Problem Set 1

Solutions

Mathematical Logic

Math 114L, Spring Quarter 2008

1. (30 pt.) By using the Induction Principle for wffs we show that every wff has length $1,4,5$, or length >7. This clearly holds for sentence symbols (they have length 1). Suppose α, β are wffs whose length is $1,4,5$, or >7. Let a, b denote the length of α, β, respectively. Then $\alpha^{\prime}=(\neg \alpha)$ has length $a^{\prime}=a+3$, so $a^{\prime}=4, a^{\prime}=7$, or $a^{\prime}>7$, and $\gamma=(\alpha \square \beta)$ (where $\square \in\{\wedge, \vee, \rightarrow, \leftrightarrow\})$ has length $g=a+b+3$, so $g=5$ or $g>7$. This shows that there are no wffs of length 2,3 or 6 . To show that every other positive length is possible, we first verify the cases of length $1,4,5,7$, and 8 by hand: the wffs

$$
A_{1}, \quad \alpha:=\left(\neg A_{1}\right), \quad \beta:=\left(A_{1} \wedge A_{1}\right)
$$

have lengths 1,4 and 5 , respectively. For $n=7$ and $n=8$ we consider $(\neg \alpha)$ and $(\neg \beta)$, where α, β are as above. It remains to prove that for every $n \geq 9$ there is a wff of length n, which we do by induction on n. The case $n=9$ is witnessed by $\left(\left(A_{1} \wedge A_{1}\right) \wedge A_{1}\right)$. Suppose $n>9$; then $n-3>6$. If $n-3 \geq 9$ then by induction hypothesis there is a wff γ of length $n-3$, and if $n-3<9$, then $n-3 \in\{7,8\}$, and as we've seen above, in both cases there is a wff γ of length $n-3$. Applying the negation operation we get a formula $(\neg \gamma)$ of length n.
2. (30 pt.) Let S be the set of all wffs α for which $s(\alpha)=c(\alpha)+1$, where $s(\alpha)$, $c(\alpha)$ denotes the number of occurrences of sentence symbols respectively binary connective symbols in α. This set clearly contains every α of the form $\alpha=A_{k}$ for some sentence symbol A_{k}, since then we have $s(\alpha)=1$, $c(\alpha)=0$. Suppose $\alpha \in S$; then for $\alpha^{\prime}=(\neg \alpha)$ we obtain the same values $s\left(\alpha^{\prime}\right)=s(\alpha)$ and $c\left(\alpha^{\prime}\right)=c(\alpha)$ as for α, hence $\alpha^{\prime} \in S$. If $\alpha, \beta \in S$ and $\square \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$, then for $\gamma=(\alpha \square \beta)$ we compute

$$
s(\gamma)=s(\alpha)+s(\beta)=c(\alpha)+1+c(\beta)+1=c(\gamma)+1
$$

hence $\gamma \in S$. Thus S consists of all wffs, by the Induction Principle.
3. (20 pt.) An expression is a finite sequence of elements of a certain set of symbols, consisting of the finitely many logical symbols and the infinitely many sentence symbols A_{1}, A_{2}, \ldots The disjoint union $S=F \cup A$ of a finite set F and a countable set A is countable: to see this, let $\Phi: A \rightarrow \mathbb{N}$ be one-to-one, and suppose $F=\left\{f_{1}, \ldots, f_{n}\right\}$ has n elements; then $\Psi\left(f_{i}\right)=i$ and $\Psi(a)=\Phi(a)+(n+1)$ for $a \in A$ defines a one-to-one map $\Psi: S \rightarrow \mathbb{N}$. Therefore, the set of symbols is countable. Theorem 0B says that if S is
a countable set, then the set of all finite sequences of elements of S is also countable. Hence the set of expressions is countable.
4. (20 pt.) Suppose S is a countable set, and let $S^{\prime} \subseteq S$. Let $\Phi: S \rightarrow \mathbb{N}$ be one-to-one. Then the restriction of Φ to S^{\prime} is a one-to-one map $S^{\prime} \rightarrow \mathbb{N}$, showing that S^{\prime} is countable. By the previous problem, we know that the set of all expressions is countable. The set of wffs is a subset thereof, whence countable by the above.
5. (30 pt. extra credit.) The following sequence of applications of (P1)-(P4) produces $M U U I U$ from $M I$:

$$
\begin{aligned}
& M I \\
& \underset{(\mathrm{P} 2)}{\longrightarrow} M I I \\
& \underset{(\mathrm{P} 2)}{\longrightarrow} M I I I I \\
& \underset{(\mathrm{P} 1)}{\longrightarrow} M I I I I U \\
& \underset{(\mathrm{P} 2)}{\longrightarrow} M I I I I U I I I I U \\
& \underset{(\mathrm{P} 3)}{\longrightarrow} M I U U I I I I U \\
& \underset{(\mathrm{P} 4)}{\longrightarrow} M I I I I I U \\
& \underset{(\mathrm{P} 3)}{\longrightarrow} M U I I U \\
& \underset{(\mathrm{P} 2)}{\longrightarrow} M U I I U U I I U \\
& \underset{(\mathrm{P} 4)}{\longrightarrow} M U I I I I U \\
& \underset{(\mathrm{P} 3)}{\longrightarrow} M U U I U .
\end{aligned}
$$

I only sketch the solutions of the second part of the problem. We first define (similarly to what we did for wffs) a construction sequence to be a finite sequence $\left\langle s_{1}, \ldots, s_{n}\right\rangle$ of strings s_{i} consisting of the letters M, U, I with the property that each s_{i} either equals $M I$ or is obtained from a string s_{j} with $j \in\{1, \ldots, i-1\}$ by applying one of the rules (P 1)-(P4). So a string s is in P if and only if there is a construction sequence as above with $s_{n}=s$. Next one proves, by induction on n, that for every construction sequence $\left\langle s_{1}, \ldots, s_{n}\right\rangle$ the number of I 's in any of the strings s_{1}, \ldots, s_{n} is always congruent to 1 or 2 modulo 3 , i.e., of the form $3 k+1$ or $3 k+2$ for some $k \in \mathbb{N}$. The number of I 's in $M U$ is 0 , and not of this form. Hence $M U \notin P$.

