Problem Set 1 Solutions

Mathematical Logic

Math 114L, Spring Quarter 2008

1. (30 pt.) By using the Induction Principle for wffs we show that every wff has length 1, 4, 5, or length > 7. This clearly holds for sentence symbols (they have length 1). Suppose α , β are wffs whose length is 1, 4, 5, or > 7. Let a, b denote the length of α , β , respectively. Then $\alpha' = (\neg \alpha)$ has length a' = a + 3, so a' = 4, a' = 7, or a' > 7, and $\gamma = (\alpha \Box \beta)$ (where $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$) has length g = a + b + 3, so g = 5 or g > 7. This shows that there are no wffs of length 2, 3 or 6. To show that every other positive length is possible, we first verify the cases of length 1, 4, 5, 7, and 8 by hand: the wffs

$$A_1, \quad \alpha := (\neg A_1), \quad \beta := (A_1 \land A_1)$$

have lengths 1, 4 and 5, respectively. For n = 7 and n = 8 we consider $(\neg \alpha)$ and $(\neg \beta)$, where α , β are as above. It remains to prove that for every $n \ge 9$ there is a wff of length n, which we do by induction on n. The case n = 9 is witnessed by $((A_1 \land A_1) \land A_1)$. Suppose n > 9; then n - 3 > 6. If $n - 3 \ge 9$ then by induction hypothesis there is a wff γ of length n - 3, and if n - 3 < 9, then $n - 3 \in \{7, 8\}$, and as we've seen above, in both cases there is a wff γ of length n - 3. Applying the negation operation we get a formula $(\neg \gamma)$ of length n.

2. (30 pt.) Let S be the set of all wffs α for which $s(\alpha) = c(\alpha)+1$, where $s(\alpha)$, $c(\alpha)$ denotes the number of occurrences of sentence symbols respectively binary connective symbols in α . This set clearly contains every α of the form $\alpha = A_k$ for some sentence symbol A_k , since then we have $s(\alpha) = 1$, $c(\alpha) = 0$. Suppose $\alpha \in S$; then for $\alpha' = (\neg \alpha)$ we obtain the same values $s(\alpha') = s(\alpha)$ and $c(\alpha') = c(\alpha)$ as for α , hence $\alpha' \in S$. If $\alpha, \beta \in S$ and $\Box \in \{\wedge, \lor, \rightarrow, \leftrightarrow\}$, then for $\gamma = (\alpha \Box \beta)$ we compute

$$s(\gamma) = s(\alpha) + s(\beta) = c(\alpha) + 1 + c(\beta) + 1 = c(\gamma) + 1,$$

hence $\gamma \in S$. Thus S consists of all wffs, by the Induction Principle.

3. (20 pt.) An expression is a finite sequence of elements of a certain set of symbols, consisting of the finitely many logical symbols and the infinitely many sentence symbols A_1, A_2, \ldots . The disjoint union $S = F \cup A$ of a finite set F and a countable set A is countable: to see this, let $\Phi: A \to \mathbb{N}$ be one-to-one, and suppose $F = \{f_1, \ldots, f_n\}$ has n elements; then $\Psi(f_i) = i$ and $\Psi(a) = \Phi(a) + (n+1)$ for $a \in A$ defines a one-to-one map $\Psi: S \to \mathbb{N}$. Therefore, the set of symbols is countable. Theorem 0B says that if S is

a countable set, then the set of all finite sequences of elements of S is also countable. Hence the set of expressions is countable.

- 4. (20 pt.) Suppose S is a countable set, and let $S' \subseteq S$. Let $\Phi: S \to \mathbb{N}$ be one-to-one. Then the restriction of Φ to S' is a one-to-one map $S' \to \mathbb{N}$, showing that S' is countable. By the previous problem, we know that the set of all expressions is countable. The set of wffs is a subset thereof, whence countable by the above.
- 5. (30 pt. extra credit.) The following sequence of applications of (P1)–(P4) produces *MUUIU* from *MI*:

$$\begin{array}{c} MI \xrightarrow{(\mathrm{P2})} MII \\ \xrightarrow{(\mathrm{P2})} MIIII \\ \xrightarrow{(\mathrm{P2})} MIIIIU \\ \xrightarrow{(\mathrm{P1})} MIIIIU \\ \xrightarrow{(\mathrm{P3})} MIIIIUIIIU \\ \xrightarrow{(\mathrm{P3})} MIUUIIIIU \\ \xrightarrow{(\mathrm{P4})} MIIIIU \\ \xrightarrow{(\mathrm{P3})} MUIIU \\ \xrightarrow{(\mathrm{P2})} MUIIUUIIU \\ \xrightarrow{(\mathrm{P4})} MUIIIU \\ \xrightarrow{(\mathrm{P3})} MUUIU. \end{array}$$

I only sketch the solutions of the second part of the problem. We first define (similarly to what we did for wffs) a construction sequence to be a finite sequence $\langle s_1, \ldots, s_n \rangle$ of strings s_i consisting of the letters M, U, I with the property that each s_i either equals MI or is obtained from a string s_j with $j \in \{1, \ldots, i-1\}$ by applying one of the rules (P1)–(P4). So a string s is in P if and only if there is a construction sequence as above with $s_n = s$. Next one proves, by induction on n, that for every construction sequence $\langle s_1, \ldots, s_n \rangle$ the number of I's in any of the strings s_1, \ldots, s_n is always congruent to 1 or 2 modulo 3, i.e., of the form 3k + 1 or 3k + 2 for some $k \in \mathbb{N}$. The number of I's in MU is 0, and not of this form. Hence $MU \notin P$.