Problem Set 5 Solutions

Mathematical Logic Math 114L, Spring Quarter 2008

- 1. Very similar to the proof that for any term t we have K(t) = 1, and if t' is a proper initial segment of a term, then K(t') < 1. (More details shall be given in the discussion section.)
- 2. Here the structure, call it \mathfrak{N} , is $(\mathbb{N}; +, \cdot)$.
 - (a) {0} is defined in \mathfrak{N} by $v_1 + v_1 = v_1$. Also by $\forall v_2(v_2 + v_1 = v_2)$. Also by $\forall v_2(v_2 \cdot v_1 = v_1)$.
 - (b) {1} is defined in \mathfrak{N} by $v_1 + v_1 \neq v_1 \land v_1 \cdot v_1 = v_1$. Also by $\forall v_2(v_1 \cdot v_2 = v_2)$.
 - (c) For the successor relation, two defining formulas are

 $\forall v_3(\theta(v_3) \rightarrow v_2 = v_1 + v_3) \text{ and } \exists v_3(\theta(v_3) \land v_2 = v_1 + v_3)$

where $\theta(v_1)$ defines {1}. Also, successor has the quantifier-free definition:

$$v_1 \cdot v_2 = v_1 \cdot v_1 + v_1 \wedge (v_1 + v_1 = v_1 \rightarrow v_2 \cdot v_2 = v_2 \wedge v_1 \neq v_2)$$

(that is, $xy = x^2 + x \land (x = 0 \to y = 1)$).

- (d) Ordering < is defined by $\exists v_3(v_2 = v_1 + v_3 \land v_1 \neq v_2)$. (Cf. page 91.)
- 3. (a) The formula $\exists z \ z \cdot z = x$ defines $[0, \infty)$ in \mathfrak{R} .
 - (b) The formula $\exists z (\forall y (z \cdot y = y) \land x = z + z)$ defines {2} in \mathfrak{R} .
- 4. The sentence $\forall x \exists y Pyx$ is true in $(\mathbb{R}; <)$ and false in $(\mathbb{N}; <)$.
- 5. (a) Consider the first-order language with equality but without any other function, predicate or constant symbols. For $k \in \mathbb{N}, k \geq 1$ consider the following sentence in this language:

$$\varphi_k = \exists y_1 \cdots \exists y_k \forall x \left(\left(\bigwedge_{1 \le i < j \le k} \neg y_i = y_j \right) \land \left(\bigvee_{1 \le i \le k} x = y_i \right) \right).$$

(Here and below we use the useful abbreviation

$$\bigwedge_{i\in I}\varphi_i:=\varphi_{i_1}\wedge\cdots\wedge\varphi_{i_n}$$

for a finite index set $I = \{i_1, \ldots, i_n\}$ and formulas $\varphi_{i_1}, \ldots, \varphi_{i_n}$, and similarly for \bigvee .) Then a structure \mathfrak{A} satisfies φ if and only if the universe A of \mathfrak{A} has exactly k elements. Hence given a finite subset A of $\mathbb{N}^{>0}$, the sentence $\varphi_A = \bigvee_{k \in A} \varphi_k$ shows that A is a spectrum.

- (b) Consider the first-order language with equality and a 2-place predicate symbol E, and let ψ be the conjunction of the three axioms for equivalence relations:
 - (E1) $\forall x E x x;$
 - (E2) $\forall x \forall y (Exy \leftrightarrow Eyx);$
 - (E3) $\forall x \forall y \forall z (Exy \land Eyz \rightarrow Exz).$

For $m \geq 1$ let ψ_m be the sentence

$$\forall x \exists y_1 \cdots \exists y_m \left(\bigwedge_{1 \le i < j \le m} \neg y_i = y_j \land \forall z \left(Exz \to \bigvee_{1 \le i \le m} Ey_i z \right) \right).$$

Then a structure $\mathfrak{M} = (M, E^{\mathfrak{M}})$ satisfies $\varphi_m := \psi \land \psi_m$ if and only if $E^{\mathfrak{M}}$ is an equivalence relation on M all of whose equivalence classes have exactly m elements. Hence a finite structure satisfying φ_m has km elements, for some $k \ge 1$. Conversely, for every natural number of the form km ($k \in \mathbb{N}, k \ge 1$) it is easy to find an equivalence relation $E^{\mathfrak{M}}$ on $M := \{1, \ldots, km\}$ with kequivalence classes of m elements each: $(a, b) \in E^{\mathfrak{M}} \iff m$ divides a - b (in \mathbb{Z}). Then $\mathfrak{M} = (M, E^{\mathfrak{M}})$ satisfies φ_m . This shows that the set

$$A = \left\{ km : k \in \mathbb{N}^{>0} \right\}$$

of multiples of m is a spectrum.

(c) Let A and B be spectra, given by sentences σ and τ in certain first-order languages. Then $A \cap B$ and $A \cup B$ are given by $\sigma \wedge \tau$ and $\sigma \vee \tau$, respectively, where we consider $\sigma \wedge \tau$ and $\sigma \vee \tau$ as sentences in the disjoint union of the two first-order languages.