Problem Set 2 Solutions

Mathematical Logic

Math 114L, Spring Quarter 2008

- 1. Using obvious shorthand notation for repeated \land and \lor :
 - (a) $\bigwedge_{i=1}^{m} \bigvee_{j=1}^{m} a_{ij}$
 - (b) $\bigvee_{i=1}^{m} \bigvee_{j=1}^{m} a_{ij}$
- 2. Let v be a truth assignment for a set S of sentence symbols. To show uniqueness of \bar{v} , suppose there is another function \tilde{v} satisfying conditions 0–5. One proves by using the induction principle that for every wff α built up from S we get $\bar{v}(\alpha) = \tilde{v}(\alpha)$. To show the existence of the function \bar{v} , one also proceeds by induction (or rather, recursion), also using the unique readability theorem. (I'm skipping the details here— this will be discussed in the TA session.)
- 3. (a) Yes, $(((P \to Q) \to P) \to P)$ is a tautology: Suppose v is a truth assignment. If v(P) = F, then $\bar{v}((P \to Q)) = T$, so

$$\bar{v}\big(((P \to Q) \to P)\big) = F$$

and thus

$$\bar{v}\big((((P \to Q) \to P) \to P)\big) = T.$$

If v(P) = T, then $\bar{v}((\cdots \lor P)) = T$, in particular

$$\bar{v}\big((((P \to Q) \to P) \to P)\big) = T.$$

- (b) We claim that σ_k is a tautology precisely if k is positive and even: Clearly, the wff $\sigma_0 = (P \to Q)$ is not a tautology. The wff $\sigma_1 = ((P \to Q) \to P)$ is also not a tautology, since σ_1 is tautologically equivalent to $(P \lor (P \land \neg Q))$, so $\bar{v}(\sigma_1) = F$ if v(P) = F. Above, we have seen that σ_2 is a tautology. So we are done if we show that if σ is a tautology, then $(\sigma \to P)$ is not a tautology, whereas $((\sigma \to P) \to P)$ is: to see this, note that the former is tautologically equivalent to $(\neg \sigma \lor P)$ (and hence not satisfied if v(P) = F), and latter formula is tautologically equivalent to $(\sigma \lor P)$ (which is satisfied for every v, since σ has this property).
- 4. (a) Suppose $\Sigma \models \alpha$. Let v be a truth assignment satisfying Σ . Then v satisfies α , hence v also satisfies $(\alpha \lor \beta)$. This shows that $\Sigma \models (\alpha \lor \beta)$. So if $\Sigma \models \alpha$, then $\Sigma \models (\alpha \lor \beta)$; similarly one shows that if $\Sigma \models \beta$, then $\Sigma \models (\alpha \lor \beta)$.

- (b) It is not true that if $\Sigma \models (\alpha \lor \beta)$, then $\Sigma \models \alpha$ or $\Sigma \models \beta$: to see this, let $\Sigma = \emptyset$ and $\alpha = A_1$, $\beta = (\neg A_1)$. We have $\models (A_1 \lor (\neg A_1))$, but neither $\models A_1$ nor $\models (\neg A_1)$.
- 5. (a) We use the induction principle to show that for every wff φ one has $\bar{u}(\varphi) = \bar{v}(\varphi^*)$. Suppose first that φ is a sentence symbol: $\varphi = A_n$ for some *n*. Then $\varphi^* = \alpha_n$, hence

$$\bar{u}(\varphi) = u(A_n) = \bar{v}(\alpha_n) = \bar{v}(\varphi^*).$$

Next suppose $\varphi = (\neg \psi)$ for some wff ψ . By inductive hypothesis we have $\bar{u}(\psi) = \bar{v}(\psi^*)$, and $\varphi^* = (\neg \psi^*)$, hence

$$\bar{u}(\varphi) = T \Longleftrightarrow \bar{u}(\psi) = F \Longleftrightarrow \bar{v}(\psi^*) = F \Longleftrightarrow \bar{v}(\varphi^*) = T.$$

In the case where $\varphi = (\psi \Box \psi')$ for wffs ψ, ψ' and $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ one argues similarly.

- (b) Suppose φ is a tautology. Let v be a truth assignment. Let u be the truth assignment defined in part (a). Then $\bar{v}(\varphi^*) = \bar{u}(\varphi)$ by (a), and $\bar{u}(\varphi) = T$ since $\models \varphi$; hence $\bar{v}(\varphi^*) = T$. This shows that φ^* is a tautology.
- 6. Let us introduce three sentence symbols, P (for "the speaker plays tennis"), W (for "the speaker watches tennis") and R (for "the speaker reads about tennis"). Then the translations of the given sentences into sentential logic are

$$\neg P \to W, \quad \neg W \to R, \quad \neg ((P \land W) \lor (P \land R) \lor (W \land R)).$$

We need to determine the truth assignments satisfying all three wffs. The third wff allows us to restrict attention to only the following three truth assignments:

- (a) v(P) = v(W) = F, v(R) = T;
- (b) v(P) = F, v(W) = T, v(R) = F;
- (c) v(P) = T, v(W) = v(R) = F.

For the truth assignment in (a), we have $\bar{v}(\neg P \rightarrow W) = F$, and for the truth assignment in (c), $\bar{v}(\neg W \rightarrow W) = R$, whereas in (b), $\bar{v}(\neg P \rightarrow W) = \bar{v}(\neg W \rightarrow R) = T$. Hence the speaker is watching tennis.