orbital cocycle for f?.

Proof: (1) follows from (7.78) and from the definition of
Yq, That w* in (7.82) is Borel and an orbital cocycle is

obvious. Lemma 7.9 shows bthat u*(yq,yg)é N,(0) whenever
yqﬁyg, which implies that uw* is transient. The proof is

complete.

Lemma 7.21. Let :X->Y be given as in (7.17) = (7.21)

and let [, and (Y, 7, p4) be defined by Lemma 7.20.
we fix a point Y4 €T,y and put
¢V/(x) for x:éty”q(Yq),
(f/ 4 (x) = (7.83)

I otherwise,

Then ?H:XE§Y4 is a Borel map, and ‘fﬂ = /A‘gfzq.
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Furthermore there exists a Borel set I\T%X with /u’(N%) = 0

such that
(1) ig/q(ri‘(;x> = F’,] ({/,] (x) for every x€ X\ N%, (7.84)

#
(2) ao(g,x) = u (ify,](ﬂf.‘gx), Q’/q(x)) for every x ¢X N

and every ggE G, where u® comes from (7:82) (7.85)

Proof: This proof will consist of several parts. We note
that the properties of Sz/,| are obvious., Our first aim is

to show that

V. (x)e [, @¢,(x) for pg'=a.e.xeX. (7.86)
1VG R M

For every ge G, the setb B, = {x é‘X:((i/,l(Tgx), ?jq(x))¢R(f",‘)'§‘
is Borel. Hence
Wi fxex g, d T @F = U B
q = P Yalg A = Lo
g€ G
is Borel. For every yeY,, we have qy(v.f/f( Ty )) =1
from (7.19). Let @3(7/') be the measure on (X,S) given by
(7.80). Since @éﬂ is quasi-invariant under T by Lemma
7.10, we get
D Uy (L Gy ad
© | XeX) 1)) =
J e A(y) ¥ qs ? i
G VI < ]
3(7 )({XQX:I.‘GXc U(y)wq (i¢(y’g()j) = 1,

ot & A
and hence, by (7.78), éq)(N:) = 0 for every yET, . (7.80)
implics qy(Nf) = 0 for every y €Y, and (7.18) gives

. A e p . ) _H# R 3
/“ (N,]) = O, This proves (7.86), If we now pub Ny = TN,



we gtill have @éﬂmf) = O for every yé& Y,, and hence
K ]
qy(ﬂg) = 0 for every y€Y,.
We now turn to the proof of (7.85). For every yet,, put
By = U fGe)y@ = ¢ Gud k.
« e A(y)
(7:79) gives Ty(E(y)) = 1 for every y€Y,, and the quasi-
~ A
invariance of "Cy shows bthat T,"y({’ (xt, (x')é‘X:TGO(X', x')

CE@) Y = 1. (7.79) now implies
~ &
6 (i, )X Oy ) CE@ )
a
= a ({x'€ X:0°%(x",0) €E(y) I ) = 1

‘ a

. oK . s :
Sinece qy(b’lg) = 0, we even getb qy( {X'él\NE:TGO(X',O)CE(y} Yy =1
for every yé;Yﬁ. Let now y(::Y,] be fixed, and leb x'€ X~ N2

a

satisfy TGO(X',O)(‘:E(y>, and hence Q)(x') = ye. For every
g £€G, there exists a unique & (g)€& A(y) with i;/('l‘gx') =

ql)(;y, « (g)) (cf., Lemma 7.20), loreover, since ('J’ng',ac(g,x'))

€ E(y), we must have ao(g,:x:') = X(g)e A glance at Lemma 7,20

) *, _ , ‘

now shows that a (g,x') = u (W(Tgxf), ({/(X')). We have thus
proved that

Xé J C X k{’ % 1 ; T«
Fo= gQG {x€X N Nyza (g,%) = u (qy(igx),w(xnja

, a .
{XGX A Né:TGO(X',O)CE ) §

¥,
for every ye¥,. It follows immediately that qy(F ) = 1
for every yé;Y,]. F% is clearly a Borel subsebt of XN\ N?,

so that /A’(ZB‘%) = 1 by (7.18),
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The remaining statement to be proved is (7.84). We have

already shown that (7.86) holds. Since

: " .
Cxer s g o) Ty, ) ¢
U (Sxern(ue)am (B4 ¢t n
s (p @Inuz (B4 ¢
ARG NTRCE SN RY
where (/@1,/@2,...) is a fixed dense sequence in A, we

only have to show that each setb

N
i

il

{xeraly GNnmy (4 94 n

¥ e
g@ {Xéjﬁ :ao(%9}¥>€N5(/gi)}

il

fxer aly Gty ( 8,04 ¢

LK K ‘ 1
%QG TR (@ (1), P GE N (B ) |

has /m'mmeasure zero. But it is quite easy to show (the

details are left to the reader) thatb qy(Ei) = 0 for every

yET,, and for every i1=1,2,... « (7.718) once again implies
#

j~ 2 i — it § - "__ -~ < T o >

that qu(ti) = 1,l yq(x) for /u 8e.6e%x €T and hence for

f%'~a.e.x5:X. The proof is oom@lete.

We can now fornmulate the firsv main result of this section.
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Theorem 7,22, Let (X,ﬁg,/i) be a nonatomic probability
space, TG an ergodic action of a countable group G on
@§9£§”M ), and let A be a locally compact second countable

abelian group. Assume a:GXX-» A is a cocycle for TG with

E(a) = {O,a?} « Then the following is true.

(1) There exists a coboundary b:G XX - A for To

{i

such that a = a+b is lacunary (Definition 7.1).

(2) There exists a standard Borel space (T, ?:),
a surjective Borel map 6F4:Xw§iq for which
6?,]:=/Miy%4 is nonatomic, and a countable
ergodic ZToup F} of automorphisms of (Yq, 9::‘94)

which sabtisfies
Lf/’f ('I‘Gx) = ,iﬁ,] (f'/,l (x) for /,t»a.e.xé‘}i.

(3) There exists a transient orbital cocycle

# ' ;
w R(M,) =>4 for I”",l such that
*® f m H
ao(g$X> = U (\V/]C’*—gX)s Wq(}{ﬁ)
for every gé& G and for /(A—a,egxé‘}’;a
(4) Let H be any counbable subgroup of Ty with
LI{.J = {Véﬂ LTG‘j: ({j,‘l .V’~‘= '.[/,1 j r

Then a (and hence a) is recurrent if and only
if H is conservative, and transient if and only

if H is type L.

(7.87)

(7.88)

(7.89)
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. . e < o G e B _
(5) Conversely, 1ot (igy Jq)s Yyl =14, pq = py;
and iﬂq satisfy all the conditions in (2), and let
u*:R(qu)w%?A be a transient orbital cocycle for
qu. Then there exists a cocycle aq:GXﬁ{wéA.er

T, with
ag(8) = W (Y @), P G)
1(8%) = w (Ya(x)s ¢y

for every g€ G and for M ~2,CeXE Ko 8.4 is unique
up to equivalence, and ﬁ(aq) = f(u ool .
Moreover, if H is any countable subgroup of
ETGY satisfying (7.89), then 8, is recurrent if
and only if H is conservative, and transient if

and only if H is type I.

Proof: (1) follows from Proposition 7.2. We choose an or=
e « R (M o 7 = e 3 LI
bital cocycle uO.R(LG)wﬁ>A with a g a+b,_auo and put /u /u

in (7.16). Replacing b by an equivalent coboundary we
rin facht assume that a = T (v, 9
may in fact assune that aj = auo0 Let now (11,@f4,“§4)
and r; be given as in Lemma 7,20 and let 9/1:X~%>Y4 be
the map (7.8%) in Lemma 7.2, From (7.84) we get (7.87),
and Proposition 7.17 proves the ergodicity of fﬁqa This
: " o
completes the proof of (2)., If u :R(iwq)*%>A.1s the
transient orbital cocycle (7.82) for qu, we have (7.88)
from (7.85) in Lemma 7,21, Having proved (%), we define
H € FDGY by (7.13) and (7.14). From the definition of
g/q:Amw%14 it is clear that tyq.v = ‘yq for every Vé;iﬂoj.



Conversely, if V& EEG:ZSatisfies YoV = @Q, we see from
(7.88) that uo(Vx,x) is /A—a,e.equal to u¥(((1(VX),(yq(x))
= 0, Hence V coincidesvxzma,e, with some element of fﬁoj.
It now follows from (7.89) that H is conservative or type I
according as HO is conservative or type T. Lemmna 7.4 com=
pletes the proof of (4). (5) iz left to the reader as an

exercise. The theorem is proved.

Corollary 7.2%. Let (X,ﬁS{fﬁ) be a nonatomic probability
space, TG an ergodic action of a countable group G on
CX,E?,/u), and let A be a locally compact second countable
abeliaﬁ group. oSuppose a:GxX~» A is a recurrent cocycle
with E(a) = {O,@G} o Then There exlists an uncountable
family of mutually inequivalent nonatomic probability
measures {M§ : fkﬁfzi} (% is some uncountable set)

such that

(1) for every fﬁﬁfﬁ, Hf. is quasi-invariant and

ergodic under TG,

(2) if B €.,S is a set with Mf (B) = 0 for all fc: =,
thenr/A(B) = 0,
(3) for every §é§§f, a is a coboundary for the action

Ty of G on (X,S%,Mf e

Proof: As in the beginning of the proof of Theorem 7.22

we pub /M* = /w in (7.16) and choose a coboundary b:GX X -3 A
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and an orbital cocycle uO:R(TG)»—é» Awith a = a = a+b
o)

lacunary. Let f:X—» A be a Borel funcbion with b(g,x) =
£ k) ~f(x) for every ge¢ G and for Maee X EX, and let

A &%}G {xeXiblgx) # £(Rx)=£(x)f. Pus W= 2N
Using the notation of Theorem 7.22 we pub N2 = {X e X
(P/’ICT x) # qulq(x)} and 1\17 = U {xex \l,:a (g,:x:)

£ u ((f/,](T X)), l{/,!(x))} o Next we def:me N* = Nfu G(i\ UN )
and M = Ii( {yanq.qy(N )#O} U fy é¢1.qy

It is easy to see from (‘7.’18), Corollary 7.5, and fronm

N

is atomic § ).

the quasi-invariance of © 4 under i 4y that i,((lf ) =
;)/](M ) = O, We denote by T :fw}{ the projection ontbo

the first coordinate, and put I‘J'Iy = f”y'rr;/‘ for every v &

7, \M¥, From Lemma 7.7 we see that each M, is a probability
measure on (X,S ) which is quasi-invariant and ergodic

for Tg. The choice of I‘V’I?}étogether with (7.79) implies +that
My(N%) = O for every y& I,\ M™%, In particular, we get, for

*
every y er,' NI,

8o (8y%) = u' (g, () /4 (x))

for every g€ G and for ‘My-a.e.xéj Xo We now fix y&“"&f,l\ M%,

and pub

- X o W

u ((‘J1<X)’§T> for Xé\f/qq(l /]57)\1\129
cy(X) =

0 otherwise,

It is clear that

(7+90)



7 e 4O

Y @205 460 = e (@ 000 ()

for every g&G and for every x € i{/il"/l( i’?,]y) \ Ny, Another
look at (7.79) shows that M’y(i@j:q( "49)) = 1. (7.90) and
(791) now imply that A is a coboundary for the action Ta
on (X,g,l\ﬁy) with y €T, N M(‘%. From the definition of chzN*
we see that a:GXX-—>A is again a coboundary for TG_ on

(%, ,S,My} for y ¥4\ M%:. We use Zorn's lemma to find a set
= cY,]'\ M which intersects each orbit of Iw',] in exactly
one pointe - will be uncountable, and (7.79) shows that

My and g1 are mutually singular whenever y#y' and y,y'& =.
So far we have proved (1) and (%3). To prove (2) we remark
that (7.79) shows the following: If B ¢,S satisfies My(B) =0
for every y € =, then we must also have qy(B) = 0 for every
y €Y % From ¢, (1) = 0 and from (7.18) we get (@) = o,

4
which proves (2). The corollary is proved completely,

Lemma Ve.c4. Let T., (X, S,/L'&) and A be given as in Theorem
7.2%, and let 3 denote "‘chel Borel field and A the Haar
neasure on A, Let furthermore ao:GX X=> A be a iaouna:cy
cocycle for T, with E(aé) = {O, 00 § , and let ’J.‘GO denote
the skew product action of G on (X,,%f,/a) as defined in
(561) = (563) and (5.6). We define a éroba’oility space

(Y4, 9:, f}’l)’ a Borel map (y,:X~>»Y,, and a countable

group ih',] of automorphisms of (Yq,%, f?,]), and a btransient
orbital cocycle u%:R(f",l)wa, A for I"“‘,} as in Theorem 7,22

A
and satisfying (7.87) and (7.88). Put I, = 1x A,

(7.91)
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A

g"” A el
Jq = 97.%0:3‘ On the standard Borel space (Y,‘, 9.:]) we

define an equivalence relation ~r by
(o) ~(y'y x')
if and only if there exists a V& lm,; with

Vy = y!
and ‘
u’&(y‘,y) = K= X'

v
For every (y, x) €Y, we write
ry, «J] = {(Vyeu#(VYﬂ;y)‘*‘ «):VE rv/‘ g
for the equivalence class containing (y, « ). Pub
H N s
Yq = fl-y, “‘j=(3’w< )é‘Y,g}

and define

Jiig =1,

oy
J(xy o) = [xy %]

* ¥ *

We write 9? for the quotient Borel field on Y,] (gt' is the
largest & -algebra of subsets of wahich makes J measurable
s X pra €
with respect to 9; and 9?). Then (Yq, 9:) is again a
standard Borel space. We choose and fix a probability
measure AN' on A with \' ~ A, and put f/q = f,] XA,

Ir

(7.92)

(7.9%)
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X’ ~
$a = Gard™
(Yj,ﬁﬁi fﬁ) becomes a nonabomic ﬁrobability Space.
Furthermore there exists a family {q Xy *e 1% o oof
g -finite measures on (A,g’) which satisfies the following
conditions,.
(1) TFor everleeggz the map y-—w q;*(B) is Borel from

oy

L

(2) Tor every Béiég, we have

AN T # %
P - (@) agiG.
- N b
(3) TFor every (y,«)e€Y,, we have

e ¥
L A~ 0, .
7y ) VX (y, )
. ¥ P ¥ . .
In particular, every qy*, N équ, 18 quasi-
a

o

. . . . L ® *
invariant and ergodic under TG , and qyfand qy,*

are mubually singular whenever y*’% v

. s 8
(4) Let &£ = 1BeS:m OB = B{. or every Be
9

put By* = { y cij ty ;(D)>()} Then éfy%'*
{QB x:1B € Z7F is equal to %f; modulo Sets of
/]
*

f 1 =MNeasUuUre zéIlo0.

Proof: We shall first prove the existence of a Borel setb
I)cYﬂ which intersects each equivalence class ty,x] in

) ®
exactly one poinb. For every V ¢ r}, let V% be bthe Borel



automorphism of (Yf, ?ﬁf) given by

e ,

T (7, %) = (U, o+ (Ty,5)),
¥

and let F"l ﬁV e F? :2[. iﬂg is simply bthe skew
product of [~ 4 defined by the cocycle w*, From (744) and
from Lemma 7.20 we see that u%(Vy,y)éaN (0) whenever Vy#y.
We choose a dense sequence (/@,],/32,,..) in A, define 6’”
T X N (ﬁ ) (cf (7e47) = (7.48)), and get ya’ (9” n@’ N
f(v, w )T (y, % )F (7o )} gf for every Vu}éc. i"u¥ and i>1,

Fub

and
-] *
D. = @,\ i/ M'E'J' [??i.
1 k=1
The set D = (j D will then intersect each equivalence class
iz

Ly,gzj in exactly one point. Hence the res tflcblon gﬂ of j
to D is a Borel isomorphism from D to (Y,], C/ ), so that Y’l
ig standard Borel, The Borel isomorphisn Jp will carry the
o = ¥
measure 5,’,] on (D, 9: ) to a measure equivalent to f/l on
® # 0 1 D i~

(Y,], ?fl). Consider now, for any BE S, the map (y, &) —>
e 7 . . M . sk :
Cly, )ii?)), (ys0¢ )€ Do The properties of {6(37, %)

(y, d)éYq} (cfe (735) = (7.37)) together with the defi-
nition of T(y <) (cfe (7638) = (7.40)) imply that this map

9

is Borel. This immediately shows that the map [;’y,aéjw{%

. a X
Jﬂq[ya «] ~ qu’%]

each qu o7 [v,] € ,(/[, is quasi-invariant and ergodic

. x R .
is Borel on (Y,I, ?). Furthermore,

for Tq © (Lemma 7.7), The equivalence relation (7692) = (749%)
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oy = 1o 5 ¥ P L L g
satisfies (y,o¢) A (y', ') 1f and only if T(y,cc YV Tiyt, ot)

(cf. Lemmas 7.1% and 7.,20). Since D intersects each equi-~

X X
valence class in only one point, we see that q j Ao

"N <] whenever [y,d] ALyl

Leu :noxi B&Z. (7.79) implies that | (yo0¢ )E Y/}. >(L) =1}

is f’u‘ ~invariant, Moreover, we have {(y,@( Yé D P(y )(B)z’l}
= { (y,« )e D: 6’(37 )(B)-/i} . In particular we see from

(729) and (7.%6) that /a(B)>O if and only if g?/, ({(y,g{)éD

f(y,a()w> =1} )>0 and hence if f ({Ly,ocj(“}[ l ,x’] (B)= ’l})

>0. Let, for every B C,S,
€ 1.2 } "

. , ¥ .
It is clear that m" is equivalent to the measure

Tl 4,

and hence absolutely continuous with respect to /,z If
Past
m’ 7&/,4 there exists a set C¢X with /,«z((,)>0 and m (0) O.
a,

¥
Since both /A and m are quasi-invariant under ‘I‘G s We may
assume "Ghaﬁ ¢ €& ?f. But we have Jjust proved that C ¢ &£ and
~ o a X5 7 ¥ X
/u(C)>O implies fq(ﬂf;y, «1e g qu X7 (C) ’i}) =m (C)>0

and the resulting contradiction implies m° M/A

— A
Finally, let ¢ km}"\f,l denote the majp V"I (xy, ®) = (q/,](x) &« )

. * -]
If ce¢ 9:, put G, = (C) and B = (;J,}(F' C‘ De Applying

once again (7.79), the erqo@_lclty of the measures T (y, x)?
?

and the fact that ﬁ( )(ql ({(y,a( )Y )) = 1 for eve:r'y

& , N S 8y
(v, )E{X,l, we see that, for every (y,« ) €, y(T:°B)=1

“(y, x)



if and only if ﬁf(y (ﬂ) = 1, This in turn implies

a
{Cy,ele Y,] o 5 (2:%8)=1§

Lya(

(B)=1%)

i

LGy ed: Ty Ly

it

k3
Jal 3 o) =3, = 0.

We have thus proved the following:

#
(a) For every B € S Lae mnap lv, = ar [vy ] (B)

is Borel on (,W,S? e

(b) The measure m%== ‘<1%x~: d ;¥(£§ «]) is equi=~
[74] § ? '

valent to/;?’ .

¥# ¥ 2,
(e) qL o] is quasi=-invariasnt and ergodic under LG

for every (y,m:)éYq.

¥ ¥ X
(a) q[& <] and q[&, © 1] are mutually singular
4 < Y

whenever [Ys U‘j # [:3’" g % ‘:] .

%
(e) For every Bﬁy, put By ¥ = {Ly,mjﬁ I,
* K

*
Uy, B = 1% . Then fbyrzﬁ € Z} is equal to 7.

The assertion of the lemma now follows by choosing a Borel

S d £
map £:X ~» JR with }% (x) = e*(X) for mﬁua.e.XéZX, and by
dm”

setting

ef(x)

il

¢ i HK
“yag & 99757, o] )

o : - ¥ .
for every x¢ X and for every [y,aﬁ]@iﬁ. The proof is

complete,
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Corollary 7,25, ILet (X, 4 /M) be a nonatomic measure space

and let ?J,‘G be an ergodic measure preserving acbion of a
- o - L

countable group G on (;;,,‘:3,/1;1). Luppose there cxists a

locally compact second countable abelian group A and a

recurrent cocycle a:G XX —»A for T, with E(a) = {O, w} .

G
Then there exists an uncountable family fMg : fc ;:..}
of mubually inequivalent nonatomic & -finite measures on

(%, 5 ) such that

I3

(1) foxr every fc =, Mi ig invariant and ergodic

G?

(2) if B¢ S satisfies Mf (B) = O for every jé =,
then /L{(B)

(3) for every fC =_, the cocycle a is a coboundaxy

for the action T, on (X, S, j )

Proof: If there exists a cocycle a:Gx X -» A with the
properties stated, then there will also exist a lacunary

orbital cocycle uo (’J} ) «» A which is recurrent, and which

satisfies a A~ a and hence E(uo) = fO, w} « We pub a, =
0
a, e Let us assume for the moment bthat /u is a probability
o

measure, and pub /M /M in (7e16). Applying (7.17) =
(7.21), we find a probability space (Y, 9‘”5/ and a
famnily {qyyé J.} of Ho—lnvarj.an'b and Eomergodic measures
on (X,%). In this case we put ay = qy for every vy €Y.

Turning now to the case where/,( is infinite, we choose
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an equivalent probability measure /,4 in (7616) and apply
again (7.17) ~ (7.21) to comnstruct (Y, S?vj::) and {q cve T,
Now each of the measures qy will be equivalent o some & =

finite H ominvariant measure ¢ on (X, S). Having defined

J
(Y,?,S?‘) and {Q :y €YY Dboth in the case where M is

totally finite and where it is infinite, we let /M again

be an arbitrary & -finite TG—invarlanU and ‘J_‘C-—-x,I‘QOd'lC MNeasSULe,

Lemma .24, Corollary 6.9 and Lxercise 6.15 together imply

~d
o By | e R il = e 5, b
vhat for i s & oK )& Y the measgure is equi-
fameece(ry ) @iy, Trw) 1
Lo
4

et
valent to a &=finite 'IL‘Gr ~invariant measure on (X, S). An

application of Fubini's theorem theorem shows that in fact
8.

for @, ~a.e.y€ ¥, T_ is equivalent to a g=finite TGO»-»
invariant measure on (X, ), Without loss in generality we
assume that every T 7 NS I’l is eqguivalent to such a &=

a -
finite ’i‘GOw:anurlant measure t":y. bince H,c [TGOJ’, each
%y will also be dnvariant under H| (cfs BExercises 1.2
and 1.%)e. For every (;;f,;;()él‘?,;ﬁ we define 6“(;‘/*,9‘) as in
(726) and (7.35) with 6:;7 replacing Aye Prom the invariance
of "'E"”'y under HO, and from (7.79) we conclude that, for every
J €1, there exist positive real numbers {cy(o(): X € A(y)} Y
Y €1y, with

s

Ty* m%(y)“y(“)‘@c b ry )y ) (7.94)

Since ¢ (v, CX’,]) # ¢(y,9<2) whenever X ,, aaé‘ﬁ(y), cx‘,l;é Koy
and ye¢ Y,], the measures q(f)(y’ 9(/]) and qéw, 0<2> will be
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. - ; . .
mutually singular, IL ?74:X~;§X is the first coordinate pro—
Jection, we put

sz

Moo= T

] N =
< Ty = 2 c(a).q(ﬁ}(y,“),

xe L(y) v

and nobte that My is & =finite for every yefYq, since it is
a sum of mutually singular &-finite measures on (X, ).
Clearly each ﬁy is TGminvariant and. TGuergodic, and ﬁy and.
ﬁy' will be nutually singular whenever TQy # ﬁqy'.

The proof is completed in the same way as in Corollary 7.25.

(7.95)
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PART II. THE COHOMOLOGY OF A HYPERFINITE ACTION

§ 8 Hyperfinite actions

The main interest of ergodic theory has always been concentrated
on the analysis of single automorphisms V of a measure space

(%, ,S,’,//( ). Since every Ve A (%, ,S',/u) defines a f -action
n-5V7%, ne#, we are led to consider Z -actions on (X, S ,/u)
To simplify our notation, we denobe by LV] the full group of
the action n ma»vﬂ, neg #, and by R(V) its equivalence relation.
If ‘I.‘G is an action of a countable group G on a measure space
(xt, ,53",/4') which is weakly equivalent to n —»V%, ne Z, we
shall say that TG is weakly equivalent to V. The statement

that Ve /!(}; ,5,/;:) and V'€ /4(}0 F:f',/,« ) are weakly equie
valent has to be read similarly. We call V ergodic, conservative,
type I or aperiodic according as n S , NE #Z, is ergodic,

conservative, type I or free,

Definition 8.1, Let TG be an action of a countable group

G on & measure gpace (5{,5,/1 Je Ty is called hyperfinite

if there exists a V& [TG:] with kaxzk cZ} = Tex for (8e1)

/A -ZeBeX - Ko

Obviously hyperfiniteness is an invariant of weak equivalence,



8e2

The aim of Part IT is an analysis of hyperfinite actions

and of their cohomology. We start with some measure theoretic
lemmas which will often be used subsequently. Until we change
our assumptions explicitly, TG will denote an ergodic and

not necessarily hyperfinite action of a countable group G

on a nonatomic measure space CX’:;C/A)° We fix an orbital

cocyele u, :R(T,)~» JR with
G

/

d./u T
(Tgx,:x:) = log wa—-—-g (x) (8e2)

u
M
for /(/«wa.e.;x: & X and for every ge G, and define the cocycle
a, :GxX—> /KR in (2.7) by
M
a x) = T XX ) Be5

Lemma 8,2, Let B,C eSS with/a (B) >0, M (C)> 0. Suppose
there exist Borel sets B,€ B and COC ¢ with /,4 (B\BO) =

/A(C\ OO) = 0 and injective Borel maps

U:BO =2 G,

V:(}O w3 B
such that

Ux ETGX for every x QBO
and

Vxé“(DGx for every XGGO.

Then there exists a Borel set B, ¢ B, with /A(B\ By) = 0
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and an injective Borel map

W*:B,i -2
with

Wx ¢ TGX for every X@B,]
and

/u (¢ \NWB,) = O.

proof: et N, = {x€B:Ux¢C b v {xeC :Vx¢B | , and
let N = TGN/;' We define B“I:Bo \ N and B2='V’(CQ\ N). Proceeding

by induction, we set B, ,0o=VUB for every n=1, The sequence

(Bis k=1,2,00.) is nonincreasing, so that
B, = U @8 v (1B
1 n=q & o+l n 51 n
and
B, = U @~8_.)u /() 5.
2 n=p 0 Tntl

n=-1 n
mince we also have VU(Bn\ Bn+’l) = ‘Bn+2\ Bn+5 for every n,

we can define a Borel isomorphism W,‘:B,] - B2 by

VUx for xe¢ u (Ban’l N B2n>

Wox = n 2z
= - .
ps for xe (J (B, B U B .
n> 2n ~ T2n+1 n@’l n

Clearly we have Wﬂxé‘l‘(}x for every ’xéB,l. If we now pub

Wx = 7=

W,]X for every xéBq, we get a Borel isomorphism
X:J:IB,i - CO\ N with Wx ejfﬂ@x for every .x:é:‘B,‘. It is clear

that W has all the required properties. The proof is complete,
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Lemma. 8.9 Buppose /4 is not equivalent to any 4 =finite
TG»invarianﬁ neasure on (X,5 ). Let B,C ({{5 with /_,((B)>-O,

M (C)>0., Then there exists a Borel set IBQc:B with /M(B AN Bo)no
and an injective Borel map U:BO% C with Ux€E ’DGX for every

.'x:.f,—‘:Bo.

Proof: The statement of the lemma will not be affected if
we replace M by an equivalent probability measure /M'. If
EcB, FaC ~are Borel sets with /u'(E)./u'(iE‘} # 0, we can
choose a Borel set E,iCE with /M'(E,])> 0 and a g,lé](} such
that Tg,]E’l cf. Decreasing E,‘ if necessary, we may also
assume that a ,(g,],x)é;mo for some m ¢ R and for all
}cé-;"iE,], Our assumption on ﬁ implies that a/u and hence

a , ; is not a coboundary. Consequently one can choose a

e

Borel set L,cE, and a g, €G such that /M' (E5)> 0,

TgeEgCEqs and aﬂ'(gg,:x:) £ log /,A'(C) - log /A'(B) - m,

for every Xé’Eg, We now pub H = Eg, h = 81809 and get

M '(H)>0, HCE, T\ HCF, and a/m,(h,x) £ log /u' (C) =

log /‘4'(13} for every x €H. The last condition implies
d 'Th ) ) ' _

4%7 d/u' é:-/l'(k{). /j(O)//,U(B).

We have proved the following intermediate assertion:

/m'('I‘hH) -

(I,‘) Let E¢B and e C be Borel sets of positive measure,
Then there exists a Borel set HCE and an element he G

such that /A'(H);;»O, 0 HCF, and /w(ﬁzhﬂ) £ /M'(H),/,('(C)//m'(]%).
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Using induction and an exhaustion argument, (Iq) allows

us to consbruct a sequence of disjoint Borel sets (Hi, im1,24000)

and a sequence (h., i=1,2,e00) in G such that /a‘(Hi);>O,
hHH < ¢, a;h i, hHa = ¢ for i#j, Y, H(Ty, H ) 2

'(ﬂ )/u (C)//,{ (B), and /u (BN LJH ) = o, Put By = [JH

and define an inJjective Borel map U,Bo~9<3 by

T

Ux = ‘I‘h X  whenever X & Hi’ i=1.
i

U will satisfy our conditions, and the proof is complete,

Lemma 8.4, BSuppose /M is not equivalent to any & -finite
Ty~invarient measure on (X, S5). If B,C ¢S are disjoint sets

with /m(B)>O and//i(C)>0, then there exists a W& [T,] with

WB = C (mod Q)

i

and

We

it

identitye.

Proof: We apply Lemma 8.5 to find a Borel set BO<;B with
/4(B“\Bo) = 0 and an injective Borel map UsB > C with

’UX<§Tkafor every X<§BO. If we reverse the roles of B and
C, we get a Borel set Coa:C and an injective Borel map V:

0
Lemma 8.2 now implies the exisbtence of a set chjB with

C_..» B with /J(C\»Oo) = 0 and with Vx&T.x for every x& Gy

.fA(B‘%Bq) = 0 and of an injective Borel map W,:B, —»C such
that W,x€ T x for every x€ By, and /x(ow~w4 By) = 0. e

conclude the proof by setting

(8e4)

(845)
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w,l;x: for Xe}iB,l,

7 — M/I AR

Wx = W’i X for };é,w/]B,‘,
X otherwise,.

Lemma S5 Suppose M is invarisnt under T, and B,C eSS
are disjoint sets with 0 < ﬁCB) = /M(C). Then there exists

a We [0,] with WB = G (mod 0) and W° = identity.

Proof: We first assume that O 4;//1(]3) = /J(G){a@ o One

can then immediately see that the following is true:

(12) For every pair of Borel sets E ¢B, Fc C of positive
measure there exists a Borel set Hg¢E and an element hé G

such thatb /M(H)> O and o, HCF.

As in Lemma 8.3, we can use (I,), induction, and an exhaustion
argument to construct a sequence (Hi, i=1,246e0) of disjoint
Borel sets of positive measure, and a sequence (hi, i=1424000e)

in G such thab H; B, Ty H; €C, Ty Hy ATy Hy = ¢ for ifj,

h
i 1 1
and /M(B \ L/Hi) = 0. We put B, = UM, and set

Wiz = ‘I‘hix whenever x¢ H;, i 21,
It is clear that W,}xéTGx for every XéBO, and that

/4 (¢ \W,]Bo) = 0. If we now put

W,]X for x €3,
e o]
Wx = W, x for xé& WaBgo

X otherwise,
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we have proved the lemma in this special case,

Turning now to the situation where /ACB) = ﬁ(O) = @, We
choose sequences (B<k>, k=1424000) and (C<ky, k=124 000)

in & such that 38 e, ¢®e, 8 45 o o) a (L) |

¢ for every k#l, //(B(l{')) = /u(C(k>) =1, B = (ij.(k), C = (}g(}(k),

Using the first part of this proof, we construct Borel
sets ‘Bék) c 3% xeq,0,... with /M(Bck)\Bék>) = O for
every k »1, and injective Borel maps Wk:Béklw%yC<k>
satisfying W<k>Xé;TGx for every X¢§B§k> and every k=1,

If we now define

W, x for x g3§k>, k21,

wx = qulx for x@*kaék>, k>,
: ; k) p(k)
X for quk(}{’q(Bo Ui Bs),

we have proved the lemma.
We can now prove an important property of hyperfiniteness,

Proposition 8.6, ILet TG be an ergodic action of a counb-

able group ¢ on a nonatomic measure space (X,;S;/x).
Suppose there exists a set B & .S with /u(B)j»O éuoh that
the action T(G,B) (defined in Exerciseaﬂ.4) is hyperfinite,
Then TG is hyperfinite. Conversely, if TG is hyperfinite,
then T(G,B) is hyperfinite for every Borel set B in X of

positive measure.
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Froof: We first assume that ‘I‘G is hyperfinite and show
that T(G,B) is hyperfinite for every B &,5 with /M(B),} O.
Indeed, if 'TL‘G is hyperfinite, we can choose Vg f‘fj_“Gj with
iv8%: ke Z G - Tox for /zma@e.xg}i. V will be ergodic

by bxercise 1.6, and hence conservative. Let B be a

Borel set of positive measure, and let N, = {xé B

anéiB for every n‘;;;’l § g N = {X ff‘B:anej}:B for every né;-s/l} ’

and N = TG@‘@;D’NN% For every xe B, put

min {n>1:VxeBY  if xeBAN,
n(x) =
0 otherwise,

and.

‘VBX = Vn(y‘)x.

VB is the transformation induced by V on B. It is easy to
see that Ve [1(6,B)] = [M,]y, and that {vix: ke 2 -
T(G,B)x for Mp=d.c.x€B. Hence T(G,B) is hyperfinite,

To prove ‘bhe‘ converse, assume that T(G,B) is hyperfinite
for some Borel set B of positive measure. The first part
of the proof impliesg that ’;‘L‘((}9Bq) is hyperfinite for
every Borel set B, CB with /(A(B,1>> 0. We now have to

distinguish between three cases,.

(a) Assume that M is equivalent to an infinite T,-
invariant measure //A‘, We choose a Borel set B,]CB with
0 </,«4'(B,§)41 «w, Scaling /,(’ if necessary, we assume that

/M ‘(B/i) = 1. Let f:B, «92 be a Borel map with £(x)=1

(8.6)

(847)
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for all xe&B 1 and with f d/ué = & , We can find Borel
sets {L : k=T,25000y 1=7 ?,,“,k:}' in X such that

k 14 By IR é whenever (k,1)#(k',1'),

By, 1A By = ¢ for all k,1,

t D & ~1 . = .
/M (blc,]_) :/XB/; (£ {\fk} )) for all k,1,
and

v(/s
K71

X = By k,1°

T - i 4 I _'/} i .y v
for every k >»1, we put BK,O = £ ( {k} )CB/}, Applying
Temma 8.5 we find maps Wk,l‘g FT(}L k=M425000s LzTyeeesk,

with

Wk,lBk,O = Bk,l (mod 0),
and
WS . = identity
X, 1 Je

We now choose a Vé& [ED(G,B/] Y[ with {kaz k 62} =

‘LL‘(G,B,])X for /MB ~8.€.X €B,, and put .LK =By O@.\Jk l K, 1
for every k,l. Let N = G( UW l), and define

Wkﬂx if XC{Bk’O\N, k=1,

_— wk,l-}«’lwk,l‘x if xé"Bk,l\N, Kz, 141 £k-1,
Vwk’kx if XéBk%k\N’ kz1,
X if xe No

Then W& fTG7 and {W x: k € £ 3 Tex for /,( =8eC X E X,

The proof is complete under agsumpbion (a).
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(b) Suppose pn is equivalent to a T,-invariant probability
measure /,4'. We choose a subset B/;c,ZB with /A'(B,!) = 1/n
for some positive integer n. There exist disjoint Borel
sets Bg,.n,ﬁn in X with /u‘(Bi) = 1/n fOr 1=2,cees0,

and with K::U Bi. Applying Lemma 8.5 we choose maps Wi &

- i=1
!;TG-Y’ iﬂg,...,n, \"Jith

i

By (mod 0)
and

W = identity

for i=2,e664n6 LT Vé[.T(G,.'B,,)] satisfies f‘ka: ke 25 =
7 (G,B,)x for /A}S/‘ma.eox, and if N; = B, AW By, i=2,...,n,
il

and N = TG<iggNi>’ we define

Wx for x ¢ B, \N,

_— WiMwiX for Xe‘Bi\N, i=2, 600401,
anx for x¢ BN Ny
X for ¢ N,

Again we have W¢ (TG] and (wkx: k¢ %_}’ = TGX for /vaa,e.

X &X, so that TG is hyperfinite.

(¢) Suppose finally that VA is not equivalent to any
¢ -finite I -invariant neagure on (X,8). To avoid

trivialities we assume that /A(X NB)> 0, By Lemma 8.4
there exists a W, G [ Jwith ‘w,]B = (B (moa 0) and with

b o - 3
WS = identity. Choose Ve [2(6,B)] with [vix: x ¢ZJ =
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T(G,B)x for /MB-a.ea,XéB, and put N = T,(BaW, B)e Again

we define

W if x € BN,
3

Wx = Vi if xe¢ BN,
X if x¢ Ne

Then Wé& [GZ‘G:],and {"&ﬁlkxz k @g} = Tnx for /u—a.,e,:x: ¢ X, Hence

TG is hyperfinite, and the proposition is proved completely.

The following result gives an interesting charclterization

of hyperfinite actions in terms of their cohomologye

Theorem 8,7 1Let EDG be an ergodic action of a countable

group G on a nonatomic measure space (X,S,/u )e Then Te
is hyperfinite 1f and only if there exists a transient

cocycle a:GxX—> R for ‘;L"G.

Proof: Assume that ’;DG is hyperfinite, and choose a V&
D‘Gj with §V ke 2§ = Tox for /L/a»-a,e,xcf; Xe V will be
ergodic. Hence the set W, = fx éX:Vk:Xxx for some k%O}
hag measure zero. rut N, = {xe_‘X: {Vk}c:k ¢ Z,} # TGX§
and N = TGCN’I UNg)‘We define an orbital cocycle uqu(V)
by
n if yeX N and x=V1y,
U, (X,5) =
0 if (X,y)@RN(V).

Clearly U, is a transient cocycle for V. Hence
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uq(fﬂgx,x) if x€X\N, get,
a(g,x) =
0 if x€N,
defines a transient cocycle a:GX X —>» R for TG. To prove
the converse, assume that TG has a transient real valued
cocycle a. By Exercise 5.20, there exists a Borel set
B with /x(B)>»O and an & > O such that

Heausn fxfaeoic b fxzgc]) - g

Lemna 4.1 now implies the existence of a Vé?{ﬁdj with
VB = B and with ‘{ka k & 2%} * NB = T(G,B)x for
!ﬁAB~aae.X£fb. Hence T(G,B) is hyperfinite, and Proposition

8.6 completes the proof of this theorem,.

For the rest of this section we shall be concerned with

some sbtructure theorems for hyperfinite actions.

Definition 8.8. Let (X, & ) be a nonatomic measure space
S

and let VC;V!(A,;ﬁl/M> V is called set periodic with

period k if there exists a Borel partition (V) =
‘ : e 1= . :
{’Dq,e..,ﬂk} of X with D; = V°7 D, (mod 0) for all i=1,...,k.

V is called weak von Neumann (w.v.N), if there exists a

sequence i?n(v> = iD§n>,..., (n); of Borel partitions

of X with

(1) oi®) . <n+4>&}D<“+“> for all i,n,
L i+2 ol

(8.8)
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(2) 'Di<n) = vi“/‘ngm (mod 0) for all i,n. (8.9)

If there exists a sequence (é)n(v), n=1,2,e0e) 0f Borel

partitions satisfying (8.8), (8.9), and

(3) the & -algebra generabted by fx27n(V), n=17%
is equal to S (mod Q) (8610)

we shall call V a von Neumann (ve.N.) transformation.

Lemma 8.9, Let <X,ﬁ§3/A) be a nonatomic measure space
and let Vcabf(X,§§%}<) be ergodic. For every O <zf<aﬁ&(X) there
exists a B& S with BaVB = ¢ and with /,f(x N (BUVB)) = € .

Proof: We choose a set B é;ﬁfmdﬁb./u(E) £ &£/2 and with

d/uV
a A
follows from Theorem 4.2, For every i 21, leb By o=

log (x) £ 0 for}/%~a.e.xt£E. That this is possible

ﬁcéE:V&x#E}for 1¢k 4i, but V'x €E} . Bince V is ergodic

0o
and hence conservative, we have(/a(E‘\ LlEi) =
i=1

20 i
&GN U U VEE;) = 0. Put
/ i=1 k=0 *
Ll
w [5]
B, = U U v,
i=2 k=0

where f%} denotes the integral part of % « Then B4!3VB4 = % ’

and

A Vv
(N By U1 & p ey = [ LS A & u@® 2 £/2,
) pOTE s g
If we now choose a Borel set BB, wiml/u(X‘\(B(jVB)) = £,

we have proved the lemma,



8e 14

For the following lemmas we assume (X,ﬁ§}/«) to be a non-

atomic probability space unbil explicitly stated otherwise,

Lemma 8,10, Let Véﬁw/(x’§53ﬁ€> be ergodic and assume thab

either

&b /A is invariant under V,
or '
(2) /u is not equivalent to any ¢=finite V-invariant

measure on (X, ).

Then there exists a W.vV.l. transformation Wé‘[ﬁj with
[W] = [v].

Proof: By Lemma 8.9 we choose a set B”t ¢ S with B,} AVB,] = %
and /,((o,‘) = 3/%, where C, = B, uVB,. Let 'v,‘ and V, denote

the transformations induced by V on Bq and on Cq, respectively,

~
iee V,, =V, and V, = V., « Then V, is set periodic with

1 B, 1 Ch 1

period 2. We continue by induction. Let Vo = V and suppose
that, for each i=1,2,...,n, we have chosen sets B,,C,
together with the corresponding induced transformations
4

V, = Vg o V; = Uy such that

i )
2}"1.k
(a) Ci = k&é vinﬂBi’

(b) VE_B,AVi_, B, = ¢ for 04k <142,

(e) » (¢y) = o=i=1 o1

o
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Tor every i=1,s..,n. In particular we note that V. is set
periodic with period 2T for every i=71,..040e T0 choose Bn+1
and. Cn+1 we proceed as follows. First we note that for

every £> 0 there exists a g*>~o such that
21’1-4—’]___,l
JASNY vEp) > 27l
) k=0

whenever

. N . f ~ -
DAVD = ﬁ , DUV DCB,
and

B (uT D)) A

In particular we can choose £ = 222 and apply Lemma 8,9

to the measure space (Bn,ﬁgB ’/‘B ), the ergodic transformation
n’
—-N=2

Vn = VB , and the nunmber 4 corresponding to & = 2 o
n

We obtain a set B! , ¢B_ with B! AV Bl ., = ¢, and

fﬁ(an\(B£+4£JVHB£+1))<:&A. Next we choose a Borel set

- - N y
J%H4 CBn+q for which

213" A
C = VB
n k=0 nnel

R S ~ .
has measure 2 +2 « Put V = Vi, g V = Vi .
n+71 Boiq? 0] Crin

Then Vn+1 is set periodic with period 2n+ﬂ and satisfies

(a) = (4) with i = n+l. Let now C = {\on. Then /u(o) = 1/2
and the induced transformation VO is set periodic with

. n o~ . )

period 2% for every n. If B, =B, NC and MDH(VO) =

o N4 )

f Bn,.,,,vg 1Bn§’, n=1,2,.009 W& get a sequence of partitions
satsifying (8.8) and (8.9). Vo is thus w.v.lN. on (O,é?O,}AC).

By Lemma 8.4 or 8.5 we can construct a map Jé:f%] with
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JC = fC (mod 0) and J‘g = identitye. Let N = u Vk(CzSJCG)
ke F

and.
Jx for x € C NN,
Wx = VOJX for xe& KO SN,

X for x€ N,

W is again we.veN., and {kazk {,23 = kaX:k(E.)Z?I for
/A—-a.eaxéj Ko Modifying W on a set of measure zero we

0achieve [w] = [V], and the proof is complete.

Lemma 8,11. Let V¢ j(X,,E};’,/u) be ergodic and assume bthatb
//{ is either invariant undef V or inequivalent to every

G ~finite V-invariant measure on (X, $). Suppose V6 vl
is set periodic with period o% ana @(V,l) = (D,],,..,DEK)
is a Borel partition of X such that v%‘”nq = Dl(mod 0)
for every 1:’1,...,2K, Then for every € > 0, every integer
Q >0, and every set E &S with M (E) >0 there exists a
WeVelNs Trensformation Vgcw; EV] aind an integer L >0 such

that
(1) [v,] = [v].

(2) There exists a sequence of partitions (@n(vg),
n=1,240..) of X, satisfying (8.8) = (8.9) (with
V, replacing V) such that @K(Vg) = ) (V,]) (mod. 0) e

(%) I{QX:VQX?!V/lX} C ngK e‘:@@(vq) (mod. 0).
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(4#) For every nx1, let

i

BEl= (J D with §)! = {ped_(V,):DcE (mod 0)f

Dedl}
and
B = (J b with D! = {Deg@n(vg):/p{@m»o}e
e it
pedl
TMm.fME%\Eé){g for every nx=L.
Yo, F
(5) (y o o DY € for every n =L
S oo B Y gpfige K !

) (V) = (n) (M) pom o
where 29n<v2) = {Dq ’°°”D2n % for every n>1,

Proof: Let & denote the partition {E, [Ef of X, and let
£9*1= 29<v4)@f8 v V;qé}/ cos VV22K+15§ be the partition
generated by J@(Vq) and V;kéf, k=0,.,,,éK~4. ngvinduoes
a partition D {o é:ﬂ*:Dc:D,lj of D/IQG@(V,]), It is
clear that éa%x has at most 22K elements, and we can
choose an enumeration {Bq,..,,Bp;f of & witn p,&QéK,

We now have to distinguish between two cases.

(a) Suppose M is dnvariant under V. We choose an integer

L >0 such that 2.Q.2K.2QK.2"L<{Ei. For each 1=1,s0e,4P

there exists an integer a4 = =0 and disjoint sets Bla’

. . - . L
§=0y.0eepq; in & with By = aL/Bla, %ﬂ(Bla> = 27 for
J=T4eeeyqy, and /A(B O)<2 . Let B, = UB s0° Then

/l(B )< pe2” < E .2 K. Since /%<D1) 27 K, thero exists

an integer qoé;o and disjoint Borel sets Bok’ k=O,,,.,qO,
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such that B = U Bog iR u(Byy) = 2™ for =1,...,0,,
3=
and /IA(BOO) = Qe Hence
9
D, =B __vj U B.
/l (920 iL;:jO j:/} 139

where
. P, . . .
/’A<Bij) s 2 __EOI? az’i,a.a,qi dl’ld lz/],euo,pg
and
/A <BOO> = Oc
Let {O/'l’”‘”céLmK:g be an enumeration of {Bij:izzo,.,.,p,
jz’i,e..,q-k . By Lemma 8.5 we can choose maps Ji&“ [:\fj such
K
2 2 . . .
that J7 = identity and g,V ~1g cl = Cl (mod 0) for every
i:’],,,,’gL“K../IQ EU..t;
otk _4 JK_
N e §
N, = i% (J. v4 ¢l ACL, )
and K
U_ v 2U/' ).
N = V NouwuB_ U V A D,
k€ Z 1 00 ’1 141

For every iz’l,...,ELmK, let Ci = Cj"\N, Applying Lemma 86710

we find & w.v.N. transformation W on (C., &x M ) with
1 C,l / (’/l
[w] = [V(‘ J, where VC, is the transformation induced by
7
V. on (”I‘ We choose a sequence (o@ (W), n=1,246es) OF
Borel partitions of C, s)atlsf;ylng (8.8) = (8,9) for W
,M

on (C,., S, ; where (W) = D(n> coe (n) T

( 19 Q/l’/fqo/R’ ﬂﬂ(*> f 9 5D on ﬁf*o

every n>1. Define
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V% if x €VIC, with 042 -2
end 1 &1 2"
of Tk
Vox = J3% it Xé;V/‘ Ci with 1£i«2 5
SX =
L K
Wizt e i xevd o,
” 2
X if xe N,
and set
B _ vl
(i=1).2V4140 &7
for n=1,2yc0es i=T4000 ,,2115 1=0414e00 ,2L~/I, For every k21,
i=Tg0a0 92n+L9 we now pub
5
ot Dgn+L>u~N if i=1,
n+L
! B Z(n+L)
iDi ) otherwise,

Finally, if 14mgL and 1£1£2%, let

PL+4wm ~
plm) = ") )
1 1=1 14 (1=1) 2"

Then (‘@n(vg) = {'D/(!n),.‘”]);§)§ , 027, is a sequence of
partitions of X satisfying (8.8) -~ (8.9) for V, on (X,g,ﬂ), «
so that V, is w.v.N. . lorover, (@n(vg), 0=71,2,000) will
satisfy (2) in the statement of this lemma. Since our
construction of V, implies that f‘VgX:k cZY - {Vl{x: e 25
for /M-ma.emxéf}{;9 we may modify V2 on a set of measure zero

to geb [V, ] = [v]. Clearly, V, will still be w.v.N. after

this modification. (3) ig obvious from the construction



of V,. Let now E! and EI be given as in (&), and let

D é@:&(vg), If we have /u(IDfUﬁ\EI'l)>»O or /,4\(1);%3%*\:@)»0
for some nxL, then
K
27w
bc (J V1 (mod 0),
1=0

and (4) follows from fl(Bo)¢< g.B”K"q and from the invariance

of /% under V. (5) follows from
]
- £~y o f"’"L o -~
(U )<n> v U oy = cqetoe
M k=204 K ’

and the proof is complebte in the measure preserving case,

(b) Suppose /u is not equivalent to any ¢ =finite V-invariant
Measure ., Then'th@re exists a cﬁ;>0 such that
M (U vie) <«
1=0
whenever C €D, is a Borel set with /4(0)'<a . Let
Qq = [Q.27%]41, where [ ] again denotes the integral part,

‘K' T 2
and let L >0 be an integer satisfying E,Q.EK.Bz e ~b g £,
We choose a Borel partition {O%,,.,,C‘L K t of D, into

L=

sets of pOOitive measure such that

(i) <U o, v oo b e <
My e A
and.
i
(i1) o ClaeeesCly Kh} refines J) (mod 0) = i.e.
8

for every Déié? and for every J= 4,90.,?L“ﬁ

we have/ﬁf(D/ROS)/u(D!?LO%) = O,



Applying Lenma 8,4 we find transformations Ji& EVI with

J?’: = identity and such that
oK 1K
I Vq 0L = Gl 4 (mod 0) for every i=1,2,.00,27 =1,
Again we pub
L»-L
, 2 K
wo- U CUT @8 0 sor,0,
ke % i=1

and the rest of the proof goes exactly as in Lthe measure
preserving case (8). The only difference is that (4) can
now be replaced by the stronger assertion /a (E” \ E') =

for nzlL, and (5) is proved as follows: Let nz L. Then

- n -
0 (n) 2 (1’1) Q (l.l @ (I>

U Dderv U Dy Yo M Dy

k=0 k=2"~Q+1 k=0 Vool
26 5 84 gLﬁ ) (mod 0)
vV C. U . C. mod O).
S Vi E =2l ¢ P
(i) togebther with the choice of ¢/s\ in the beginning

of part (b) now implies (5), snd the proof is complete,

Proposition 8,12, Let V& VA{(X,,S’,/M) be ergodic and assume
thab /L/i is a probability measure on (X, ) which is either
invariant under V or otherwise inequivalent to every & —~finite
V-invariant measure on (X, 5 ). Then there exists a v.N.

transformation We [v.J] with [,’W‘J = [V]°

Proof: ILetb f/] be the pseudometric on & given by 74(}3,6) =
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f;(std), B,C¢& S . Modulo s@ts of measure zero, (S,4) is a
completie separable mebric space, and we can choose a dense
sequence (B;, 1=1,2,...) in & with /M(Bi):>0 for every i.
We now take a sequence (Cy, imﬁ,B,e.;) in & with /A(Gi) 0
for every i, in which every Bi occurs infinitely offena

By induction we define sequences (Ui’ i=1,2y0e0) Of Wevalle
transformations on (X,ﬁgf/n) and (P;, 1=1,2,...) of integers
as follows. Let Pq = 4 and apply Lemma 8.10 to construct a
WeVelNe Transformation Uq with [qu = [VI, Suppose we have
chosen Uﬂ""ﬁUn and Pyyeee,l o Ue regard U, as seb periodic

N and apply Lemma 8,11 to V,1 = U

with period 2 nt 8= Pn,

Q = 2“, E = 2wn, and B = Cn” This gives a Wev.Ne trans-—
J‘.‘ormat:LonUm_,I = V2 and an integer ?n+1 = I satisfying

(1) = (5) in Lemma 8411 This induction process gives a

sequence (U;, i=1,2,...) of w.v.N.transformations on CX,ﬁ?,/i)
with [Uij = [ V] for every i. (3) and (5) in Lemna 8,11

show that, for(/4~as@,xé§X, there exists a smallest integer q(x)
with UnX = Uq(x)X for every n2q(x). If no such integer

exists, we put q(x) = &9, The map q:X—> £ is Borel, and

we can define a‘ﬂéi/(X,ﬁg,fi) by putting
N = (/- vE fxiq(x)=wl
keZ
and.
Uq<X)X for x&¢X \N’

Wx =
X for x N,
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It is easy to see that W is we.v.N., that We CV], and that
W ig in fact a v.N.btransformation, We shall now prove that

szki}c:k; -g% = {ka; k € 7} ,Lor/M-ua CeX E X, Dince LU ]

{x/]for every n, we mzn)i‘lnd a sequence of Borel maps m
m_(x
X —» & such that U, x = Vx for every n 1 and every

Xx€ Ko Note that we may assume m_(x) = n (x) whenever
J n )

a(x
nxq(x). We put

mn(:x '
f}L UY,.,.,U X§ if mn(x)ia 0,

C(H,X) = 4 mn (X)
{2,007 %,000,0 % x§ if m (x)<0.

Let now &£ O be fixed, and choose an integer N> 0 with
Mixia@E) >N < £/3,

/lx {x: mq<x)(x)‘> 21\]}‘5 £/%,

and
e N €3,
Since
(P
vz ¢ ek e Zix ¢ {x:CQ,x)AD z vy
. N N
c D % ol D U fx:fme ()] =2N §
k(;’./q k kr_gyN__gN vk I{ My |
and

{X: ( N(x)] ZNjCZ {x q(x) >N U f [chx)(x)fj} EN}



Bel4

we have
M Frevx e $wbsx eZYj < o MNep <k,
/

by (3) and (5) in Lemma 8.11. Hence Tx & {W¥x:k ¢ Z | for

i

/xma e.x & X, which shows that 1V ik € 2?3
{ W %1k € Z for /L(ma cCeX& X, Changing W on a set of

measure zero, we get(wwj LV}, and the proof is complete,

Lemma 8,1%. Let (X, & ,/4) be a nonatomic probability space

and let VGEVJCX,§§1/1) be an ergodic v.N. transformabtion

which does not preserve any & -~finite measure equivalent

to/%d. Then there exists a v.N. transformation V' on (X, s ,}L)
th (T = T Sequene (n) (n)

with [V'] = LVJ, a sequence (é)n(V') = ED‘ ,aye,Dé §

n=1,2,.s.) of Borel partitions satisfying (8.8) = (8.10)

for V', and a probability measure(/uh?ghuq such that

DgénD
i

de'V'
log = is essentially bounded on (J for

dpt i="1
every nz1.
Proof: Let () (V) = {Dq(“),.,.,D(n)}, N=1,2,... be
a sequence ol Borel partitions of X satisfying (8.8) =

(8410) for V. We choose a Borel set D(q)<:u(1) such that

auv
<1> <1) ¢ , log s is essentially bounded on
""m, va

/AA(D</]) ’VD</I>> 5/4_

Proceeding by induction, we define a sequence of Borel sets

A |~
D,%KDC;DQ*) with



o
[

P
&y

M) 25 ey ()
DYV ) S ) S
A ket /. ;
Tk) 2 (k)
DA AV D ¢,

i

and.

251 ey A | k]
M (igg VEDAT) = 27 42 .

guch thatl

ok
A , ()
log —fwe ig essentially bounded on DA™,
W
for every kx 1. Let
o

¢ = /)

k=1 iZ0

~k
25=1 .
V1D§k>,

and let VO be the transformation induced by V on C. Since

(C) = 1/2, we can apply Lemma 8.4 to find a Je [v] with
- : 4
J° = identity and with JC = CG (mod. 0)s Put N = Lé% Vk(JC £>@U
k&€&

o

ana

Jx for x e C VI,
)

Vix = Vdx for Xé“éGK~N,
X for xg N.

One sees immediately that V' is a v.N.btransformation, and
that we can modify V' on a set of measure zero Lo achieve
[vr] = LVJ. To describe the sequence (éan(V'), 0=1,2,000)

we put

If n>1, let
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@) - @ peyu
and

DB - ik () (y por ke, ..., 2%,
Pinally we define a probablility measure /4’ on (X,9 ) by
"(B) = uBrC) + u(IBaC), B Y.

The condibions of the lemma are all satisfied, and the proof

is complete.

Let now %P be the group {4,-«13 under multiplication and
let

Q=-zM

be the cartesian product of countably many copies of z“?,
where /N+ = {’],2,“.§ . L2 is a compact abelian group in
the product topology, and we write ;T for the Borel field
of {2, Tfi: Q"?le will denote the i-th coordiante projection
for 1=14240004 and wel) will also be written as ¢J =

A
<®1,W2,eno> \‘Jith. Cé)j. = ¢Tri<w>a Tlle dual gI’OU.p /”7:: Q
of £ is the countable discrete group consisting of all
7= (}”I’ ]29'”) in {2 with 7 ;==1 for only finitely
many 12 1. I" acts on Q by multiplication, since it is
identified with a countable dense subgroup of ,.Q, This
action will be denoted by (2/ )~ ?M«) /@“ /7 &)éffz‘
1 will stand for the identity element both in 7 and in .Q.



The following result connects actions of [ on Q with

Velle Transformations.

Proposition 8,14, Let (X,g,/,@) be a nonatomic probability
space and let V& \/f( & /(4) be an ergodic ve.N, transformation.
Then there exists a probability measure Vv on (Q M") which

is nonatomic, quasi-invariant and ergodic under i , and such
that the action of |~ on ({2,F,v) is weakly equivalent to

Ve If M is dnvariant under V, ¥ can be chosen as the Haar
measure of Q It /u ig not equivalent to a V=invariant
probability measure, ¥ can be chosen such that log %

is essenbilally bounded for every J’E [

Proof: Let (c{?n(V) = {D,gn),...,])éi;)} , N> /l)be a sequence
of partitions satisfying (8.8) = (8,10), If /J ig inequivalent

to every ¢ -finite V-invariant measure we may assume that
d v

log is essentially bounded on [D<n> for every nxz"1,

dum
by Letina Bel1%, If /u is equivalent to a @F-finite invariant
measure /Li' we shall as Sume/u /u for the sake of simplicity.
(8¢10) implies that, for/uua .€.X X, bhere exists a sequence
i(n,x) of positive integers with i(n,x) <& 2% and with

(n)
ﬂ :L(:n x) © {X} e

n

For every such x&€ X we define an element ¢<X) CQ by

f ) = (W), W,(x),..0) (8.11.2)
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with
A i(k,x) £2™T,
W 1§<X> = (80/‘/]313)
A Af i0e,x) > T,

for every k>1. The /Mma .e.defined map %X»&::;%Q is Borel
and a.e, injective. We put V = /u¢ and extend cf to
an isomorphism from (X, % ,//x) to (Q,%, Yy will be
nonatomic. Furthermore we see bthatb (f)('\f:x:) # g/)(x) for

/u “8.0.X ¢ Xe On the other hand, gé(x) and ¢>(V}Z‘) will
.’dn,fi.er in at most n coordinates ior/uma eCeX € CD(nD.
Assumption (8.10) implies thatb 11111/,4;& (D(n)) 0, so that
g/)(\/y)ﬁ F%(x) J:o,r*/u--a cCoXE X

To prove the converse relation, we choose a V-invariant
set N 6",55/ of measure zero such that %(x) is given by

(8411) for every x€ X VN, and
(a) ¢ is injective on X' = X\ N,

() o™ o,
n 28

and

(¢) if D§n> = Dérl),n X', we have Vi"'ql),gn) = Dj(_n) for

evel‘y Il?:/! al’ld. i:/',ooeggne

Lot x e xr, 1=1,2, and let ) ¢>(:x;<1)) = (wq(ﬁ,wél),...).
We assume that w< >(£ /'75,‘)( >, Then @ (1) and (u@) will
differ in only finibely many ccordinates. (c) and the ine-

variance of N under V imply that bthere exists an nog;ﬂ



Bel9

M3<q>==¢még> farzlgno.

with é? - wfii-) = 1 and with
Put
. (o @ (3) 2 4
rél> = according as . for k=1,25 00,0 =1,
|1 w ) = o

and.
(1) ??Tq (1)

i i) ok

l = /] + E"::/l rk 02 ®

(nomﬂ) A

s, 1=142. We assume

By construction, we have X(l>€ D (1)
1

l<1)£§l<2> and geb
2 d ,
vl( )3 C )X(q) _ @

Hence )’ﬂﬁ (x) < /ﬁ {ka:ké‘Z@ i‘or/a =8.€.% Ko Thig proves
the weak equivalence of [ and V, and the properties of p

are clear from its definition.

We can now shtate the second main result of thisg sectione

Let V be an ergodic automorphism of a non-

Theorem 86154
atomic measure space (X,.ggfg)ﬁ Then there exists a pro=
o1

bability measure ¥ on (il,gf) which is nonatomic, quasi-

invariant and ergodic under f#, and such that

V is weakly equivalent to the action of r

&P,
on (£2,§2137>,

dm??f
(2) log is egsentially bounded for every giiﬁ o
av




8]
®

N
)

Furthermore, if V preserves a probabllity measure /,4 gl

we may choose P Tto be the Haar measure of L2,

Proof: If M is equivalent to a V-invariant probability
measure or ':i.i' /(,( is inequivalent to every 6-—finite Ve
invariant measure on (X,S ), the result follows from Pro-
position 8.12, and Proposition 8.14. We are thus left with
the case where /M is equivalent to an infinite V—invariant
mes u:ce/u o Le“t:Q faell: /121(40) 1 for all i},
and et /7

il

I’ /L,Q. "“7 is a subgroup of {7 which is iso-
morphic to [, and Q. is a closed subgroup of £Z isomorphic

/V Pl
toQ Let

and let 9: denote the Borel field of Q; Furthernore we

denote the (normalized) Haar neasure of VQ?

¥ —
define [ = {]/5/' t ¥ os,q = +1 for 12031425000 J o

T ) : ) (2 7

Again /! dis a subgroup of /7. Leb {’lz 2/ s ?’ yoee be an
#
enumeration of /7. We choose a set B €S with "(B)

\ d Aman Al e 3 o B ey A 1
and consilder the induced tranformation VB on (B,(S/B,/ﬂlg)@
By the first part of the proof there exists an isomorphisn
c?,] (B, gb’/’(l”)“% (Q g:/i ) with /\ /upgl) and with
q;) ({VDX €AY = gﬁ,(“‘”) for /UP ~2.€,X € B. We choose
8 seguence (B/l,fBg‘,..,) of disjoint Borel sets in X with
By = B, /u (B;) = 1 for all i, and with X = U sB,. By

i
Lemma 8,5 we can find maps J c (Vj with J = identity
and with JiB/l = Bi(mod 0) for all i22. Ignoring a set
of measure zero, we pub

oo = 40



Be57

whenever XéjBi, After modifying 4& suitably on a set of
Measure zero, ¢ will be a Borel isomorphism from (X,S{)
to (52,§T>~ Let A be the infinite measure A = 2 A f
on (2. Then cﬁ is an isomorphism from (X, 8,49 to
G | ] x W \ %

(L2, F,A) with /u' ;5 = A , and with ¢ ( kaX:k cZY )

: L a1
= /“7?5 (x) for /a'«-aa,eax €%, Finally we put v = 2 2 /\g’

: , i="1

Then Vv is a probability measure on ((2,5 ) which satisfies
condition (Z) in the statement of this theorem. The proof is

complete,

Corollary 8.16, Let (Xi,ﬁfi,/ui) be nonatomic probability
ey ol ] . v ,”. S aTere e g MEa.s
spaceg, and let v, € ud(zi,gsi,/ui) be ergodic measure
preserving transformations for i=1,2. Then V, and V, are

weakly equivalent.

proof: Bach V, is weakl, equivalent to the action of I

on (iZ,E?i yo), where P, is the Haar measure on .LZ,

Corollary 8,17, Let (Xi,ﬁgi,/xi) be nonatomic infinite

measure space and let ViGZJJ(Xi,§fi,/%i) be ergodic measure
preserving transformations for i=1,2. Then Vq and V2 are

weakly equivalent,
. " - . . o . . o 7
Proofs: Iwach Vi is weakly equivalent to the action of [

5 « &r ?{'
on ((£,%°, A7) with A given in the proof of Theorem 8.15,

The next result is a simple converse of Theorem 8,15,



Theorem 8.18., ILet ¥ be a probability measure on (ﬁ?,gfb

which is nonatomic, quasi-invarient and ergodic undex | .

Then the action of fw on (ﬁZ,g?;V) is hyperfinite,

Proof: ILet ﬁlQ > R s, 1=0,1,245..+ be the sequence of

Borel maps given by

/@i(&z) =

For every g/éwfl A}éJ;Z, we pub

2t ir T, (W) = +1,

O otherwise.

O
e K k..
a w) = 2. (M pew Y= B (T%60)
(s 2 [l e - py :
where T: (23 () i the shift
T(m/lgédggesa) = (wZQCJ~’oco>

for every w = (éuq,adga..e)éi£2. a: i<¥£2 ~=> R is a cocycle
i . . . , - o s
for | which is easily seen to be transient. The proof is

completed by applying Theorem 8.7,

We conclude this section by proving that every ergodic
action of a countable group on a nonatomic measure space
contains an ergodic transformation in its full group.,

For the following lemmas we fix a nonatbomic probability space
CK,§§3/A) and an ergodic action T, of a countable group

G on (X,ﬁg,/u) such that /@4 is elther invariant or

(8.12)

(8015>

(8e14)



inequivalent to every & ~finite ‘ZDGminvariant measure,

Lemma 819, There exists a WevelNetransformabtion Wé[TGJ,

Proof: We choose a seqguence <Bk:’ k=1 2,..,) [ 5 such that
By2 By 135':,) oee and /A(Bk) = 27K for an1 k. Sebtting BO::X,
we choose a sequence (Wk, k=1,2,.0.) in [“'IDGj such that
G o ; )
ch = didentity, \:ka.-x for every X&Bk“,], and WkBl Bk a4\ Bl«:

: . ; Cm \ “
(mod 0) for every k1. Let N = T( QBK v &,’/ (W, B, A (B _4\ B))),

and lew Bi{ = Bk\ N for every k2 O, For every 1>1, let

WgWlpeeallyx for x¢ X\ N,

b otherwises,

It is clear that Vl is set periodic with period 2::]%, since
1 1
,VlBl,...,Vi /lB:'L are all disjoint, and /U(X\ (] ka’) = O,

Moreover, Vl and V:L 1 will coincide on CB o blnce

n 51‘{ = ;ﬁ, we can define a Borel map u:X—= & with
le = Vu(X)X

for every l>=u(x). If we now pub
e

W will be a we.ve.N. Gtransformation, and bthe lemma is proved.

Lemma 8.,20. Buppose W& [TGj is a w.ve.N. transformation,

Cﬁn(w)_m ergn),..,,D;g)j s N=1,2,000) a sequence of




Borel partitions of X satisfying (8.8) and (8.9) for W,

& a positive real number, K a positive inbteger, and E

a Borel set in X of positive measure. Then there exists a
WeVeNe btransformation Wié& [:CL“@7 and an integer L >0 such that

the following is true.

(1) There exists a sequence () (MWP)y, n=1,25600.) 0OF
n 9 3
Borel partitions of X satisfying (8.8) and (8.9)
for Wt with & (W) = & (W) (mod 0) for 14nskK.

(P o 14 7 o 1 - (K>
(2) 1 XA 'x b C D2K .
(3) Tor every nz1, let

B o= U with D! = {Ded (0'):DcE (mod 0)f
ped !

and

AL ' : N . Ane 9 WEYe T [
B = Dgy@" D with 9! = {Da@ncw').fﬁ@ﬁb)‘?@ﬁ.
n

Then 4 (EXMNE!)< g for every nz L.
A n T
Ry (Dé%)) - 27L,

Proof: This proof is very similar to the proof of Lemma 8,11
—_ o . . - Q‘ [y %’
Let & denote the partition [I,[E} of X, and let £ =

. K
Z)K(W)Vé V o cee V‘w]“a +1 & Dbe the partition generated by
- ®
(W) and by woté 1=0yecee 21{-»’!. ) induces a partition
K s ’ ’ X
D7 or ZD,(!K), which has at mos?t 22 elements, and we choose
K

o K H
an enumeration {B,],...,ZBP} of X with P é;22 o Again we



have to distinguish between two cases,.

a. Suppose 1 18 invariant under T.., We choose an inbeger
ol /L’ G_ ]

f . oK o
L>0 such that 2.25%,2° 2" g, Tor each i=1,e0.,p there

exists an integer 4 20 and digjoint Borel sets Bij’
. - o o=l .
§=04e0e,05, with B, = U Bij,//A(Bij) = 277 for J=Tyee0s4y,

and /a(BiO) = 0, Let

B (5 B
0 iZo Y
T . s "'I.l - & "".K. [ b - ""K: .
1hen./m(BO) < pel & £ .27, Bince /M(Dq) = 27, there
exists an integer 4, >0 and disjoint Borel sets By k=O,..,9q0,

such that B = %/ BOk’/f{(BOk> = 270 for kzﬂaa.@,qo, and
Y

fa(BOO) = 0, We get

Q.
K) P s
p{&) - B v B
1 00 “ {4y 52q 137
where
/A(Jgiéj> = ENL for all j:/]’.c.,q'i and i“"’Og.ao,pg
and

Oe

4

/A(BOO)

Tet {C%,.,.,OéLmK { be an enumeration of fBij:izo,..,,p,
j:ﬂ,...,qij o By Lemma 8.5 we choose maps Jié’[TGj such that

K —
2 . e . 2=y e - 4 =K
Jy = identity and Jiw Ci = Gi+4 (mod 0) for every i=T,eee,2 -

1
Applying Lemma 8,19 we find a w.ve.lN, transformation V on
<C%’£g0%’/AG%) with VIS[TGjC%. The remainder of the proof

is completely analogous to the end of part (a) of the proof

of Lemma 8,11, and we leave it to the reader.



(b) Suppose /M is inequivalent to every & -~finite Ta-
invariant measure, The argument in this case is again the
same as in parbt (b) of the proof of Lemma 8,11 with the

minor modifications sketched in part (a) of this proof.

Lemna 8,21. There exists an ergodic aubomorphism V<£ETG7°

Proof: Let Y be the pseudometric on S given byfdﬁ(B,O) =
pm(BAC), B,Ce S, and let (Byy 1=142,...) be a dense sequence
in (55,7 ) with /K(Bi);>0 for every i. Let (C;, i=1,2,...)

be a sequence in & in which every Bi occurs infinitely
often, and such bthat /H(Ci):>0 for every i. By induction

we define sequences of w.v.N. Gransformations (Wi, 121424 000)
and integers <Li’ i=1,2,.e0) as follows: Pub L,=1 and

define a w.v.Ne. transformation W = W, on (X, 53/A> by

Lemma 8,19 with wqe:[mGj. Suppose we have chosen wq,,,.,wn
and Lyseeesli o We apply Lemma 8.20 to W = Wn, K =1
E = 2“n, and I = C,e This gives a Wev.l. transformation

WY = and an integer L = Ln+1’ sablsfying (1) = (4)

n+1
in Lemma 8,20, This procedure gives a sequence (Wi, i=1,25000)
of w.velN.bransformations in [ng. (2) and (4) in Lemma 8,20
imply that, for /1~aee.xe£X, there exists an integer q(x)

with W x = wq(X>x for every n qg(x). If no such integer

exists, we pub ¢g(x) = &, Furthermore we can assume that

q:Xw%li% is a Borel map. Let N = TG {X:q(x) = &7 and



pa for x € X NN,
Vx =
b for xe& N,

Then V is a v.N. transformation, and hence ergodic (Exercise

8.24), The proof is completbe.,

Theorem 8,22, Let TG be an ergodic action of a countable

group G on a nonabtomic measure space <X’£§3fi)‘ Then there

exists an ergodic aubtomorphism vg[ﬁrd]y )

Proof: We have already proved the result wheneverift is
eguivalent to a TG~invariant probability measure of when
/ﬁ is inequivalent bto every «-finite Tgminvariant measure
(Lemma 8.21). We leave it to the reader to extend the proof
to the case where)/x is equivalent to an infinite TG“
invariant measure; (One can use the method described in

part (a) of the proof of Proposition 8.6).

Exercise 8.2%., let Ti be an action of a countable

G
group G on a nonabtomic measure space (X,ég,/ﬂ), and let

!, be another action of a countable group G' on (X,ﬁg,/t)
with R(Té,)c:R(TG). Show that Té, is hyperfinite whenever

TG is hyperfinite,

bxercise 8.,24, Show that every v.N. transformation on a

nonatomic measure space is ergodic.
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§ 9 The cohomology of a hyperfinite action

Let CX9§§7fi> be a nonalbomic measure space and let TG be a
hyperfiniﬁe actlion of a countable group G on (X,ﬁ{aki)e It
A is a locally compact second countable abelian grgup, we
are interested in Zq(TG,ﬁ3(X,/t,A)). Proposition 2.7,
Theorem %.16 and Theorem 8.15 together imply that there
exists a probability measure ¥ on (12,§f5 which is quagi-
invariant and ergodic under [ such that Zq(Tg,ﬁg(X,fA,A))
and. z“(f",d%(iz,a;,ﬁ)> are topologically isomorphio; and
the isomorphism will preserve all the invariants defined
in 8 %. In this section we study Zq(F’,ﬁg(fl,iﬁ,A)), where
A is a fixed locally compact second countable abelian group,
and where p is a probability measure on (KZ,ETS which is
nonatomic and gquasi-invariant and ergodic under M. we

define maps S,T:i2“~%£2‘by

S(W g, Woseee) = (Tywyy @pyees)
and.

T(ﬂ{/’)/l,wg,oas) = (Cdg,wa,ooo>

for every w = (aaq,u>2,@,,)eij e'Vllzﬁsz%éﬁzxﬂill again

stand for the i-th coordinate projection ﬂi(aj) = aﬁi on
SN 0 -

Q. since / is embedded as a dense subgroup of L2 , We can

consider the restrictions of 5,17 and # 5 to [ o These will

A A A
be denoted by 5,7 and ’Vﬁ, respectively.

(9.1)

(9.2)



Theorem 9,1, Lebt a:l xL)l = 4 pe a cocycle for i oon

0, ?, V). Then thure exists a sequence of Borel maps
(/3 ne 0=0,7,2,00.) from () o A such that
Lo )
a(y @) = Z,,,</3k<'.w yw)-s/gl{(m )

7 . . .
for every ié‘/ , &6 (). Conversely, if (/Qn, 020,71, 000)
is any sequence of Borel maps from £ to A, and if a:
7 A . . - o . -~
x> A is given by (9.5), then a is a cocycle for

/7 on (,Q,;:C/ﬁ\;v e

Proof: Tor every nz=1, consider the subgroup /m]fl =

s . *A -

22/5; /! :77']{(2/ )=1 for k;e;:m«’l} of e If wed) ana nez=1,
we pub

-
.

il

w(n> (&)"}7CZ)Q_’“’&?ét)I‘l’/]’/]?.GB)é? /

and

@(n) ~ m"/]"‘“”q’wnM’Mm—’”’”)g’gz'

[

For every n 21, we define a map Mn:‘,ﬁz“}z& by
) Y w oale 0D s
Mffl(éd) = a(l;(,) 9(;&(1/1))@

The cocycle identity implies

i

aly @) wn</w} -~ x (@)

for every ?/é i“’n and &)é’ﬁz, If we fix n for the moment,

we get

aly,w) = izxn%w )= o, () = @znm(fev>_ X yq C0)



for every ‘?’C F . Hence there exists a Borel map /gnz

7n
Qw‘?? A with

/@n(m%}) = K (@)= (@)

= . - 77 e
If we now put /§O = O&,‘, we get, for every fﬁf s . elLd )

alf.w) = ko/’?k_ vy w )= i (ete)),

which proves (9.3). The converse is obvious.

Corollary 9.,2. Let Ao be a dense subgroup of A, and let

({2 s by ) denote the set of all Borel maps f: () A which
depend only on finitely many coordinates. Let furthermore
Z*/'(AO) stand for the sset of all cocycles as i’ R’LQ*%"A

of the form a(égr, w) = 2 /%k 'Ek?/a/) /jk T w)) with

/3’1{6 7 (1& ) for every kzO. Then 7 (A ) is demse in Z (/7,A)
_—A (7" B (L2, »,4)). Moreover, if a:/ x(J —> A is any

, . N S .
cocycle for [7, then there exists an a'€ 7% (AO) with a'~r a.

Proof: Let a: / XLl > A be any cocycle for 7, and let

(/3 k? k=041,0..) be a sequence of Borel functions satig=—
féyj,ng (9e%)e We recall the definition of the metric d})

on ﬁ(.@, Y ,A) from (2.19). Since F(‘Q,AO) is dense in
B(2,v,A), we can find, for every £ > 0, and for every
finite set {?,(/1)9“” i(mfc [7, a sequence (/gk:’k‘ 041y0ee)
in ¥({1,4, ) such that 4 </31<T /3 'ﬁ‘k)z: £ 275 ana

- k i 1 - S .
d}, (/33&1‘ Q/C >’/ﬂk €?f<l>)£é; o2 for every k20, i=lyeeaysle



Ve lk

We put ¢ = ﬁlT ('T o C 1ls a well defined element of
k=0! * ,
Q3<CZ Vyh)e If we now put a' (g' G W) = 2L ( ];QN{?&J)
.[C“

/3 k(iﬂ wW)), ve get &(/w)) = a! (f,ww({w)mc(w) for

every {C [7 and for i -a.e. well, Hence a and a' are

cohomologouss loreover we have, for every i=T,...,1,
<a<; e (r ) - a e enc g,

ﬂenoo Z (A ) is dense, and the proof is complete,

Theorem 9.1 allows explicit examples of cocycles wibh SPECim

fied properties,

bxample 9,%, Let }?O be the Haar measure on<CZ and consider
the action of j  on ([2,%?1320)0 If A is any locally compact
second countable abelian group, letb (“fi’ i=0,142,¢0.) be a
dense seqguence in A and let (S?i, 1=0,1,2,040) be a sequence
in A in which every & ; occurs infinitely often. Pubt, for

every k2 0O,

/g]§<&)) =

A Vg

Ky o if W}(&)) = “ﬂ = 1,
0 otherwise,
and let
[eed
= LK Kk :
o ( w):L(/@ (i w)mfcmw),
Ve S L [k
aquwkﬁzewé A is a cocycle with E(a) = A,

Suppose now that A,l is a noncompact, compactly generated,

(9 D‘L*“D



locally compact second countable abelian group. Then Aq
will contain a closed subgroup ’{nldozn¢§Z§;§ which is

isomorphic to Z . Tor every k0, we define

2k, X, it o (ew) =1,
() =
0 otherwise,
Put
. 5 21 rmK cy Yo A K, o 5
ax(yaw) = g%c/zkcm po - prton (9.5)
and
&7
, ST o4 mlk ek
a5(f @) - %@(/‘%ku f@)-ﬁk@ ). (9.6)

Then a, is transient, 8 is recurrent, and ﬁ(ag) = E(aa) =
;{ﬂO,cv3 « This example also implies that every ergodic
measure preserving automorphism V of a nonabtomic probability
space (X,ﬁ{n;{) has a recurrent cocycle a:EZx}C@>A4 for
the,2§mactién n -2V with ﬁ(a) = {O,éﬁ} « The relevance

of such cocycles has been discussed in § 7.

We now want to show that there always exist cocycles a:
quLZ«%» A with E(a) = A. We start with a few lemmas on
cocycles for general ergodic group actions. Let TG be an
ergodic action of a countable group G on a nonatomic pro-
bability space (X,f{,fx), and let a:GX X-=>A be a cocycle

for Tgy. We write'ﬁ:[TijjiéﬁA.for the map defined in Lemma 2.6,



9.6

Lemna 9.4, OSuppose that X ,E E(a). If BES is a set of
positive measure, and if N(O) is a symmetric neighbourhood

of O in A, there exists a V& [TEG:] with
VB = B (mod 0) | (9+7)
and
BE(,x) € w(0)+ % vu(0)= i (9.8)
for /,4 ~8.8.X € Be

Proof: The assertion is obvious if o(‘o = O, Let us there=
fore assume that ixogo. We apply Definition 3.7 to find a
Borel set B,] CB and a gqgg(}. with /u(B,])f)»O, Tg,]B’l nB,] = ;L(,
Tg B, B, and with a(g,‘,x) €N(0)+ O(O for every xe&B,.
1

Replacing now B by BN(B4 Ui‘g B,); we choose B, €& .5 and

/‘ -

~ () . m - i . po

gngcb\(Bquiquq)s Jzag,mggB2 = g{ ,

and a(gg,x) £ N(O)+ ', on B Using induction and an

85 EG with /u (Bg),>0, B,uT

exhaustion argument we consbtruct (finite or infinite)

sequences (Bi, i=1,2400.) 0of Borel sets of positive measure,
. . - L - _—_—

(gi, i=1,2,00.)C G, such that Biu lg.bic;B, Bif1Bj =

1
Bn® By = B;NT B.=1T B, AL B. =g for all i,j

e R - By d
with 17!3,/4,{ (B~ (ij (Biu TgiBi)) = 0, and a(gi,x)c N(O)+ X

for every i>=1 and every x&:Bi. Finally we pub

T x for x ¢B,, 121,
- gi l
Vx = ngqx for Xé”Tg‘Big iz,

i 7 .
x for xg X~ U(B; v, B},
L



and the lemma is proved,

Lemma 9.,5. Let O(OQE(&). Then there exists a set Be&

with (B)>0 and a symmetric neighbourhood N(0) of O
M y

in A such that

/U(Bf\V“

for every V& [TGY o

1B fx:a(V,x) e N(0)+ & UN(0)=u_ §) = O (9.9)

Proof: Trivial.
Lemma 9.6 Letb B&”,\Sj with /A(B)}O, Woé‘A, and M.}Oo
For every syymebric neighbourhood N(0) of 0 in A, the set
U(x ,01(0),B, ) = faes (5,4): (9.10)

sup /,{(B av1B {x:a(V,x) e N(O)+ ® N(O)= oo} ) >
ve [m,]

is open in 2 (04,4) = 7] (TG.)@(X,/L{,A)),

Proof: Left as an exercise.

Lemma 9e7. ILet (B, k=1,2,040.) be a sequence of Borel sets
in X which is dense in S in the pseudometric # (B,yC) =

M(BAC), B,C €Y, and let {Nk(o):kc-'/)\/} be a basis of

symmetric neighbourhoods of O in A. For every o ¢ A, let

U(x,) = faez'(T,,0): € €B(a)T . (9.11)



9.8

Then
Ui g) = /) UCx s (0),B ), (9.12)
k, 1> 2

In particular, U(.xo) is a G in Zq(EG,A),

Proof: This follows from the Lemmas Q¢4 = 9,6,

Lemma 9,8, Lelb

U(a) = faez' (g ,4): Bla) = AT, (9.1%)

i

Then

il

uay = £ uler,), (914)
k="

where (&, k=1,2,...) is a dense sequence in A and u(ery)

is given by (9.11). In particular, U(A) is a G, in Zq(Tg,A)°
The proof is again left as an exercise,.
We now return to the action of [ on (ﬁlggfz V), where p

is a fixed nonatomic probability measure which is quasi-—

invariant and ergodic for 7ﬁ@
Lemma 9,9, Letb B(ESZM be a set of positive measure., Foxr
B
every k20, there exists a g/é:SkF" such that ?/%1, but
v (Bn -af:B),;:» O. (9.15)

Proof: ILeft as an exercise.



(o)
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Lemma 9,10, TFor every Be &F with p(B)>0, every o e,

and for every symmetric neighbourhood N(0) of 0 in A, the

set U( m“og,l‘ﬂ'(o),];%, v (B)/2) is dense in '.Z./‘()M’,A) (efe (9610)),

Proof: If U(cxo,N(O),B, y (B)/2) is not dense, there exists

a nonempty open set U C Z/]( [4A) which does not intersccet

U( &O,N(O),B, v (B)/2). Corellary 9.2 implies in particular

that Z%(A) ig dense in z/’(i“’ ,A). Hence there exists a cocycle

a € Z*(A)ﬂ . We choose a sequencg0 of Borel maps (/ k,k:@,’l,.“)
in P(L2,4) such that ao( Y2 @) = k;z};( k(mkyfm )../ﬁ'k(cekw))

for every 7+ @. Bince 0" is open, there exists an &£ 0

7

and elements ’(7/(”,”0, {f]y@)e/ such that

faca(r,a):a, a(y P 0,8 (.0 <6
for i=1,...,11 ¢ O,

where d ., is given by (2.19). We may choose positive

ll’li;@gex's 1\’1,] < J.\*/ig such that
i P K -

for every i=1,..¢,1 and for every e Q, and that

: A M 1 .
ao( ¥ (3“), .) 1s invariant under s"21" for i=1 geeeyle

" o . as A AME
By Lemma 9.9, there exists a </]/é; 8

" and a set B/l & 9’

1 C D A YT e D
with P (B,)>0, B, nytUBy = %, and B,],JZ B,C B.



910

Since &(4)#’! we can choose a k,» M, with i?” (~Nm‘)):««~’l
7 ’ ' 1752 L ko, T ¢
loreover there will exist an integer m, for which
A AL 7
"7?“'11( ?/(/])) = 1 whenever n3m,. We put C, = B~ (B‘l o/ ?’(QB,])«.
If v (C,});} 0, we can again apply Lemma 9.9 to find (2)é §m4 i
. ™ g i Af<2) - N<2> - 3;
and By Gy with v (By) >0, Byu §7/Byc 0y, and Byn 4 27/B, = ¢
Again we choose integers s> ks >, with 77"1{ (?’(2)) S
A e [ - 2
and with '77"1,1(9' @)) = 1 for nzm,. In this fashion we
fa -4
construct sequences (Bi’ i=1424000)C g: ( (l>, i=1,240e0)
i, (ki, i=1,2,000)E N, and (mi, 121,24000)C N such that

ot

g5 () o "o m ~(1)n ~(3)e -
Biug Bic.B, Bif‘)BJ = By n ?/ Bi = Bin 9/ BJ =

D)y, o~ (5 ’ Coe S ~ (4

8 B.l n Q’CJ)BJ = ;é for every i,J with i#j, 7 k'(gl (3‘>) = -,
A (4 i

'77‘11(2' <l>) = 1 for all nzmn;, and k; <m, < k; ,<m, , for

all i2=1. An exhaustion argument shows that we may assume

y (B~ <.UQB:'LU ?j<i>Bi))) = O, We now put
1z

x it xd U By pA G
Vx = fig, My i

y )y ir X & B, U ?<l>iiii, 121,

Then Ve [ '] . We define a Borel map ﬁ : {2 > A by

‘C(: . 7.[,../] (L:«.} ) - /] ,
/3 (w) = according as
’ 0 ;r/l (("‘) ) = =1,

N
ot , - < : m 4, mk,
al(fsw) = 1£'o<fk(l p @)= prw))

o k. k.
v T ('l‘{l?/w%—ﬁ('ﬂ{lw ).

131
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It is clear that
a‘({(i),.) = eb(?'(w,.) (9.16)

for i=Tgee0e4le If &' denotes the map Lrom [x . to &

arising from a' through Lemna 2.6, we get
4
B (Tyw) = 2 (B (0T w)- i (1Fw))
Je=0 +
k
I

2 (f <'J:‘kivm-/€u

i=2

T5)) (9.17)

€ [ ,~ad

for Y =a.e. we& Be (9.17) shows that a'ég U((XO,N(O),B, v(B)/2) ,
and (9.16) implies a'@ (7, which is absurd. This contradiction
shows that U(cXO,N(O),B,i)(B)/Z) is dense, and the lemma is

proved,

Theorem 9,11, Let TG be an ergodic hyperfinite action of a

countable group G on a nonatomlc measure space (X9§§2ﬁ¢),

and let A be a locally conmpact second countable abelian

group, Let furthermore U(A) = {aez (T,,A):E(a) = AT .

Then U(A) is a dense G, in Zq(TG,A). Furthermore, Bq(TG,A) is

dense in 27 (Tg,4),
Proof: IFrom the discussion at the beginning of this section

it is clear that one only has to prove the corresponding
. oo
statements for every action of [’ on (L2,# ,v ), where p
is a nonatomic probability measure which is quasi-invariant

‘ Fipst
and ergodic under I7 . Bub there The,assertion follows from
& A
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The Lemmas 9.7, 9.8 and 9.10, and from the fact that
Zq(iﬂ,A) is a complete metric space and hence of second

{ . . o s . o
category, That B (f7,A) is dense in Zq([’gA) is an immediatbe

consequence of Corollary 9.2. The proof is complete,

Problem 9,11. Is the statement of Theorem 9,10 true for

every ergodic action of a countable group on a nonatomic

measure space?
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§ 10 On Radon Nikodym derivatives of quasi-invariant measures

In this section we apply the results of & 7 and & 9 to the
following problem. Let (X,§§) be a standard Borel space,
V a Borel aubtomorphism of (X, ), and f:X—% R a Borel map.
When does there exist a nonatomic ¢ —finite measure /x
on (¥,8) which is quasi-invariant and ergodic undef v
and which satisfies
dflv

Llog WE;&W (%) = £(x) (10.1)
fozi/éwa,e.XJEX? If such a measure exists we shall say that
(10.1) has a solubtion. We give two examples where (10.71)

fails to have a solubione

L

R and let Vx = x+1. Every 4 -finite

i

(1) Let X
measure on X which is quasi-invariant and ergodic
under V is atomice (10.71) can thus never have a

solubione.

(2) TLet V be a Borel aubomorphism of a standard

£

Borel space (X,5) and let f:X—» R Dbe given
by £(x) = 1 for every x. If there existes a
solution M for (10.1), then §¢i<n’x> =

dpm Vi s .
log mgiww (x) = n for every n. This implies

that a is transient, conbrary to Theorem 4.2,

/L&

Again we conclude that (10.,1) cannot have a

solubtion for f=1.
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In this section we shall not give a complete solution of the
problem, but we shall derive some sufficient conditions for
(10.1) to have a solubion. We start with some notation.

Let ((}(O, ()-(‘,1,“”) be a sequence of rationally independent
irrationals in R and let, for every i=0,n=1, Aém be the

countable dense subgroup of R given by

@ - e o - @ .
.ﬂ.i e gCK/]O<21+1/|{x2:3_»{«‘19&6"1{1’10(P°+ln&2i+/‘>“

(l{/‘,.8&,]&::(1)5(1/‘!’&53’1]:]‘)&gﬂ }0

For every nonempty subset B C WV we write A<n> (E) for the
group generated by {.A.gn):i(;{'ﬂ% « Bach A.(n)(li) is a counbte
able dense subgroup of R % , and A(n) (]EI,])K),!XCB‘)(ZEJZ) = {O}
whenever %, a L, = ng., We also pub RGN Am)(ﬁ\f)..

Let now /7 and (L,¥) be defined as in § 8, and let 1 be

a nonatomic probability measure on (NQ,g’) such that
s . 4 : H o e ;. 38 . 7
(a) v is quasi-invariant and ergodic under [

dw
(b) log wmz; is Y =esgsentially bounded for every
dvy

W
fé‘/ .
If Y'a)? is any probability measure on (Q,f;)., we define
as before

awv'iyg
< :1 P sttt G
tiVe<?/sw> og 2y (@)

for every Z&F and )?-«a,es&?c:i;(z,
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Lemma 10.1. There exists a probability measure p'a )

on (ﬁl,%ﬁ) and a sequence of Borel maps (/@1, k=041,25000)

el that

B NG N o
(1) /@1;@1«(2,1&1({ )y for every k20, where I QQ’Aé )y

is defined as in Corollary 9.2,

@) a, (7,w) - zmc/@ @Sy w )= f@w)) tor
every JL/ and for V -a.e. well.

(10.2)

(10.%)

Froof: By Theorem 9.1 there exists a sequence g/gl, k=04Ty000)

of real valued Borel maps on CZ such that
2, (gaw) = &,c (@0 )= B (050 )
Y] YO k k

< .
for every"éy,&)a From the proof of Theorem 9.1 it is also
clear that eaoh}/?k may be assumed o be bounded, The Stone-
i n - - N (7. 41y o |
Weierstrass theorem implies that I ’Ak ) is uniformly
dense in Gthe set of continuous real valued functions on
42, for every k# 0. Since the conbtiuous functions lie dense
in @?(CZV;?) in the topology of convergence in measure, we

can choogse a seguence (%3£, k=0,49,‘0> ok that
@) fre 7(Q,0{") for every &,

(b) sup O@ (@ )= /ﬁy(a))/ 2 bup //3k(a))/ = 2my,

wel) k+1

and ~2(2_m; + k)

i=0 L

(@) y{w:fEar-p o)z oo

for every kz 0., Since
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o«

S U m}, - Mt s
/%@(/kc.j.w>-/§k<ﬁw>>

av(w) £
Z/ﬁ L% )= }k@% )/
/e dpr(w)
00 / . 1
. o0 @5 )= B, (5w ) 2.5 m, + 1
2n . k S T
o O+£"6p{w 1<:_ ﬁ ﬁ > e i=0 }&
B 1+1
El + 1+
s © 1= =

Moy 2 vie: Z/ﬁv(m ()~ ﬁkoﬂkm/ﬂ L@m +1].

2o .z,ln +141

e =0 £

2 ® X ] f V ) ,
e 04 (2. vfw:!/31;:(@1%0)—-/51{(@@)/;}2“19"4} Y.

1=0 k=141 %iﬂ
ey m,+1+1
o -
ki 141
2m <& “2<§L,mi + k)42 z;,m +141
O = =
1=0 k=141
2m f? 20,
e O+ Z. » £ oo,
1=0 k=141

the function

%(/k (% )= /@k(fﬂl

is integrable., Hence we can define a probability measure
vion ((2,%) by o

2 (p o) - W)
dv'(w) = adv(w).

(10a4)



It is clear that
a0
o (gaw) = 2 9@(@17@ )= A0 )
4 k=0 Lo
for every Z%EF? and for vy '=a.,e. w2e¢ll, and the lemma is

Proved,

Lemma 10.2. Let (/Qk, k=0,14...) be a sequence in F(iz,ﬁ?n)
and let d: (xL2 —» R™ pe the cocycle

9]
Ay sw) = 2 (B gw )= fi(050))

k=
for Mon (L2,%,v). If d is recurrent, there exists a

cocycle d'b: f7xiz~4%§zn with the following properties:
1) d‘(;’,&))ﬁA<n) for every j’é}ﬁ, we (2,

(2) for every « € A(n), # #0, and for every &n&lQ,

there exists an inbteger k30 with d'(jV,éd)%éX
A o

for every ]fﬁ Sk/w:

(3) for V=-a.e.w¢fl, the set fAZ’Zd'Cf’sQ?)=O ¥
is infinite,

(%) sup sup i d((?/sé&})“d'(; s&))i{é/‘/ga
rel’ welld

where [[«f/ denotes the usual norm on /K7,
(5) d' is cohomologous to d.

~
Proof: Letb (/3k:k=0,4,,.,) be a sequence of Borel maps

from iQ, GO A(n> such that

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)
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pke 7 () ,Aéﬁ)) (10.10)
and
i 7 N , T s :
ow /{,%(W Brlwdll < 2 (10.11)

for every k 20. We pub
At /\ .
m(k) = min mz0: A, is invariant under S5 iy, 10,712
- k
or every pair of integers OLM&N, let

7 (1,I)

il

- s A l
{?fé/ : T (=1 for k4l and k>N .
The cocycle

Wy @) = Z (Rt pud-f 050 )
Rz ; !

., A ) . -
sup sup /l d(g 5 (0 )-d(y/ G W < /4, (10.1%)
el we Q.
¢ A’
by (10.11)e Theorem 3,9 implies immediately that d Ao d.

We now assume d to be recurrent. d will then also be recuurent.
Hence we have, for every Mz1, and for every f‘> O,
‘y(‘/A‘_/1 fo:laly,e)itcd ) =1,
C e Va1 - ; [
f’éz SM R Y
This dimplies the following: For every //A., £% 0 and for every

M0 there exists an integer N(M, A, & )= M with

v C fw:if?éf(;y,w)//@/% ) »1- £
e LN, Ay o)) w1
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We now define a sequence (Nk, k=0,T4000) by induction,

o L el D N
Puv ]_\]O = O’ N = 1 and ‘]_\2(2 = N</‘$a ,& )“{“/lo Lr No.ﬂeeeNgl

1

have already been chosen, puv

N21+/i = Nax {m(k)+k+’1:0»§~;k ilNgl&

and

I, pv

o=t omly oog,

Moo = N(lipg qs

This determines an infinite sequence (Nl k=0,1,2,000)e FOr

i <9

every k=0,1,25008s, We 1les

. L, N i ey | al
B = (U fw: 19Cy w0l < 277
fé%[w(w2k+4*N2k+2>k\ 1]

and.
N2k+2 s i
b (w) = 5 /g.(T W)
k e i

It 1ie clear that

Y (B) > 1=27K
and

gk?,w):l%ﬁgwwmmgm)

for every k30 and for every g'é r7<N2k+19N2k+2)9 well.

We now fix k, pub

&1 =N

(R) _ 8 .. (0 Naa fom N
Q - iw' Hj_((«.} )“1 for 1\121{4‘/] &

2k+2 §
and choose an enumnerabion

L) G }
1= p L5 §£>§.¢.9}/<‘>

/A
£ (N ' 1 S 2k+2 " 2k+1
of fﬁ(N2k+q,Ngk+2), where Iy = 2 .
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For 1,m with 1£1,m<L let

k9

I)<km lwe Q< ). l bk(} ) W )“blg<2ln<1k w M < k=t i

Using these sets we define a Borel map bl*: ) “2R"™ by an
AN

induction process. Let us first define bk on JQL,Q{): For every

W € Q<k>, we set

blf(j’ (k) whenever w e (J iB,Clkgl, where
m=1 '°*
A . T i o (1{;) 7
b (W) = r=min {m:1< m L, and w e B’l,m ¥,
bk<&j) otherwise. (10.16)
Suppose we have defined by on U [(lc)(z( >, where s >71. Let
1(] (1) whenever w ¢ UBrgks)s’ or when-
> mgs 0

ever b (3/ O{)W )= b (;/ <k>

for some 1 s,

1&(3 <k)w )}  whenever [ ( ]CL ‘w );é'g;{( ?fé:l{)(;) )

for all i<s and e {J BG{;.
m>g 1S

bl{( éi{) ) = i Here r=nmin [Sm g <n &Ll and w&BCk) g .

b (;y () 5)  whenever by ( I's () )7'%1{( 7 (k)

for all i< s and au?{_ u 5 (k)

m (‘*7
. m>»s 7
but w e U Bpgkgs Here t=min {m:
ln(,,u
Qe ts (k) ; v (k =
Sm <8, welb) 5o and bkf}z% ) w)

By Ig% ) § . (10.17)
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We claim that (10.17) defines b (?(k) ) everywhere on (’L(K

To verify this we have to show that for every wé U B]gkg;
mf 8

with by ( 2’(k)w> # 91,(3/ Ck)w) for 14£4i4s and with
¢ U B(l'§> there exists an m, L8 for which b ( <k)é<}) _
« m,s? FE e Kk ?/

1,(?(105@) Let fm,],,..,mpf( be the set of all me<s for

which we BCkg, and assume that - g;,m,] £Ms < oo .z::mpx:;s. IL

, A=l - . k
bk(?/ @7) # b (2/ this means that b (?w( >&J> A
A2

b, CJOQ for all :1.<mp. On the other hand we h g =

min gmzm <M &Iy, and @ € Bxgl\“) % o« By our induction hypobthesis
‘)
we see that bk(g/ <k>aj) =D (g/ (1@(,1} ), which is absurd, This
(k) (k)
contradiction 1mp”11(es that bkcf W) = bl<:< 3’ w)e We con-
clude that b (g’(k).) is indeed defined everwhero on Q<k)
for every sm’i,,..,Lk. We have thus constructed a Borel map
A n . .
Dyt {93 =2 R e Obviously we have
7] ‘M ; ) g oS
sup [ by (w)=by (w ) I £ 278
(&

and

~o (n), ¢ N

Ok(&j) A‘ (. éNZk”“"NZ}L{-{-E% ),
We now claim that

B, ¢ [ fw b qu=b ()] .

k
Yl Moyl 0) N 117

(10.18)

(10.19)

(10.20)



10610

To prove (10.20), take @)é,Bk. Then there exists an s with
=1
< e (k) o~ (&) ()7,
1 €8s <Ik such that @e € 75 () . Hence gw = W E

Ugéké. A glance at (10.16) and (10.17) shows that in this

mgs o
case Nl(’yékggg ) = Dk(31<k>ajo) for some s'¥s, so that

is contained in the right hand side of (10.20).

Varying k now, we obtain a sequence <b1’ k=041,240as) Of
Borel maps satisfying (10.18) = (10,20) for every k0.
Let

AL

A gy @) = alg,w) = Z(b (}/w)mb (few))

= ~
+ ﬁgg(bk(&))wbk(a>)).
(10.18) dimplies that
L2 ¥
‘ ‘s s o 7 )
SUp sup I a (g/,gg)-—»d(?’,&k)/[wi 2. 2.2 = 1/4,
3’67’ we () k=0
and (10.13) gives
sup - sup 4! (g, w)-a(y s )l £ /2.
f§7? toe
Once again Theorem 5.9 implies d ~ d', and we have proved
(10.8) and (10.9). It is clear that d' satisfies (10.5)

and (10.6). To prove (10.7), consider the sebs
o = U {w:d'(?x,aﬁ)———of .

i
= (N N « $11
7€ Woepqaline,p) N {14

(10,20) shows that C, .2 B, for every k, and (10.714) gives

g)(limksup Ck):g }>(limksup Bk> = Te

(10.21)
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Since iﬂ(N2k+q,Ngk+2)/1f7(N2K,+4,N2k,+2) = {1% whenever

k#fk', we have proved (10,7). The lemma is proved completely.

Lemma_10.3. Let a: [ XL) < R™ be a cocycle for /' on

(2,7, »), and let c: /%2 - R ™ be the cocyele
G(?’,w) = Cay<9’7 W),a<f,&)’>>,

buppose that ¢ is recurrent. Then there exists a probability
measure ¥, ~V on ([} §f§ and a cocycle a, ~ a such that
1 ’ J 1
the following is true for a suibable choice of a“V :
/]
) . . (n+1
(D eq(pyw) = (apq(g’,w%aq(g’,w})@f&( )

for every g%gf’ and for every tell.

(2) Tet Ad(f“‘“ denote the group AP+1)

in the discrete
topologye c, can then be considered as a cocycle
taking values in A§n+1)‘ To emphasize this we
define o s (] —> A(n+1) to be the cocycle

dh d

é‘(}/,w} = ¢4 ( j’,m)é!&én”)-

. A = A . i
Then ¢, is recurrent, and E(c,) = §O,<mj .

Lz

Proof: We choose a probability measure y' .y on Cﬁ?,% )
which satisfies (10.2) and (10.3) in Lemma 10,1, Applying
Corollary 9.2 to a, we find a sequence </®k’ k=0414004)

in (7, /R ™ ) such that the cocycle

o
/ ST nk nk .
bC%?9‘U> = ﬁ%é(/gk(i g@a )mfgk(f )

(10.22)

(10.2%)

(10.24)
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is cohomologous to a., Define d: fq%jzgg>ﬁ§n+q by

d(g;éd) = Cayi(fséﬁ)ab(gj§M)>0

d will satisfy the conditions of Lemma 10,2, Hence bthere
exists a cocyele d': /XL - R uirilling (10.5) -
(1069)e We write

d(}/,w) . (d(ﬂ)(g,,a.}),“”d(nm)(f’w)}
and

At (g, w) - <df<’*><2/,w),..,,,d&mﬂ(f,w))

for the n+1 coordinates of d and of d' respectively. Since
d and d' are cohomologous, and from (10.11), (10.1%) and
(10.21) we see that there exists a Borel map £: (- R

such TGhat

d'(z’, @) = d(zm cz))+f(aw>-f(w>
and

fleCwo)lf <a/m (10.25)
r .
for every g&;/ and for every (ell . Again we write
£(w) = ), e, e ()

for the coordinates of f. By (10.25), we can define a pro=-
bability measure on,(£1,§f) with
o £40w)
d Y, (w) = constee s dy ' (w)e (10.26)

Furthermore we putb

at(yr@) = @@ p0),..,8 (g 00, (10.27)
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Since d'( 3é))é£A<n+1) for every 7 sf0s Ve can define a cocycle
é.\: ["x () Jﬁv Aénﬁ) with g( 2/, w)=d'( g/,a)) for every Jo@ e

We choose an orbital cocycle u:I%Cf7)m%aAén+q> for {7 on

(i?, %T Vq) with au §a€ (cfe (2618)) and apply Theoren

8418 to find a Ve [T with {V¥w:ike¢ Z} = [Tw for Vg

aece. we (). Let
- .. . k. AN b s
min tk >0:u(V:@,w)=0§ if
w(@) - fles 00w, 0)=0)  # ¢,
0 otherwise,

and put

; ) . h A .
W= T(fwialw)=0f v U e (g, @blpe o)),
Jer

(10.7) and a standard argument imply thatb 1)4(N) = 0, We now

define
va(@w) g tor w € LI,
Ww = A (10.28)
L & otherwise,
Lo ot Sk e ‘ -3 ;
It is clear that {w Gk € ,Zj = f;}/w H ?’éf’ and

u(guy ,&3):04& for })1wa,e. well, In particular we see that
W preserves the probability measure 5)4 and that una.e,
orbit of W is infinite. This forces W to be conservative,

and. we conclude that Q'is recurrent. From (10.6) we getb

E(d) = {O ¥, so that é is either a coboundary or a recurrent

- A .
cocycle with E(d) = '{O, 60} .
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A
Let us first assume that d is a coboundary. This implies in

particular that d': T”XJjwM%ﬁ?“*“ is a coboundary and hence

1) o i
that 4! ( i}c&) = 10§ =———— (&) is a coboundary, Hence
d ¥1

}?1 is equivalent to a 4 ~finite [ ~invariant measure on
(2, #). In the following Lemma 10.4 we shall prove that

. ¥ -y . .
there exists a cocycle a : ITXiQ.M%.Aén) with the following

properties:
. w L o= w :
8 ent, @ B =
(i) a is recurrent, and E(a”) fO,JQ} ,

(ii) a% is a coboundary when considered as a cocycle
taking values in JR™ = i.e. there exists a Borel
. , v '
map s (5 R™ with f(yw )= d(w)=a (50

for every 2%ffﬁ and for ))1~a,e.&3é£2.

We put aq(?/,&)) = a‘(?/,&>)+a%(?/,ed), where a' is given by
(10.27), and the measure 3)q and. the cocycle aq:(WX£Zm% R
together will satisfy (1) and (2) in the statement of +this
lemma, so that the proof is complete in this case,

1f d is not a coboundary, we simply set 8, = a', where a'

is given by (10.21). Again Y, and a, will have the

required properties, and the proof is complete.

Lemnma 10,4 Letb v, be a nonatomic & =finite measure
on (f?,?r) which is invariant and ergodic under [~ . Then

b g &
there exists a cocycle a*}/”XiQ ~> AénE for [ on (ﬁz,:ﬁ, VO)

with the following propertics.
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(‘/ Lond -r_h e -

(1) a”™is recurrent, and E(axf) = {O,ag} ,

(2) ‘there exists a Borel map gé:,,Qi%é?n such that
i . i ) # ~ =7
gﬁ(yw )= C]S(&)) = a (y,w) for every el

and for every &)épfza

).

Proof: fTheorem 8,18 shows that / is nyperfinite on nggggjifo
Applying Theorem 8,15 we see that the action of [’ on

(LZ,gZ? VO) is weakly equivalent to the action of /™ on

(SZ,S;; Vx), where }}%is either the Haar measure of L1 or

equal to the infinite measure /Xx defined in the proof of
Theorem 8.15. It will thus be enough to prove the regulb

for [’ acting on (£2,§?131§> with 3}% as above. We choose

a sequence (0{:;a<f;°..) of rationally independent

irrationals in A(q) such that

&
PN D,
KiaAi

and (10.29)

¢ ) _,i
o5 1< 2
#
,fOI‘ evel‘y i:O,/],EZ,ooo s L@"’G ﬁi:Q‘N‘% .Aj(qn>, i:O,/i,aou
be given by

g # * n . o R
(%i,...,(xi>él~x§> if Wy Cw)=1,

g
/gi(aj) = (10.30)
& (O,..,,O)épA§n> otherwise,
and put

(v
* S ¥ A A
(g w) = k%bc/@kw%?/@ - ). (10,31),
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L y o X “ .
As in Example 9.% one can check that a ffxﬁEm%»Aé?) 18

g e # - " :
a recurrent cocycle with E(a ) = {(),a@} « We now consider

¥ . . - . .
a  as a cocycle takln? valu@S in R, Lxplicitly we define

XA -' 3 N
a H x’Q %Rn by & (gf,w) afcgfs[&)) for every ?/96&0
From (10,29)~(10,%0) we see that
w0 1
k

sup sup fid%¥(-y,gu)]§§; 2 oo™ = 2.0,
7er  wel k=0

S | . . !
so that a must be a coboundary by Theorem 5.9, The lemma

A
n

is proveda
We can now state the first main result of this section.

Theorem 10,5 1Letb TG be an ergodic hyperfinite action of a

countable group G on a nonatomic measure space (X’£§7pi>’
and let a:GxX—>R ™, nz1 and fixed, be a cocycle for Ty,
We choose a cocycle %ﬂ Gx X —» /R with
/4T
(8,2) = log L5 (x) (10.32)

*u P

for every ge¢ G and for /L€ ~8.,C.XE X, and define c:GXx X —» /«[{%nm
by
c(gyx) = (a/a (89%),2(8,%x)). (10.%3)

If ¢ is recurrent, bthere exists an uncountable family
{Iﬁ§ :sfaz ;:“5 of mutuvally inequivalent nonatomic =

finite measures on (X, 5 ) such that

(1) for every Mfé oy Mf; is invariant and ergodic for T,
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(2) if Be S sabtisfies M . (B) = O for every j(;‘;;s

thenA/x(B) =

(5) for @very"fgyifﬁ a is a coboundary for T, on
<Xg S,Mf )s

Proof: Using Theorem 8,15, we find a probability measure

v oon ([, 2) such that 1 C is weakly equivalent to [ on
i , av

(gzgtf,xﬁ), and that log d;g

every gwgfq o Applying now Lemma 10,5 and Theorem 5,16 we

is essentially bounded for

consbruct a probability measure ﬂ14AMfA on (X, 8 ) and a

cocycle a, ~ a such that c,(g,x) = (a gy 8, (g,x)) &
(n+4) 5

for every g& G, x &X, where a satisfies (10.52)

/Mq (n+1)

with./ﬂq replacing /M9 and. that o,l G XX w%zx is re-

e - ) \ . N
cuurent with E(é}) = %Q,e@} . Here é} ig given by cq(g,x)

= cq(ggx) for every g,x. We now hav% to consider the ergodic

£

_— N .
decomposition of the skew product TGq and appeal to § Y/
) * i 3 : i 3 = 1 T /‘\\/ 4 A ( n "‘}” /} )
for many of the notions introduced there., Pub X leﬂd s
M«’

write S for the product Borel field, and let A be the
N . . 41 ; Lo
Haar (i.e. the counting -) measure on Ag + >e We set /aq

/Mq x A and apply Lemma V.24 to Ob}?lﬂ the ergodic de=
I
composition of /aq with respect to T, o Letb ([19lfq,’y1)
, N s . (% VI
be the nonatomic probability space and {qy%:y é?fq i
A AL
the family of & =finite measures on (X, ) which satisfy

(1) = (&) in Lemma 7.24, Consider now the measure on (X ﬁgy)

given Dby
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A “ e K1) ) o
d/(xg(xs&é) e d./u,lgx) aA ()
for every x€X and X = (gx(q>,@e@, x<m+1))§ i(n+1) Bince

o
A
{ ~~ d st Tt e S nvars t under the skew - duet
- 19 ana since /!/12 15 1nvariant uncer the SKeW Product

G ' _ L . o
T we can amnly Corollary 0.9 and Lxercise 0,13 to show

G * ¥ %

thea ‘?4»d o€ qJ4 is equivalent to a & =finite Tquinvariant
measure, Condition (%) in Lemma 7.24 and Pubini's theoren

new dmply tﬁ?te for bqua,e,y'éia, T is equivalent to a

J
C £,
L I N o o
¢ ~-finite TG ~ilnvariansc measure 'ty on (-gPS) (for the

definitions of these terms we refer to (7.25),(7.26), and
(7658) = (Va40))e Without loss in generality we assume thabt

every 'T&, ngYﬁ$ is equivalent to such an invariant measure

%y‘ Ixactly as in the proof of Corollary V.25 one can now
show that ﬁy = fzy7724 is a 6-finite measure on (X,§ ) for
every yesYq, where 'ﬁh:g?A>Xiis the first coordinate pro-—
Jection. It is clear that each ﬁy is invariant and ergodic
under TGQ

We now have to digress for a moment. Since the cocycles ¢
and c, are cohomologous, there exists a Borel map f:X-—» R 0+
with cq(g,x) = c(g,x)+f(TgX)wf(x) for every ge¢ G and for
/Hq«aae,X%EXa We choose a T@winvariant Borel selt N of /qu
measure zero such that oq(g,x) = ¢(g,x)+L (T X)mf(x) for
every g €¢G, x&€ X VN, (7.95) and (7.18) (w1th /& /l,,I
imply that N (N) for 571~a c.y&Y,, and once again we
assume it Go be true for every yé{Yq. Prom the proof of

l A ‘
Corollary .25 we see that cq is & coboundary for every
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action TG on (X,ﬁsgﬁy)g y&¥,. Since we have for every
yel,, every g& G, and for ﬁymaaesxé‘x, cq(g,x) = ¢(g,x)
+f(mgx)mf(x), we see that ¢ is slso a coboundary for T, on
(X,S?,ﬁy)a As in the proof of Corollary V.25 we note that

each My is equivalent to at most countably many other My' N

y'€&Y,. Hence we can choose a maximal family'°€ﬁ§~: fé;fﬁ

=" will be uncountable. The proof is complete.

Corollary 10,6. ILet ‘I‘G be an ergodic hyperfinite action

of a countable group G on a nonabomic measure space (X,,g}ﬁi)

and let a:G X% -» R be a cocycle for 1, . We define 2 :G XX
D . 52 e o o N P

s R and c:Gx X >R as in (10.%2) and (10.%%), If ¢ is

recurrent, there exists an uvncountable family fo : j’é "3:}

of mutually ineguivalent nonatomic ¢-finite measures

on (X,5) such that

(1) for every fé =, Mf- is equivalent to a T,

invariant and T,-ergodic measure,

G

(2) if Be,S satisfies M ¢ (B) = O for every f(ﬁ =,
then /u(B) = 0,

(3) for every'ifg_zz, and for M§~wa,e.X€ZX, we have

aM, T
log wijmg (x) = a(g,x)
aM f

for every g€ Ge
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Proof: Let fﬁﬁ : SQ =} ve the family of measures arising
in Theorem 10.5. Since ¢ is a coboundary for ‘I‘G on every

(X, ,S:f,ﬁ§ )y fC = , we can find Borel maps ff 1 X =3 Aé2>
with c(g,x) = ff (Tgx)-—ff (x) for every g £€G and for Mf -

B.CsX &KX, We write

fe G - <f§“><x>,f§?><x>>a/ﬁ23

for the two coordinates of ;f?f and pub
22 ()
am, (x) = e § Al(x) .

f

Clearly we have, for every fc =, every g €G, and for IVIf -

BeCoX € Xy

Mg T
log »ﬁ—»—ﬁ (x) = a(g,x).

The proof is complete,

Corollary 10.7. Let 'TDG be an ergodic hyperfinite action

of a countable group G on a nonatomic measure space (K,g,/‘}

and letb a/}( (Gx X —> K Dbe given by (10.32). Then there exists

an uncountable family f Mg s j ¢ E:} of mutually inequivalent
s

nonatomic ¢=finite measures on (X,& ) such that

(1) Mf is equivalent to a ¢ -finite T ~invariant
and T ~ergodic measure on (X, 5) for every j‘(; =,

dM. T
(2) 1log M (x) = a

= y’ (gyx) for every f{: =, geG,

and for M. ~8,8.X¢& X,

§
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Froofs Theorem 4.2 shows that i/u i8 a recurrent cocycle.

Hence (a/ ,a ) Gx X —>» ,f;? is recurrent, and we can apply

Corollary ’1036 with a=a/a .

Proposition 10.3. Let (X, & ,/M) be a nonatomic probability
space and let Vé*g/fl (X, %,/,() be ergodic and measure preserving.

Then there exists a V-~invarisnt Borel set N X such that
1) /A(N) = 0,

(2) irf /M,];!/u is any probability measure on (X,S)

which is invariant and ergodic for V, then
/Mq(”N) = T,

Proof: Tet (X', ,g*,/M ') denote the unit interval X' = (0,1
with its usual Borel field ,‘3” and with Lebesgue measure /;,4'.
We define an ergodic measure preserving auvtomorphism W of‘
(X',g‘,/&,‘) by Wx = x+ x (mod 1), where X is a fixed
ir’ratj.onc;tl It is well known that /M' is the only W=
invariant probability measure on (X', §'). By Corollary 8.16
V and W are weakly equivalent. Hence there exists a Borel
isonorphism QS:XM& X' with /,4' = /u¢ -1 and with

é kax:l{ QZ% = {Wkg{'(x):kél’? for /u-a‘,eexé-: Xe We
choose a V-invariant Borel set Neg X ﬂsuo’r; that /,((N) = 0

and Cékaxzk cZh = fkyﬁ (x):ke Y for every x¢& X\ N,
Since Qf is an isomorphism, Nf= %(I\I) € ' in W-invariant

in X', and /W(N') = 0, The restriction of W to (X! \N',SXM\N,)
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has /ui,\ it 88 its only invariant probability measure. Fron
Lxercise 1.2 it follows that the restriction of V to (X NN,

§§X\\N) has a unique invariant probability measure, namely

PIrove,

Corollary 10,9, Iet (X,ﬁS,fﬁ} be a nonatomic probability

space and let TC be an ergodic measure preserving action
v

of a countable group G on (X,ﬁ?ipi)s Then there exists a

TG—invariant Borel set N'< X such bthat
(1) /ﬁ((N') = O,

(2) if /M1¢7u is any probability measure on (X,S)

which is invariant and ergodic under TG, then
%,](N') = /tc

Proof: By Theorem 8,22 there exists an ergodic aubtomorphism
Véffﬁgja We apply Proposition 108 and choose a V=invarisnt
Borel set NWCX which satisfies (1) and (2) in Proposition
1086 Futb N*:TGN. It it easy bto see that N' will sabtisfy

(1) and (2) in the statement of this corollary.

Theorem 10,10, Let V be a Borel automorphism of a gtandard

Borel space (X,5) and suppose thabt there exists a nonatonic
@ ~finite measure on (X, &) which is quasi-invariant and
ergodic under V., Then there exists an uncountbtable family

of mutually inequivalent nonabtomic, & -finite, infinite
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measures on (X,.5) each of which is invariant and ergodic

under Ve

Proof: ILet Yz be a nonatomic & ~finite measure on (X, )
which is quésiminvariant and ergodic under V., We define the
cocycle a/u : ZxX=> R for V (i.e, for the #Z -action n-> V%)
by (10,52) and choose a second coycle a: Zx X > /R for V by
setting a(n,x)=0 for every n,x. Theorem 4.2 shows thatb
(a/{,a):éﬁx}im»,ﬂzziﬁ recurrent., Hence we can apply
Cdrollary 107 to f£ind an uncountable family {Mé :‘fé EZ}
of mutually inequivalent nonatomic & =finite Vwiﬁvariant
and V-crgodic measures on (X, ). If uncountably meny of
the measures {M - 3 5G:E:}° are infinite, the theorem is
proved. Otherwise, let M,f ) tfoéﬁif, be a totally finite
measure, We assume MO = Mf?o to be a probability measure
and apply Proposition 10.8 to find a Borel set Nog:x

1 for every V-invariant

il

Wit | = £ sucl hat \J
ith VN =N_, and such that /u4<No)
and V—ergodic probability measure /Mﬂ%mo° Put X' = X\‘No’
' =G, MY = M, and write V' for the restriction

P~ _X_ OY §

£

of V to X', We apply Corollary 10.7 to find an uncountable
number of mutually inequivalent nonatomic g—finite V'e
invariant and V'eergodic measures on (X', §'). The choice
of X' implies that at most one of These measures can be
equivalent to a probability measure, so that uncountably
many among them must be infinite. We put these measures

back onto (X,5) in the obvious way, and the proof is complete,
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We can now present a sufficient condition for equation (10.1)

to have a solubione.

Theorem 10.11. ©Let V be a Borel automorphism of a standard

Borel space (X, ) and let f£:X-—» lff{ be a Borel map. Pub

B, = 1 X{M}L.llm inf Zm I(ka){ %«

£ k=0 ’
LE there exists a nonatomlc V=-invariant and V-ergodic probability
measure /u on (X,8) with /u(b .)=1, then there also exists a
nonatomic & -finite measure /x on (X,& ) which is quasi-

invariant and ergodic for V, and which satisfies
d
Log ’“ () = £G)
for /a'«»a.e,xé"}i.

Proof: bince /LA is nonatomic and ergodic, we have

/,a {x:VnX:xg = 0 for every n#0, Hence there exists a Ve

invariant Borel set N CX with VN=IN, /M(N)=O, and such that

'an;éx for every xe& XN N and every n%O, Tet X'=X\NN, §'=
X" /h /ﬂf,, V' the restriction of V to X', and £' the

restriction of £ 4o X', Put

‘ﬂ:;:] k
Z. £ (V) for n»>0, x¢X*,
k=0

al(n,x) = 0 for n=0, xe X',

ua'(mn,vnx) for n€ 0, xgX',

Then a':ZxX‘w& /K is a cocycle for V' (i.e.for n->ViH)

on (X', 24 /M '), and we shall prove in Corollary 11,2
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that a' is recurrent. Applying Corollary 10.7 to a ,

and a', we gelt an uncountable family of measures fMg
d

oy } , each of which satisfies

Fe =
o
AM, V!
log —dee (x) = £1(x)
dM§

for M§'maee,x65X'. If we put any of these measures

onto (¥,%), we have proved the theorem,

]

se

hack
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§ 11 Coeycles for single measure preserving transformations

Let (X,fS;/A) be a measure space and let A be a locally
compact ﬁéﬁond countable abelian group. If Vifdi Gi,ﬁ?,fﬁ)

is ergodic, we can study cocycles for the £ -action n:>Vn,
n¢ Ae on (X,Ag,/x), buch cocycles are simply called cocycles
for V., A oocyolé a: Zx X~» A for V is thus a Borel mazp

satisfying
a(n,me)ma(n+m,x)+a(m,X) = 0

for every x €X, n,m&¢ £. Any such cocycle is uniquely
determined by the function f = a(1,.). Indeed we have, for

every XEXL,

=L Y
2. £V x) for ne1,
k=0
a(ngx) = 0 for n=0,
ma(wngvnx) forz&éwﬂﬁ

Conversely, if f£:X ~» A is any Borel map, formulae (11,1) =
(11e3) define a cocycle a for V. a will be a coboundary if

and only if
f(x) = c¢(Vx)=c(x)
for//aua.e,X<§X§ where £:X-» A is a Borel map.

Throughout this seection we shall asgsume that Vs is a none

atomic probability measure which is invariant and ergodic for

(111)

(1142)
(11.5)

(M11e4)

Ve
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Theorem 11.,1s Let V be an ergodic measure preserving aubo=

morphism of a nonabomic probability space (X, g{,ﬂ) and letv

are equivalent:
(1) a is recurrentb,

(2) for every neighbourhood N(0) of O in A,

n>1

/u( (J $xia(n,x)ew()l) = 1. (11.5)

- L o . el ., . :
Proof: Lebt X = XxA, put & equal to the product Borel

field, and set /Z{ = /,MX)\ , where A is the Haar measure on

Ao As in § 5 we define a skew product transformation V_
Ch
Fav

SOAVIIV
on ()&,Ef,/u) by
Va(x, o) = (Vx, x+a(1,x)) (11.6)

for every (x,u« )€ 1/, Vo jp:t?eserves/?f and i1s congervabive
if and only if a is recurrent (Theorenm 5.5). Assume now
a to be recurrent. We £ix a neighbourhood N(0O) of O in A
end. choose a neighbourhood W, (0) with N, (O)q—N,I (O N(0).
f O = Xx N, (0), the recurrence of a implies that, for
/,4 ~a.e.(x, K ) € (), we have V‘g(x, x) e  for infinitely
mony k € A (efe (147))e Let D = { X, % )E Dﬂzvg(x, o )gé@d

for k#l., Since V_ is conservative, we have /M(D) = O,
Fubinis theorem now implies that for /(--a,e.xé'}i; there

existe & k>0 (depending on x) such that a(k,x)&N(0),



so0 that we have proved that (1) implies (2).
Yo prove the converse, assume that (2) is satisfied, We

choose an invariant metric /\ on A, If & is transient,

there exists a B ¢S5 with /M_(B) >0 and an £ > 0 such that

ii

BAV™R 4 {x: J(a(mx),()){g [ ¢ (11.7)

for every n#O. Decreasing ¢ 1if necessary, we nmay also

assuine that
B(O, £/4) = { <€ A VA(GC,O)a{ E/4

has compact closure. Put & = X *¥B(0, £/4). Then Oadza(éfj
£
< ®, We shall first prove that, for /Z“aq@¢<x9ﬁ(>fiﬁr’
V§<X,0€)é Cylfor infinitely many k¢ £ . Indeed, let
Fk] = U //) {‘X: /\(a(ngvll?LX)gO),?/1/1-2]&}
ome £ onz
for every k,lz1. (11.5) implies that /“(Fk,l> = O Tor

« Hom @very*xuﬁX‘ﬁFl, there

every kyle Put F., = L/ .,
? L7 Tk, 1

exist

n, 1 with é/\(a(nq,x),o)<’i/l.2,

e 0pCeO0pB

Zl,l +toosoe -Hlk__,]

>1 with 0A(a(nk,v X),O)Aiﬂ/l.2k9

X._J

nk:

L - ]

etCa

Hence we have, for every XegX‘xFl and for every k=1,25000,4
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D+eeetily
ﬁ(a(a +¢o@+nk,x) 0) <« dzagﬁ(a(nlg 1 ”4x) 0)L1/1,
which in turn implies that
MO U am,0<1/1E) -
, k=1 nek
A

for every 1>1. From (11.8) it is clear that, forlfdma,e,
(x,%)e& J, V Cx,m Ye ' for infinitely many k> 0. Having

established this, consider the setb
D = BxB(O, £/4),

with B given by (11.7). It is clear that vkﬂzka D = ﬁ
whenever k#k's On the other hand we have VE(X,M,)g o

for infinitely many k>0, for/ﬁﬁmaaeg(x5 x ) €D, Combining

e . . .
these two statements, we get}/ﬂ(éf) = ¢, which is ilmpossible,

Hence a must . be recurrent, and the theorem is proved,

Corollaxry 11s2, ILet V be an ergodic measure preserving

avbomorphism of a nonabtomic probability space (X,fgz/x),
and let a: £ xX-»A be a cocycle for V, Then the following

conditions are equivalent:
(1) a is recurrent,
(2) for every neighbourhood N(0) of O in A, we have
/M (/ﬁ ] {X sa(n, x)c,NCO)})

k=1 n = k

(3) Lim inf /(a(n,x),0) = O for M -a.e.xe X,

(11+8)

(11.9)

(11.10)



1Meb

Proof: If a is recurrent, a will satisfy (11.5). Hence a
will satisfy (11.8), which in turn implies (11.9). (11.710)
is an immediate consequence of (11.9). (11.10) implies
(11+5), and hence, by Theorem 11.1, the recrrence of a,

The proof is complete.

Corollary 11e%., Let V be an ergodic measure preserving

automorphism of a nonatomic probability space (X,é?i/ﬁ>

1

and let a:Z xX~» A be a cocycle for V. Then the following

conditions are equivalent:
(1) a is transient,
(2) for every compact sebt KA,
m H e -
/Li(fﬁ o tx:a(n,x)cKf) = 0, (11.711)

k=1 [nigsk

(3) Lm a(n,x) = ©® for mBecaxEXe (11.12)

Proof: (2) and (3) are equivalent and imply (1) by Corollary
1MeZe Assume now that a is transient. Let KCA be a compact
set and let Jibe an invariant metric on A, We choose ¢ >0

such that A Yxed: Mo ,K)<ce b < aw. Put

O=xx {0 : M, k) §,
B = () f{xia(n,x)eK [

¥=1 tni 2k
and

C =Bx $x¢ A:d‘(m,o)z,’e} .

it

Our assumptions imply thatb Oaﬁ/r(57)zia@. If /%(B)}»O, we
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can find a subset DB with /y(D);>O and a §'>-O such that
DAVTD A {x: H(aln,x),002 f | = ¢

whenever n#0 (cf. Exercise 3.,20). We may assume thatb fﬂi;

and pub
E = Dx {mazx:aﬂ(@(,o)zg S/0 1 .

Then V?Efxvg'? = ¢ whenever k#k', ;7CE);>O, and Vg(x,gx)
will lie in (7 for infinitely many h, for }:ua.e.(x,mf)éfE.
Again this is impossible, since it would force (J to have
infinite measure. So B must be a null set, and the corollary

ig proved.

ffor real valued cocycles one can prove a much more useful

result:

Theorem 11.4s ILet V be an ergodic measure preserving

automorphism of a nonatomic probability space (X,égnﬁﬁ)

and let a: Z xX -» K be a cocycle for V. Suppose that
fja(’l,x)[d/,f(x) soo. (11.13)
Then the following conditions are eguivalent.
(1) a is recurrent, (11614)
(2) J(Qa(’l,}:) G ) = 0.

Proof: Suppose a(1,.) is integrable and ‘/a(ﬂ,x) %f%(x)ch%O.
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From the individual ergodic theorem we get

. a 4
1im TR = G
n n

and hence

lim [a(n,x)( = 0
n

for /Mma,eozcé;x. Corollary 11.% shows that a is transient,
Lo prove the converse, assume bthat fa(ﬂ,x) dpe(x) = 0,
but that a is Utransient. We choose €3> 0 and B .S with

/u (B) >0 and with
Bav "B {x: /23.(1’1?}{)/@;{;} = 95 (11.16)
for n#0. As in (8.6) we set, for every x &B,

min fn2hVxeB | if {n>1:vPxen} Ao

L0 otherwise,

and put

» k . N
N, = kgév {x:n(x)=0%,

= 1{6;2/0 § %2 %=x],

=
o
!

and
C = BN N,li/l\Ige

For every x €C we define the induced transformation Ve by

VCX = Vn (X>X3
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For every x £C and for every k=1, there exists a unique

integer n(k,x) with

n(k X)k I

Ln @

In fact, n(k,x) is given recursively by

n(1yx) = n(x)

il

n(k,x) n(V%qu)+n(k»4,X).

The ergodic theorem implies that for /Momd X EC,

lir n(k X) /ﬁCQ) - /M<L>)

We can thus find a set OchO with//<(01)>0 and an integer N»0

with
k C
/u( ) (11617)
n(k, X) 2

whenever x¢& G, and kzN. (11.16) implies thab
la(n(k,x),x) = &

for every x&C and kz1. It follows that for every xeC, and

every kq%kg,
[a(n(k,},:x:) x)-a(n(k,,x),x)[ 2 £ .

We conclude that, for every xe&C and for every k=1, there

exiagts an integer k, (x) with 0 < [, (%) < el
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. . S oK
{a(n(ko(x),x),x)lfé M?;“°

In particular we geb
. !a(n(k§x),x)i ) .
Lim sup ” > £/2 (11.18)

for every x £C. Combining (11.17) and (11.18) we geb, for

every x&C,,

la(n,x)| la(n(e,x),x)] €. p(0)
. (.)‘ o

> lim,_sup b
n “ kK n(k,x) &

But the individual ergodic theorem implies

a(n,x) -
R jla(ﬂ,x) du(x) =0
n n /u

for fxma,@,XéEX, and this contradiction shows that a is

recurrent. The proof is complete,

We now turn to the problem of devermining whether a given
cocycle for an ergodic measure preserving automorphism of
a nonatomic probability space is a coboundary. We start with

a general result about measure preserving group actions.

Proposition 11.5. Ieb (X,ﬁi,/&) be a nonatomic probability

space, let TG be an ergodic measure preserving action of
a countable group G on (X,ﬁg,/ﬂ), and let A be a locally
compact second countable abelian group whose only compact
subgroup is ‘{O@ « Let a:GxA~> A be a cocycle for TG, and

form the skew product Té on (X,;y,/n) as defined in
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(5e1) = (5.%) and (5.6). We consider the ergodic decomposition
of /TZ with respect o Tg. Let (¥, %g} be a measure space
and let {qy:yéY} be a family of & =finite measures on

N A

(Xy §) which satisfy the following conditions.

A

(1) For every B €S, the map yw}qy(B) is Borel from

1 To Fé”,
(2) Tor every BE cg, /j(B) = fqy(‘B)df(y),

(3) Lvery q_, y£€ 7Y, is invariant and ergodic under

a
Tl

G

y’

and ¢, are mutually singular,

4) For e r i
(4) Tor every y#y', Ay v

A A
.

(5) ILet S = fBé t%‘:fﬂ‘éB = B}. For every Be;(S‘g, we
_ ~ . ; " ol 3 : ~ A2+ 4
put By = {ye;\f:qy(ﬁ);»oj. Then SY:: {BY:B(;S :ﬁ‘

is equal to V modulo sets of fwmeasure ZeI0 e
Then the following ig true:

(6) E(a) = {OS? (ieee a is a coboundary) if and only

if 4y is totally finite for f =2eCaV E Lo

(7) E(a) # 0} 4if and only if q, is infinite for

§) "aceoy& Yn

Proof: Suppose bthat E(a) = {O} o Then there exists a
Borel map b:X ~> A with a(g,x) = b(Tg:x:)»-"b(x) for every geG
and for/u-a.e.x €Xes Let Y = A and choose ?to be +the Borel

field and f = /\ the Haar measure of A, For every xe A



11611

i NS
we define a map cfm :X - X by sebbing ¢0&(X) = (x, K+b(x))

for every xgX., If we now pulb, for every x € A,

Qo = /Méé;qs

we obltain a family {ng :aCé”Y§ of probability measures

on (%;é?). It is easy to see that (Y,gyffn) and {qﬁ;:zxé T}
satisfy (1) = (5). The unigqueness of the ergodic decomposition
now implies that we have proved the following: If a is a
coboundary, and if (Y,E?tf?) and ‘fqy:ytsY} satisfy

(1) - (5), the Ay is totally finite for 9 ~8.CsY €& Yo

Next we assume that £(a) = {b,&w} e It is clear that the
statement of Proposition 11.5 is not affected if we remove a
TGuinvariant set of measure zero from X. Using Corollary
10.9 we may thus assume thaﬁ;/A is the only probability
measure on (X, Y ) which is invariant and ergodic under T..
The ergodic deconposition of )Qf with respect o Ta is
described in Lemma 7.24, and és there we denote it by
<Y§i§?;i§fi) and. §q§x:yxg Y:L}, where we assume q;% to

be invariant under Tg for every y%é'if (cfe Corollary 6,9),
We write ‘ﬁqiiiééx for the projection onto the first
ccordinate. As in the proof of Corollary we show that

E S B Ve i . . .

qyxﬁ q 18 a 6 ~finite TGulnv&rlant and TGuergodlc
measure on (X ,S’) for every ji;Yj; The assumption that

« 18 the only T.=invariant probability measure on (X. ¢
<. G &/ ',

. . A e e
implies that the measures qy%h“,]1 are infinite
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E P _ ) . ;

for qumaseeyégzqs We have thus proved - using the unigqueness
of the ergodic decomposition = thalbt whenever ﬁ(a) = fwo,ﬁaﬁ
and whenever ()/,;M;f ) and fq, ¢t} satisty (1) - (5),
then qv is infinite for § ~2eCeY € Le

inally we have Lo deal with the case where E(a) # {0%
bince A does not have any nontrivial compact subgroups,
the Haar measure ’Xo of B(a) will be infinite. We pub

(x‘ P . W ¥ . - E
A = A/E(a) and write A for the Haar measure of A ,

<t
n

There sxisobe

~ # . Ky o .
a Borel map {/ :A~—= A with V(4x¥)+b(a) = (X
. ¥ X " - . e .
for every X € A" (cfe Lemma L.5-4 din [34]), and we

3

RL ¥ LI 'al
may assume the measures Ao and A to satisfy

A @) = f [ Jaly e p) d/\gc/fD a A" ()
,,,,, e ,

for every Borel set BgA, where Y is the characteristic
- - . . £ s

function of B. As in Lemma 5,10 we write a :G xX ~> A

o . . * . . \

for the cocycle a’ (g,x) = a(g,x)+h(a), Suppose we have

found a measure space (Y, ?) and a family of & =finite

- ¥ B v 2% NP SN e »
neasure s fq‘:yé % on X XA satisfying (1) = (5) for the

B3 o
cocycle a o Tor every ye&¥Y we define a measure qy on (M,‘S)

! 4 9 : ¥ 5 * *
p®) = [ [ yple pxTIep) aA(A) ag (x, &)
€ , J
XxA" E(a) '
for every Béiéf. bvery Oy will be infinite and 6-finite,

and one can easily check that (¥, &f,gv and {q ‘Vﬁ
satisfies (1) = (5) for the cocycle a. Together wmth the
uniqueness of the ergodic decomposition this completes the

proof of bthe proposition,
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Lemma. 11.6. Let (X, 5‘,/,«) be a nonatomic infinite measure

31

ace and let V be a measure pregerving auvtomorphism of

@

(A,g /A), Suppose (Y \f,f) is a measure space and
{qy:y{;i’} a family of ¢ =finite measures on (X, 5)
which form an ergodic decomposition of ;¢ with respect

To Vi

(1) Tor every Be &, the map y@qy(‘,‘t}) is Borel from

(2) Tor every B¢ Y, /{A (B) = [qy(B) a ¢ ()
(3) Bvery a_, v€Y,is invariant and ergodic under V.
of

(&) Tor every y'#y, d,v and q, are mutually singular.

- 4 L% R y . i -

(5) Let S = {Be&:VB=BJ . lor every B €5 , pub
¥ :

fjf@: ":f:g,,,,(B)ny} o Then f»‘é’i« = {BY:B 8 }

is equal to Wmoou"lo sets of f-«»measure ZETO0 o

Suppose furthermore that Qy ig infinite for f “wleQoeV& Y
hen we have, for every §J~ir1tegg;rable real valued Borel

o 1 ﬂmq k . «
linm = 3 L(Vx%) = i‘o:;;“/uma,e@?zcé'}{a
n k=0

]
e e cme (1 . s e k
Proof: 'he set ¢ = {:x €X: lim sup !5 1{%0 £ (Vv f)[ %

is Borel, and the individual ergodic theorem implies that
qy(()) = O for fP-2.eeye Y. Hence /u. (C) = 0, by (2), and the

proof is complete,.
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Lemma 11.7. Let (X,;%J?/,/a) be a nonatomic probability space,
V on ergodic measure preserving auvbtomorphism of (X, S"/’i>‘f
and a: ZxX > K a cocycle for V., For every n € £, vie

-

define a probability measure “?:2 on K by
TZ'CB) = f‘xe}iza(ng}c) €BY m/ua(n,,)“q(f’;) (11.19)
for every B& 4. Then the following conditions are equivalent.
(1) The family f‘t‘ 3: ne Z} is uniformly btight,
(2) +the family {Tj i:n‘g’i S’ is uniformly tight,
(5) a is a coboundary,

Proof:s The equivalence of (1) and (2) is obvious. Assume
now that a is a coboundary, and choose a Borel map b:x —> IR
with a(n,x) = b(V'x)=b(x) for every n and for /(/(ma,e,xé}i.
Let P = /Abmq = /M(b.\fn)"/],, For every fixzed g:";r«* 0, we
choose a ‘c( &> O such thab Y it:tl>cle)b 2 e /2.

For every n € Z we get
/u, Fxcs {a(n,x)gf > 2c(e )] i /a f x: !b(x)g s c(g )3’ +
M {x: o) [>c(e )t 2 € .

e a g i e ¥ > - oo p e b
Hence T {tef6i>2c(e )} £ & for every n, which shows
that {1 in € Z 1 is unifornly btight
E 3_1. e o fhnsbe o ln. B of S &
; : A, . ‘o
To prove the converse, assume that {’tn:n;’! 7 is uniformly

tight, and choose an &> 0. Then there exists a ¢(¢ )>0
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[ e A C S ~ K . o .
with T it:ft);po(g‘)ﬁ £ & for every nx7. We consider the

skew product V_ on (%, 5}/1) defined as in (10.6). Ieb

E o= X xf-%,%]c X,

=

where [«3,27 = JteR:~1/2ete1/2), and let

O] P

Then /j:{(}?}) = 1 and /&T’(:@) = 2e(€)+1. Since To{ti|tl>cle)fcE

we getb
ﬂ(V;nEnB‘) > 1= €
for every n & #Z. Hence
[5G, k). e, 60) @ jiGey 0 ) > 1
= > Ve (Vo(xe X))o Fulx, & d sz, )> 1= &
i futat Awts A
for every n >1. Since ;gF is integrable, this shows that
~ v = L
/m (%, K)g)&:llmnsup ﬁjlﬁbzg(va(m 0())[;4 O;}'j;y 0.

Lemma 11.6 and Proposition 11.5 now imply that a is a COw=
i 2 12N

boundary. The proof is complete,

Theorem 11.8. TLet (X,:K,/u) be a nonatomic probability
space, V an ergodic measﬁre preserving automorphism, and
let A be a locally compact second countable abelian group
of the form A = Z,l?,s(ile, where k,1 =0, If a: Zx¥X->A

e 8.

is a cocycle for V, we define probability measures T n?

né # on A by
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'C'f1<l3) = //( {X cXsa(n,x)¢ ]3}

for every Borel set Be A. Then the following conditions are

equivalent,
(1) The family +§ “?:"i:n e Z Yis uniformly tight,
(2) the fanmily \%t i:n »1% is uniformly tight,
(3) a is a coboundary.
Proof: Iet A = %ikfx’ JRE. te write every point & € A as
K= (X gaeeny Kyey Kppqamees Fogyq)

where ;€ Z for i=1,...,k and ,;)Cié*ﬂ for i=kdl,eeeqk+le

Furthermore we define maps %’i:A — R by

pi(a) = xy

for every ¢f¢ A and for every i=l,...,kt+tle If a: X > A

is a cocycle for V, leb aizzf,&(}iwbﬂ be given by
a;(n,%) = ¢ (aln,x))
for i=146e0,k+Ll, and pub
a.
e Ny ) é#l
Ly = U0y

for every n & Zfﬁ, and for i=1yeee,k+le If the family {‘t" i:
. a. B
n €. Z § is uniformly bight, each family ffnl:n cZ1,

i=1yee0,k+l, will again be uniformly btight, and we can apply

(11.20)
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Lemma 11.7 o show that each a., i=T,.06,k+1, 18 a coboundary.
i s 3 9 Y

Problem 11.9« Does Theorem 11,8 hold for every ergodic

measure preserving action of a countable group on a non-

atomic probability space?

bxercise 11,10, Generalize Theorem 11.8 to the case of

an ergodic measure preserving action of a countable

amenable group G on a nonatomic probability space (X,ﬁ%/q),



§ 12 Some examples

If a is a cocycle for an ergodic aubomorphism of a measure
space (X,ﬁ;n%i>, the computation of E(a) is usually a problenm
of considerable difficulty. In this section we shall compute

E(a) in some special cases,.

The first cocycle will be a random walk on the inbegers. leb

¥ be a probability measure on Z with
fk; a v(x) = 0. (12.1)
We put
X = # (12.2)
for the cartesian product of countably many copies of Z£ ,

denote by & the product Borel field, and write =

‘YF Yy with 12k=i> for all ke Z. A point xe X will be
ke Z
written as

X o= (’OE’XN/I’XO’X/I,GOO)

-

with Xié”Z? for all i. We introduce the shift V on X by
setting
V(OQQQX_‘/‘QXO’X/],OOOD = <90@,XO,X,‘,X2,QDO> (/]205)

for every x = (,.,,qugxogxq,eo.) in X, It is well known

(and easy to prove) bthat V is an ergodic measure preserving
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aubomorphism of (X,£f3;4)¢ Let £:X—» #& be given by
f(x) = X, (12.4)

for every x = (°°°9XN47XO,X49°°“>¢3X9 and define a cocycle
ar Zx X =2 Z for V by (11.1) = (1.3). For every nx1,xeX,
we have
n=1
a(nyx) = Z % (12.5)
k=0
If we consider the sequence (a(Nye)y N=1424000) as a
sequence of integer valued random variables on the pro-
bability space (X,A;}%i), we obtain the random walk on
Z given by vV . (121) and Theorem 114 imply that a is

recurrent, If we define, for ecvery xgX,

min {n};’l:a(n,x)zo} if {n:;a”i:a(n,x):()} ;E}é,
p'(x) =

0 otherwise,

N . @
we see that /u {X:p'(x):O} =0, Put N = Lj Vifxipt (x)=0}
k¢ £
and let
1 if x €N,
p(x) =
p'(x) if x& XN Ne
Consider the automorphism

Wy = Vp(X)X, XE X

Clearly, Wé fVY e Using (11.1) = (11.%) we define a cocycle



pr EXL~> Z for W with p(1,x) = p(x) for every xE€X. Let

o- Uz~

n =z
For every x€ X, k& Z , we define
r — . - oy
ZKCXD - <Xp(km43x)’xp(kmﬂ,X)+1’““”’Xp(k,x)mﬂ> ¢

Regarding () as a discrete space, we nobte that ZK:X — &

ig a Borel map for every k, and that
lyepq (x) = 2y (Wx) (12.6)

for every k,x. We consider {ZK:IKGZ} as a two sided
stationary stochastic process on the probability space

(X, S',/M) ~ the stationarity being obvious from (12.6).

Lemmna 12,1, The random variables {Z’k: A } are independent,

Proof: This is a consequence of the strong Markov property,
e include a proof for the sake of completeness. Tetb 1{,14,1%«5;

. 2t LN . [age .~ £ 3 T A
coe <k ¢ Z with mz2, Since <Zk ,“Mka) are independent
if and only if (2, ,w"“‘kﬂ“*“",.“,zk @’V‘J"'knflm) are independent,

1 “m

we may assume bthatb k’l:/l" For every n =1 we put an (CX:
p(’l,x):n} « Then Bn is independent of the coordinates
nyn+l,.00, and the same is true for the set Bn N éx:Z,] (‘x)czl?,]} )
where F,] is any subset of G . Let now ?a*,],“,,FmC d.

Then we have
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m . Y 5 I . ,
/A(i{:}q EX:ZKi(X) €F. 8 ) = é«f /4 (if;)/} {X:Zki(}{) é:FiS nB.)
/XC f) $x: 2, (A)(.F 3P o8By n txn, ) er i),

Il>4

For i=2,...,m we have
[(y Ziy (,z;)c T, M B, {X:<Xp(l<i»2,vnx)+n’°””

Xp(kim’l,vnx)+n> € big n By (12.7)
The first term on the right hand side of (12.7) depneds only

on the coordinates n,n+l,..., and is thus independent of

B, as well as of B_/ t Xl ()€ Fq'ﬁ . Hence
mo |
iQ2 [(X" (Xp (1{i=-2,”\/"nx)+n’ eoe sy (kiw’l ,an)+n) 4y I
is independent of B 7 EX:Z/} (X)é’}?,]} . We get

n iy
p pa Py o T,
//i (iQ’l {\. x) € B, :l; ) = o 4(10 {x Zlki(x)a }fl} e

{x:z,‘ e ¥t N B

) k)"l/u( /) t: (XP@%’_“‘gsVnX)MN"”’XP(Ki“%VnXHn)é BT

nlxser,in b))
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R m

it

,/u( {xzzq(x)équﬁ N Bn}

il

mo B ‘ N
fﬁ%Qgi&mZkfﬂ(X)ébiﬁ)./A({Xg%(x>ébq})

il

/&(iﬁé {X:ZK'CX>@]ai}>O/M( fx:2,()em, ).
: = 1

Induction now proves the independence of <Zk ,a,@,Zk Je The
1 m

proof is complete,

Lemma 12,2 Letb ﬁgq be the smallest o-algebra of subsets

of X with respect to which the random variables {Zk:k<§2§}

are measurable. Then 5, = 5.

Proof: This is obvious.

Lemma 12.%, W is ergodic on (X,f?a%{).

n%};/]/‘ <iQ2 {X: (Xp<ki“2,vn}§)+n’ [ 2 ’ch}fi“‘/} ,\]nx>+n) é’; in } )

Proof: W is the shift of a stationary sequence of independent

random variables which generate the & -algebra ﬁg. It is

well known that this implies the ergodicity of W.

We can now determine L(a),

Theorem 12,4, Let (X,ﬁg,f4> and V be given by (12.1) =~ (12.%),

and let a:%?x X-» # be the cocycle (12.5). Then E(a) is egual



to the smallest subgroup of # containing {k:‘p(k))»@ }.

Horeover a:i= O whenever E(a) = {07 .

Proof: Let u:R(V)-» FZ Dbe an orbital cocycle with aEFa L,
and let B C X be a Borel seb with /&4<J>>’O If p(€kxf)»o
there exists a Borel set C with f{(C)}»O such that a(1,x)
u(Vx,x) = k for every x¢&C. Sincé W is ergodic we can choose
a Borel set D « B of positive measure and integers n,s05

1, n, n,
DecC and W “VW DCB.WM?merXQD wehmm

w,x) = u 2y ]

such that W

n
Yoy

u (W n, JW X)+u(vw qx W qx)+u(w KX)o
The first and last terms are equal to zero for/ﬂ —2eE X & Ky
and the middle term is equal to k. It follows that, for
every Borel set B with /4(B)>»O, there exists a W, efv]

-1

with /M(B/qwq B A {3.u(w x,%x)=k{ )>0. Lemma 9.5 shows

thatjké’n(a). Hence E(a) contains the smallest subgroup of
# containing fk:'y(kﬂ,>Cf§. It is also easy bto see bhat
no other integer can lie in B(a), and the first assertion

is proved. The second assertion is btrivial.

Theorem 12.4 can be generalized qguite easily, butbt we
shall instead bturn to an example arising in the btheory of

uniform distribubtion (mod 1). Let X = R/%Z = [0,1) denote
the additive group of real numbers (mod 1), and let S pe

the Borel field and A the Lebesgue measure on X, For

every ., K&K, we write o 4+ zx’? for K 4+ 0< (mod 1)

let now o€ X be irrational, and pub



V, x = xX+& (12.8)

for every xe Xo. For every irrational « & X, VO{ is ergodic
and mes a1y q O COO YT Ty O 7 oo We P4 1 = i are)

and measure preserving on (X, 5 ) JA Je We Ffix & for the
moment. For every real number /:Z with O é-;/}é; 1, let

{ﬁwﬁ if 0£x</3,
[

(12.9)

We write

2 ?ﬂ ) B KL~ ] (12.10)

for the cocycle for fo: arising from f/g through (11,1) -

(1Me5)e Theorem 11.4 shows that a(&( /3) is recurrent for
k]

every (& ,/4} with o irrational and with O %‘:/ﬁ £ 1,

)

Proposition 125, a(»@f %} is & coboundary for '\f&x it
3

and only if

K = nx (mod 1) (12:11)

for some n QZ@

Proof: HSuppose that & y is a coboundary. By (11e4)
bl ¢

there exists a Borel map c:X->» K  such that

f/g (x) = c(x+ o )=c(x)

H

for/nma@ee}{@ Hence

2T () | RTEA L 27 (e K)=0(x)
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,,,,, 27 . - .
.LOI‘/][ ~2.CeX € Le In obher words, e’ 71ic(.) is an eigenfunction
7 2w i/? - .

or Vi with elegenvalue e /s Bince every eigenvalue of

V% is of the form e“ 7 for some n¢g £ , we have shown

that /3 satisfies (12.71).
To prove the converse, assume that /? satisfies (12.11).

Expanding i’/g in a Fourier series, we getb

&

e DG A T i I i T
/g (%) = L (27T ik) /la{eﬁ‘ T ikn o ~1),e2 T ikx
For every k#0 we put
= (27 ike ( G olk o mq)>m1<627‘7’“11§nﬁ! 1.

Then /. jo}{,égé'm , 50 TGhat
k#O

) e 3 T
o(x) = Z e, RN 1kx

lies in LL(X,SZIL@)Q HMoreover we have

S

c(x+ o) = c(x) = ,Z;m (27?,11{“(62‘#11{@{%,‘))««’3&

(e?E“?/” ikn « ~1) (eg"i’f ik & ~1) e2 i1 ikx

£, (%) (12.12)
/£

for/u ~3,6eX € Xe (12.,12) shows bthat a<6( /3) is a coboundary,
| ?

and the proof is complete,

We now bturn to the special case //3 = 1/2. We fix the ilrrational



number « & X and put, for every n e f, x &X,
a.@(ne,;x:) = 2"’61(0( 9,[/2>(}:1,‘,x)@ (12,1%)
Since a (n,x) & £ for every n,x, we shall consider

a t A XK > F (12.44)

7

ags an integral valued cocycle for V . We denote by

[a_sa, ,a@%w@] the continued fraction expansion of «
O ] Fosd h

and write pk/qk, k20 for the k-th convergent of o .

Recall the well known formulae
B ma- 5 o 6 6 g /} 2 & 5
pk/qk L o 7&,1 9 $ dl{ 7? ( 1 2

™ (g -1, =2
[ 6 =P/ [ £ (0 q) £ G (12.16)

k o
AP q~Pyleq = =107, (12.17)

Py = 8Py 4Py p: (12.18)
and

(P o O R S (12.19)

for every k»0, where p 4=4 ?:::’l and p 5=q ,]:O‘s Hor details

we refer to [7{; 241

Lemna 12,6, E(a)n {1,531 # ﬁéa (12.20)

I

Proof: The inequality of Denjoy and Koksma (of. [;éé’/ §7)

implies that, for every k20,



"]
(85 (a0 > gy, Gerin) |
sup (a (g, ,x){ = sup { 2ol o (x+l X !
xex O K xex ! 1m0 V@

E«V&Z‘ :f/!//zg = L’r?

where Var stands for variation. (12.17) implies that Uy 1
is odd whenever Uy is even. In parbticular we conclude the
AN

existence of an infinite sequence kq kn  see such that e

.

is odd for every i. It is easy bto see that a_(q

o Ly ,x) 1s odd

, i
for every i and for every x € X. Hence lao(qk ,x)| is either
i

equal to 1 or egual to %, Since we also have

lim Jq,. X =D ‘
n f ki ki[

!
'S,

from (12.16), we get

it

lim (Bn(Bea, oof )) (B)
" Hey X /

=k,
: n Ly e o - > Y 7 ? o B
%m/ﬁ(bav By {x: @vochi,:x) € 11,311 = !M(b)

for every B£S o Proposition 3.8 now shows that E(a) N0

{1,5~} # gg, and the proof is complete,

Corollary 12.7. The cocycle a, is regular, and x(a) is

either equal to £ or to 3. .

Proof: Trivial.



Theorem 12,8, Let X = ﬁ%/ég denote the additive group of

real numbers (mod 1), and let 5 and stand for the Borel
field and the Lebesgue neasure on X, respectively. We fix
an irrational number K and denote by V, the automorphism

of (X,,S}/a ) given by

V, ¥ = x+& (mod. 1).

Let furthermore aoz'gixiiw% #. denote the cocycle for Ve

given by
j'+4 for O &x £1/2,

for /‘/2{%3{:&/]0

Then E(ao) = F.

Froof: If E(ay) # #, Corollary 12.7 shows that B(a ) = 3Z.
e put A/ F = Zs = $0,1,24, and consider the cocycle
aﬁ:;ixﬁxm> 235 given by

s

A -
aO(n,X) = aogn,x) + ﬁ(ao)ﬂ (12.21)

Corollary 12,7 implies that a, is a coboundary. This in bturn
implies that for every sequence (tkﬁ k=1,2400.) 0f integers

with
Lim <o, 002 = 0 (12,22)
K

we have



11':?1 /,( fxia (G,%) # 0} = o. (12.2%)

Here . denotes the distance of a rmeal number x from the

closest integer, Let now
' = 2 & (nod 1),

and let féé;a%,aé,@.e] and (pf/dy, k=0,71,2,...) stand for

the continued fraction expansion and the convergents of &K',
regpectively. Since at least every other Pﬁ is odd (cfe (12.17)),
we can find an infinite sequence kqgikgg kﬁ .es 0f nonnegative
integers such that pﬁi is odd for every i. Now we put, for

every i,

[

and

o= gl =gt o,

i 1i ki

It is easy to conclude from (12.19) thatb

Tim b./qd = 1. (12.28)
R

(12.16) shows that

O

li

lim @ﬁﬁ.a,»ﬂ/Eﬁ%
i i
and

O

it

lin §a! « =1/23
1 L

Hence the sequence (ti, i=1,24000) satisfies (12.22), and
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consequently (12.2%). We now look at the functions a(ti,o),

121. La (tl,.) is disconbtinuous exactly at the elements

5y = {~mwx+m/2 (mod. 4):()éxl4ti9 m=1,2 | .

We arrange the elements of Si in increasing order,

A e S e

say, and put

(1)
P2

1

Keeping i fixed, we note thatb a(ti,.) is constant on each

inte: 3 (1) 4 o 2 A(3) : that
&, 4 &, = &0 o 2L &Ly
interval /@m pis mids 1=0, 92ty 1, and thatb

Tin  (a (., A un)ea (6., AE)n)) = £ 1 (mod 3).
o i m o i’/ m =
h-=0 ! :
Hence a (t.,.) is zero in at most ti of the intervals
i) - . .
!6 é >, /§m+4, Mm=04 000yt =T, We now estimate the
minimal length of these intervals. An easy argument shows

that

(1) _ (i))

h. = min
L Ogmzat, m+1”

q,mln KoLy
O‘flémﬁ

bince qp 4« %;<4qy » we can apply Theorem 17 in [21l
i . i

to show that



12« 14

=
il
NOJ -

hR

§25

<<la<: V> = 1 [q' w =D ! P

O
N

1 -
o(af _q+ad ) S
R Ry > L"'Ql

Hence

»ia
};i{y a,(t; ,X)A0 L > .
fqy
Ly
(MMe24) and (11.25) together imply

Lin g fxiag (6,540 | 1/4,

which contradicts (12.2%), This shows that ﬁ(ao) = £,

and the theorem is proved,

Exercise 12,10. Let V, and (X, é’{,//@) be given as in
Theorem 12.8, and let /3 be a ratienal number. Show tnat

& (a >) is equal o the smallegt subgroup of K

<0‘?a/§
conbaining 1 and/G .

Problem 12,11, Compute ﬁ<a(5{ >) for every pair (w‘vg )
k] {

where « is irrational and O-é/éggﬂ.

(12.25)



Comments

§ 1: For the background on sbandard Borel spaces we refer to
[299 54]. The 'equivalence relation' of a group action
was inbtroduced and discussed in [ﬁ%j@ For the notions

>

"full group' and ‘weak equivalence'! we refer to [11, 12

and 2273

Y 2: Definitions 2.1 and 2.2 are taken from[?@] and [147],

regspectively. Proposition 2.7 already occurs in LMBJu

ALl results in this section are taken from {59] with

wA
o

some minor modifications. Definition 5.1 also occurs

in (14, 25], end we refer to these papers for a deeper
discussion of the origins of this definition. A much
more general exposition of the underlying ideas can be
found in [30]. The set E(a) is called 'asymptobtic range'
in [ﬁ%js Theorem 5.9 is also proved in £54§ 26]@ A
cohomology invariant which is closely mwelabted to ﬁ(a)

can be found in L16,17], and - in slight disguise -

§ 4: Theorem 4.2 was first proved in [26] for the hyperfinite
case, Corollary 4.5 is a simple consequence of Theoren
ho2, but I have not seen it in the literature.

&

This section is again taken from [ 39 with some modi-

oo
\J3

fications, since the proofs there dealt with the hyper-



§ 6

~r
[V
-
~J
o

§ 8:

15.2

finite case only. Theorem 5.2 appears in a special case
in [4] and in full generality in [141. There is a great
deal of literature on skew products defined by cocycles
taking values in a compact abelian group. See [52§55,183

for further references.

The proof of Theorem 6.6 i1s a generalization of bthe
corresnonding proof in L#@] for single auvtomorphisms,

There exist many proofs of Theorem 6.6 using operator
ebras, and we nention [78] as just one example,
the results 6.7 = 6.15 are all well known, bubt many

of them are rarely proved explicitly.

This section is a slightly more general and considerably

o L NI

expanded version of § 5 in Lé@], where the same results
are proved for hyperfinite actions. Many of The methods
described here are closely related to parbts of the
analysis in [26], In particular, Definition 7.1 and
Proposition 7.2 occur there in a special case, On closer
look the reader will also find fQ@j to contain special

cases of Proposition 7.15 and Theorem 7.22 in disguise,

@

but the proofs are somewhat different.

All the ideas in this section are contained in [11],

even bhough they were proved bthere in the finite measure

pregerving case. Theorem 8.7, however, does not seem to

s

appear in the literature. Theorem 8.15 (1) is due to



§ 9

o

§ 10:

[24j9 and (2) has been remarked in fB]a The proof of
Theorem 8.15 used here is a modification of a proof in
[45] for the measure preserving case, Corollary 8,16
appears in [ﬁf], and Corollary 8.17 in [22]@ Theoren
8.18 is a very special case of a result in [QEJ,

Theorem 8.22 is again due to [11} in the finite measure

preserving case.

A1l the results in this section are taken from [BBJG
A related result for cocycles taking values in a compact

group appears in | 32 ].

All the results come from [457@ The problem of finding
further ergodic measures for nonsingular automorphisms
of a given measure space has receilved abttention in many
papers (cf,[éo , 27 , 28 , 31 , 41, 42]), Among these
[28] is of particular interest, since it contains bthe
following resulb: Let (X,ﬁ?,ﬁw) be a nonatomlc measure
space and let V be a nonsingular ergodic automorphism
of (Xﬁﬁgiﬁi>s Suppose thatb (X’,é{'afu‘) is a further
nonatomié measure space and V' a ncésingular ergodi.c
avbomorphism of (X‘$§§'9/u') such thatb /{' is not
equivalent to ary finite V}minvariant neasure, Then there
exists a nonabtomic probability measure P on the
standard Borel space (X, S ) which is quagi-invariant
and ergodic under V, and such that V on (X, S5,y ) is

weakly equivalent to V',



8§ 11: ALY the results and proofs are from LE@] with the ex-

e Lﬂjg and.

fd
n
Q“
<
@
L5
i

cepbion of Theorem 11,4, which
Propogition 11.5 and Theorem 11.8, both of which are new

as far as I knowe.

12: dheorem 12.4 is well known and holdsin greaber pgenerality

[ves

than indicabted here. The proofs of the Lemmas 12,1 -

.7,

12.5 are taken from L;]@ Froposition 12.5 appears in

L§6J@ A special case of Theorem 12.8 was proved in

[417], and [7] contains a more general resulb, Partial

[

progress in solving Problem 12.11 was made in [2].

The above acknowledgements and references are only intended
as a guideline, and I apologize for any omissions and errors,
The following list of references is again not intended Lo be

complete, bubt it should enable the reader to pursue further

any interest or problem raised by these notes,
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