Problem Set 5 Due Friday, November 3.

Algebra

Math 110A, Fall Quarter 2017

- 1. Do problems 3.3.9, 3.3.11, 3.3.14, 3.3.19, 3.3.33, 3.3.38 in the textbook.
- 2. Prove that the Binomial Theorem holds in any commutative ring R with identity: if $n \geq 1$ and $a, b \in R$, then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Here we set $a^0 := 1$ for any $a \in R$, and

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = n(n-1)\cdots(n-k+1)$$
 for $0 \le k \le n$.

Also, recall that for a natural number n and $a \in R$, na denotes the element $a + a + \cdots + a$ (n many a's) of R.

Hint: you may use that

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \quad \text{for all } 1 \le k \le n.$$

- 3. Let R be a commutative ring with identity. An element a of R is called **nilpotent** if $a^n = 0$ for some $n \ge 1$.
 - (a) Determine the nilpotent elements of \mathbb{Z} .
 - (b) Determine the nilpotent elements of \mathbb{Z}_{12} .
 - (c) Let $a, b, c \in R$ where a and b are nilpotent. Show that then a + b and ac are nilpotent. (Hint: you may use Problem 2.)