Problem Set 3 Due Friday, April 25.

Mathematical Logic

Math 114L, Spring Quarter 2008

- 1. (30 pt.) Parts (a) and (b) of Exercise 10 in Section 1.2 of the textbook. Then do:
 - (c) Let α , β , γ be wffs. Determine all equivalent independent subsets of $\{\alpha \land \beta, \beta \land \gamma, \alpha \land \beta \land \gamma\}.$
- 2. (10 pt.) Exercise 2 in Section 1.3 of the textbook.
- 3. (20 pt.) A wff which does not contain $\neg, \rightarrow, \leftrightarrow$ is called *positive*. Show that for every positive wff α there exists a truth assignment satisfying α .
- 4. (20 pt.) Prove that $\{\wedge, \lor\}$ is not a complete set of connectives.
- 5. (20 pt.) Exercise 12 in Section 1.7 of the textbook. (Parts (a), (b), and (c) apply to subsets of size one, two, and three, respectively. The sequence could be extended: four, five, six, ... And the solution to any part is automatically a solution to all earlier parts. By the Compactness Theorem says there is no one solution that covers all the parts in this extended version.)