Problem Set 3 Solutions

Mathematical Logic

Math 114L, Spring Quarter 2008

- (a) We proceed by induction on n to show that given a set Σ consisting of n wffs there exists an independent equivalent subset Σ₀ of Σ. If n = 0, then there is nothing to show, since Σ is then automatically independent. Suppose n > 0. If Σ is already independent, we are done. If not, let α ∈ Σ with Σ' := Σ \ {α} ⊨ α. Then clearly Σ and Σ' are equivalent: if Σ' ⊨ β then Σ ⊨ β since Σ' ⊆ Σ; and if Σ ⊨ β, and v is a truth assignment satisfying Σ', then v(α) = T since Σ' ⊨ α, hence v satisfies Σ = Σ' ∪ {α} and thus also β, so Σ' ⊨ β. Since Σ' has n 1 elements, by inductive hypothesis there exists an equivalent independent subset Σ'₀ of Σ'. Then Σ and Σ'₀ are also equivalent. (So we may take Σ₀ := Σ'₀.)
 - (b) Consider $\Sigma = \{A_1, A_1 \land A_2, A_1 \land A_2 \land A_3, \dots, A_1 \land \dots \land A_n, \dots\}.$
 - (c) The equivalent independent subsets are $\{\alpha \land \beta, \beta \land \gamma\}$ and $\{\alpha \land \beta \land \gamma\}$.
- 2. Take $\alpha = (A_1 \wedge A_1), \beta = A_1$. Then $(\alpha \wedge \beta) = (\gamma \wedge \delta)$ where $\gamma = (A_1 \text{ and } \delta = A_1) \wedge A_1$, with $\alpha \neq \gamma$.
- 3. Let v be the truth assignment with $v(A_n) = T$ for all n. We claim that $\bar{v}(\alpha) = T$ for every positive wff α . We show this by using the induction principle. If $\alpha = A_n$ is a sentence symbol, then the claim holds trivially: $\bar{v}(\alpha) = v(A_n) = T$. Otherwise $\alpha = (\beta \Box \gamma)$ where β , γ are positive wffs and $\Box \in \{\wedge, \vee\}$. By inductive hypothesis we have $\bar{v}(\beta) = \bar{v}(\gamma) = T$; hence also $\bar{v}(\alpha) = T$.
- 4. Can be done in a similar way as the Example on p. 50 of the textbook.
- 5. Consider the set Σ_n consisting of all wffs of the form $\Box_1 A_1 \lor \cdots \lor \Box_n A_n$ where each \Box_i is either empty or equals \neg . So we have

$$\Sigma_1 = \{A_1, \neg A_1\}, \ \Sigma_2 = \{A_1 \lor A_2, A_1 \lor \neg A_2, \neg A_1 \lor A_2, \neg A_1 \lor \neg A_2\},$$
etc.

Then every subset of size at most n of Σ_n is satisfiable; we prove this by induction on n, the case n = 1 being trivial. Suppose Σ is a subset of Σ_n of size at most n, where n > 1. If every wff in Σ has the form $\cdots \lor A_n$ or every wff in Σ has the form $\cdots \lor \neg A_n$ then we are done: any truth assignment v with $v(A_n) = T$ (resp. $v(A_n) = F$) satisfies Σ . So suppose otherwise; so there exists a wff $\cdots \lor A_n$ and a wff $\cdots \lor \neg A_n$ in Σ . Let Σ' be the set of all wffs α such that $\alpha \lor \neg A_n \in \Sigma$. Then Σ' is a subset of Σ_{n-1} of size at most n-1, so by inductive hypothesis there is a truth assignment v' satisfying Σ' . Then v defined by $v(A_i) = v'(A_i)$ for $i \neq n$ and $v(A_n) = T$ satisfies Σ .