
Problem Set 4
Due Friday, October 26.

Algebra

Math 110A, Fall Quarter 2012

1. Do problems 3.2.2, 3.2.8, 3.2.12, 3.2.23, 3.2.38 in the textbook.

2. Do problems 3.3.9, 3.3.10, 3.3.14, 3.3.19, 3.3.33, 3.3.39 in the textbook.

3. Prove that the Binomial Theorem holds in any commutative ring R
with identity: if n ≥ 1 and a, b ∈ R, then

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk.

Here we set a0 := 1 for any a ∈ R, and(
n

k

)
=

n!

k!(n− k)!
= n(n− 1) · · · (n− k + 1) for 0 ≤ k ≤ n.

Also, for a positive integer n and a ∈ R, na denotes the element
a+ a+ · · ·+ a (n many a’s) of R.

Hint: you may use that(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
for all 1 ≤ k ≤ n.

4. Let R be a commutative ring with identity. An element a of R is called
nilpotent if an = 0 for some n ≥ 1.

(a) Determine the nilpotent elements of Z.
(b) Determine the nilpotent elements of Z12.

(c) Let a, b, c ∈ R where a and b are nilpotent. Show that then a+ b
and ac are nilpotent. (Hint: you may use Problem 3.)


