Problem Set 1 Due Friday, April 11.

Mathematical Logic

Math 114L, Spring Quarter 2008

- 1. (30 pt.) Exercise 2 on p. 19 of the textbook.
- 2. (30 pt.) Exercise 3 on p. 19 of the textbook.
- 3. (20 pt.) Read Theorem 0B and its proof on p. 6 of the textbook. Use this theorem to show that the set of all expressions is countable.
- 4. (20 pt.) Give a proof of the fact that every subset of a countable set is countable. Then use this to show that the set of all wffs is countable.
- 5. (30 pt. extra credit.) Consider the set of all finite strings consisting of the symbols M, U and I. Let P be the set of all such strings which are built up from the string MI by finitely many applications of the following rules. Here x, y are strings, and concatenated strings are denoted by writing them one after the other.
 - (P1) If $xI \in P$, then $xIU \in P$;
 - (P2) if $Mx \in P$, then $Mxx \in P$;
 - (P3) if $xIIIy \in P$, then $xUy \in P$;
 - (P4) if $xUUy \in P$, then $xy \in P$.

Prove the following claims:

- (a) $MUUIU \in P$.
- (b) $MU \notin P$.