## Problem Set 6

## Solutions

## Mathematical Logic

## Math 114L, Spring Quarter 2008

1. We will prove the stronger fact that if the language is finite (i.e., has finitely many parameters), then for a finite structure $\mathfrak{A}$, we can give a single sentence $\alpha$ that characterizes $\mathfrak{A}$ up to isomorphism. Assume that $A$ has $n$ elements, and let $A=\left\{a_{1}, \ldots, a_{n}\right\}$. Then $\alpha$ is $\exists \boldsymbol{v}_{1} \cdots \exists \boldsymbol{v}_{n} \theta$, where $\theta$ is the conjunction of the following formulas:
(1) $\boldsymbol{v}_{i} \neq \boldsymbol{v}_{j}$ for each $i<j$
(2) $\forall \boldsymbol{v}_{n+1} \bigvee_{i \leq n} \boldsymbol{v}_{n+1}=\boldsymbol{v}_{i}$
(3) $P \boldsymbol{v}_{i_{1}} \cdots \boldsymbol{v}_{i_{k}}$ for each $k$-place predicate parameter $P$ and each $k$-tuple $\left\langle a_{i_{1}}, \ldots, a_{i_{k}}\right\rangle$ in $P^{\mathfrak{A}}$
(4) $\neg P \boldsymbol{v}_{i_{1}} \cdots \boldsymbol{v}_{i_{k}}$ for each $k$-place predicate parameter $P$ and each $k$ tuple $\left\langle a_{i_{1}}, \ldots, a_{i_{k}}\right\rangle$ not in $P^{\mathfrak{A}}$
(5) $F \boldsymbol{v}_{i_{1}} \cdots \boldsymbol{v}_{i_{k}}=\boldsymbol{v}_{j}$ for each $k$-place function symbol $F$ and each value $F^{\mathfrak{A}}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)=a_{j}$ of $F^{\mathfrak{A}}$.
Clearly, $\alpha$ is true in $\mathfrak{A}$, and hence in any isomorph of $\mathfrak{A}$. Conversely, suppose $\mathfrak{B}$ is any model of $\alpha$. Then for some $b_{1}, \ldots b_{n}$ in $B$ we have $\mathfrak{B} \models \theta \llbracket b_{1}, \ldots, b_{n} \rrbracket$. Then the map $a_{i} \mapsto b_{i}$ is a one-to-one (by (1)) map of $A$ onto (by (2)) $B$ that preserves the relations (by (3) and (4)) and functions (by (5)). So $\mathfrak{A} \cong \mathfrak{B}$. For example,

$$
\left(a_{i}, a_{j}\right) \in P^{\mathfrak{A}} \Rightarrow P \boldsymbol{v}_{i} \boldsymbol{v}_{j} \text { is in } \theta \Rightarrow \mathfrak{B} \models P \boldsymbol{v}_{i} \boldsymbol{v}_{j} \llbracket \vec{b} \rrbracket \Rightarrow\left(b_{i}, b_{j}\right) \in P^{\mathfrak{B}}
$$

and

$$
\left(a_{i}, a_{j}\right) \notin P^{\mathfrak{A}} \Rightarrow \neg P \boldsymbol{v}_{i} \boldsymbol{v}_{j} \text { is in } \theta \Rightarrow \mathfrak{B} \not \models P \boldsymbol{v}_{i} \boldsymbol{v}_{j} \llbracket \vec{b} \rrbracket \Rightarrow\left(b_{i}, b_{j}\right) \notin P^{\mathfrak{B}} .
$$

2. Here are the axioms for vector spaces over $\mathbb{Q}$, formulated as sentences (written slightly informally):

$$
\begin{aligned}
& \forall x \forall y \forall z((x+y)+z=x+(y+z)) \\
& \forall x \forall y(x+y=y+x) \\
& \forall x(x+0=x) \\
& \forall x \exists y(x+y=0) \\
& \forall x\left(\mu_{r}\left(\mu_{s} x\right)=\mu_{r \cdot s} x\right) \quad \text { for each } r, s \in \mathbb{Q} \\
& \forall x\left(\mu_{1} x=x\right) \\
& \forall x \forall y\left(\mu_{r}(x+y)=\mu_{r} x+\mu_{r} y\right) \quad \text { for each } r \in \mathbb{Q} \\
& \forall x\left(\mu_{r+s} x=\mu_{r} x+\mu_{s} x\right) \quad \text { for each } r, s \in \mathbb{Q} .
\end{aligned}
$$

(Note that this is an infinite list of axioms. Also, there is nothing special about $\mathbb{Q}$ : we could have used any coefficient field $K$ as well and instead specified the axioms for vector spaces over $K$ in a similar way.)
3. Here is a formula which expresses that $R$ is the graph of a 1-place function:

$$
\forall x \forall y_{1} \forall y_{2}\left(R x y_{1} \wedge R x y_{2} \rightarrow y_{1}=y_{2}\right)
$$

4. (a) We label the vertices of the given graph as follows:


This graph construed as a first-order structure is $\mathcal{G}=\left(G, R^{\mathcal{G}}\right)$ where

$$
G=\{a, b, c, d, e, f, g, h, i, j\}
$$

and

$$
\begin{aligned}
R^{\mathcal{G}}=\{(a, b), & (b, a),(b, g),(g, b),(g, j),(j, g) \\
& (i, j),(j, i),(d, i),(i, d),(d, a),(a, d), \\
& (a, c),(c, a),(b, c),(c, b),(d, e),(e, d) \\
& (f, g),(g, f),(j, h),(h, j),(i, h),(h, i), \\
& (e, h),(h, e),(e, c),(c, e),(c, f),(f, c),(f, h),(h, f)\} .
\end{aligned}
$$

(b) Take an assignment $s$ in $\mathcal{G}$ where $s(x)=c, s\left(y_{1}\right)=a, s\left(y_{2}\right)=b$, $s\left(y_{3}\right)=e, s\left(y_{4}\right)=f$. Then $\mathcal{G} \not \vDash \varphi[s]$.
(c) For (i) we can use the sentence

$$
\varphi_{1}=\forall x \exists y \exists z(R x y \wedge R x z \wedge \neg y=z)
$$

We have $\mathfrak{A} \models \varphi_{1}$, but $\mathfrak{B} \models \neg \varphi_{1}$, so $\mathfrak{A}$ and $\mathfrak{B}$ cannot be isomorphic. For (ii) we can use the sentence

$$
\varphi_{2}=\exists x_{1} \exists x_{2} \exists x_{3} \exists x_{4}\left(\bigwedge_{1 \leq i<j \leq 4} \neg x_{i}=x_{j}\right)
$$

to distinguish $\mathfrak{A}$ and $\mathfrak{B}$. Finally, for (iii) the sentence

$$
\varphi_{3}=\forall v \exists x \exists y \exists z(R v x \wedge R x y \wedge R y z \wedge \neg v=z)
$$

can be used.
(d) The two graphs are not isomorphic: In the first graph, there are exactly 2 vertices which have 4 edges adjacent to it, whereas in the second graph, there are 6 such vertices. The property of a graph having exactly 2 vertices with 4 adjacent edges can be expressed using a first-order sentence; hence its truth value must be preserved under isomorphism.
5. Assume for a contradiction that $\mathfrak{A} \equiv \mathfrak{B}$ but $\mathfrak{A} \not \equiv \mathfrak{B}$. Hence no bijection $A \rightarrow B$ is an isomorphism $\mathfrak{A} \cong \mathfrak{B}$. By the definition of isomorphism, the failure of a bijection $\pi: A \rightarrow B$ being an isomorphism is witnessed by finitely many of the relation symbols, function symbols, and constant symbols in our language: $\pi$ is not an isomorphism if and only if there exists a relation symbol $R$ in our language and $a_{1}, \ldots, a_{n} \in A$ with $R^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)$, but not $R^{\mathfrak{B}}\left(\pi\left(a_{1}\right), \ldots, \pi\left(a_{n}\right)\right)$, or if there exists a function symbol $f$ and $a_{1}, \ldots, a_{n} \in A$ with $\pi\left(f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)\right) \neq f^{\mathfrak{B}}\left(\pi\left(a_{1}\right), \ldots, \pi\left(a_{n}\right)\right)$, or a constant symbol $c$ with $\pi\left(c^{\mathfrak{A}}\right) \neq c^{\mathfrak{B}}$. Hence for any bijection $\pi: A \rightarrow B$ there exists a finite subset $S$ of our parameters such that $\pi$ is not an isomorphism of the structures $\mathfrak{A} \mid S$ and $\mathfrak{B} \mid S$. Here $\mathfrak{A} \mid S$ denotes the reduction of $\mathfrak{A}$ to $S$, i.e., the structure in the language with parameter set $S$ which has the same universe $A$ as $\mathfrak{A}$ and the same interpretations of the symbols in $S$ as $\mathfrak{A}$. Note that this implies that for any finite subset $S^{\prime}$ of our parameters which contains $S, \pi$ will also not be an isomorphism of the $S^{\prime}$-structures $\mathfrak{A} \mid S^{\prime}$ and $\mathfrak{B} \mid S^{\prime}$. Since there are only finitely many bijections $A \rightarrow B$ (since $A$ and $B$ are finite sets), this means that there is some finite subset $S^{\prime}$ of $S$ such that $\mathfrak{A} \mid S^{\prime}$ and $\mathfrak{B} \mid S^{\prime}$ are not isomorphic. But since $\mathfrak{A} \equiv \mathfrak{B}$, we clearly also have $\mathfrak{A}\left|S^{\prime} \equiv \mathfrak{B}\right| S^{\prime}$. So by the case of a finite language (Problem 1), we get $\mathfrak{A}\left|S^{\prime} \cong \mathfrak{B}\right| S^{\prime}$, a contradiction.

