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1. (30 pt.) By using the Induction Principle for wffs we show that every wff
has length 1, 4, 5, or length > 7. This clearly holds for sentence symbols
(they have length 1). Suppose α, β are wffs whose length is 1, 4, 5, or
> 7. Let a, b denote the length of α, β, respectively. Then α′ = (¬α) has
length a′ = a + 3, so a′ = 4, a′ = 7, or a′ > 7, and γ = (α�β) (where
� ∈ {∧,∨,→,↔}) has length g = a + b + 3, so g = 5 or g > 7. This
shows that there are no wffs of length 2, 3 or 6. To show that every other
positive length is possible, we first verify the cases of length 1, 4, 5, 7, and
8 by hand: the wffs

A1, α := (¬A1), β := (A1 ∧A1)

have lengths 1, 4 and 5, respectively. For n = 7 and n = 8 we consider
(¬α) and (¬β), where α, β are as above. It remains to prove that for every
n ≥ 9 there is a wff of length n, which we do by induction on n. The case
n = 9 is witnessed by ((A1 ∧ A1) ∧ A1). Suppose n > 9; then n − 3 > 6.
If n− 3 ≥ 9 then by induction hypothesis there is a wff γ of length n− 3,
and if n − 3 < 9, then n − 3 ∈ {7, 8}, and as we’ve seen above, in both
cases there is a wff γ of length n− 3. Applying the negation operation we
get a formula (¬γ) of length n.

2. (30 pt.) Let S be the set of all wffs α for which s(α) = c(α)+1, where s(α),
c(α) denotes the number of occurrences of sentence symbols respectively
binary connective symbols in α. This set clearly contains every α of the
form α = Ak for some sentence symbol Ak, since then we have s(α) = 1,
c(α) = 0. Suppose α ∈ S; then for α′ = (¬α) we obtain the same values
s(α′) = s(α) and c(α′) = c(α) as for α, hence α′ ∈ S. If α, β ∈ S and
� ∈ {∧,∨,→,↔}, then for γ = (α�β) we compute

s(γ) = s(α) + s(β) = c(α) + 1 + c(β) + 1 = c(γ) + 1,

hence γ ∈ S. Thus S consists of all wffs, by the Induction Principle.

3. (20 pt.) An expression is a finite sequence of elements of a certain set of
symbols, consisting of the finitely many logical symbols and the infinitely
many sentence symbols A1, A2, . . . . The disjoint union S = F ∪ A of a
finite set F and a countable set A is countable: to see this, let Φ: A→ N be
one-to-one, and suppose F = {f1, . . . , fn} has n elements; then Ψ(fi) = i
and Ψ(a) = Φ(a) + (n+ 1) for a ∈ A defines a one-to-one map Ψ: S → N.
Therefore, the set of symbols is countable. Theorem 0B says that if S is



a countable set, then the set of all finite sequences of elements of S is also
countable. Hence the set of expressions is countable.

4. (20 pt.) Suppose S is a countable set, and let S′ ⊆ S. Let Φ: S → N be
one-to-one. Then the restriction of Φ to S′ is a one-to-one map S′ → N,
showing that S′ is countable. By the previous problem, we know that
the set of all expressions is countable. The set of wffs is a subset thereof,
whence countable by the above.

5. (30 pt. extra credit.) The following sequence of applications of (P1)–(P4)
produces MUUIU from MI:

MI −→
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−→
(P2)

MIIII

−→
(P1)

MIIIIU

−→
(P2)

MIIIIUIIIIU

−→
(P3)

MIUUIIIIU

−→
(P4)

MIIIIIU

−→
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MUIIU

−→
(P2)

MUIIUUIIU

−→
(P4)

MUIIIIU

−→
(P3)

MUUIU.

I only sketch the solutions of the second part of the problem. We first
define (similarly to what we did for wffs) a construction sequence to be
a finite sequence 〈s1, . . . , sn〉 of strings si consisting of the letters M , U ,
I with the property that each si either equals MIor is obtained from a
string sj with j ∈ {1, . . . , i − 1} by applying one of the rules (P1)–(P4).
So a string s is in P if and only if there is a construction sequence as
above with sn = s. Next one proves, by induction on n, that for every
construction sequence 〈s1, . . . , sn〉 the number of I’s in any of the strings
s1, . . . , sn is always congruent to 1 or 2 modulo 3, i.e., of the form 3k + 1
or 3k + 2 for some k ∈ N. The number of I’s in MU is 0, and not of this
form. Hence MU /∈ P .


