Problem Set 6 Solutions

Mathematical Logic

Math 114L, Spring Quarter 2008

- 1. We will prove the stronger fact that if the language is finite (i.e., has finitely many parameters), then for a finite structure \mathfrak{A} , we can give a single sentence α that characterizes \mathfrak{A} up to isomorphism. Assume that A has n elements, and let $A = \{a_1, \ldots, a_n\}$. Then α is $\exists v_1 \cdots \exists v_n \theta$, where θ is the conjunction of the following formulas:
 - (1) $\boldsymbol{v}_i \neq \boldsymbol{v}_j$ for each i < j
 - (2) $\forall v_{n+1} \bigvee_{i \leq n} v_{n+1} = v_i$
 - (3) $P \boldsymbol{v}_{i_1} \cdots \boldsymbol{v}_{i_k}$ for each k-place predicate parameter P and each k-tuple $\langle a_{i_1}, \ldots, a_{i_k} \rangle$ in $P^{\mathfrak{A}}$
 - (4) $\neg P \boldsymbol{v}_{i_1} \cdots \boldsymbol{v}_{i_k}$ for each k-place predicate parameter P and each k-tuple $\langle a_{i_1}, \ldots, a_{i_k} \rangle$ not in $P^{\mathfrak{A}}$
 - (5) $F \boldsymbol{v}_{i_1} \cdots \boldsymbol{v}_{i_k} = \boldsymbol{v}_j$ for each k-place function symbol F and each value $F^{\mathfrak{A}}(a_{i_1}, \ldots, a_{i_k}) = a_j$ of $F^{\mathfrak{A}}$.

Clearly, α is true in \mathfrak{A} , and hence in any isomorph of \mathfrak{A} . Conversely, suppose \mathfrak{B} is any model of α . Then for some $b_1, \ldots b_n$ in B we have $\mathfrak{B} \models \theta[\![b_1, \ldots, b_n]\!]$. Then the map $a_i \mapsto b_i$ is a one-to-one (by (1)) map of A onto (by (2)) B that preserves the relations (by (3) and (4)) and functions (by (5)). So $\mathfrak{A} \cong \mathfrak{B}$. For example,

$$(a_i, a_j) \in P^{\mathfrak{A}} \Rightarrow P \boldsymbol{v}_i \boldsymbol{v}_j \text{ is in } \theta \Rightarrow \mathfrak{B} \models P \boldsymbol{v}_i \boldsymbol{v}_j \llbracket \vec{b} \rrbracket \Rightarrow (b_i, b_j) \in P^{\mathfrak{B}}$$

and

$$(a_i, a_j) \notin P^{\mathfrak{A}} \Rightarrow \neg P \boldsymbol{v}_i \boldsymbol{v}_j \text{ is in } \theta \Rightarrow \mathfrak{B} \not\models P \boldsymbol{v}_i \boldsymbol{v}_j \llbracket \vec{b} \rrbracket \Rightarrow (b_i, b_j) \notin P^{\mathfrak{B}}.$$

2. Here are the axioms for vector spaces over \mathbb{Q} , formulated as sentences (written slightly informally):

$$\begin{aligned} \forall x \forall y \forall z ((x+y) + z = x + (y+z)) \\ \forall x \forall y (x+y=y+x) \\ \forall x (x+0=x) \\ \forall x \exists y (x+y=0) \\ \forall x (\mu_r(\mu_s x) = \mu_{r \cdot s} x) \quad \text{for each } r, s \in \mathbb{Q} \\ \forall x (\mu_r(x+x) = \mu_r x + \mu_r y) \quad \text{for each } r \in \mathbb{Q} \\ \forall x (\mu_{r+s} x = \mu_r x + \mu_s x) \quad \text{for each } r, s \in \mathbb{Q}. \end{aligned}$$

(Note that this is an *infinite* list of axioms. Also, there is nothing special about \mathbb{Q} : we could have used any coefficient field K as well and instead specified the axioms for vector spaces over K in a similar way.)

3. Here is a formula which expresses that R is the graph of a 1-place function:

$$\forall x \forall y_1 \forall y_2 (Rxy_1 \land Rxy_2 \to y_1 = y_2)$$

4. (a) We label the vertices of the given graph as follows:

This graph construed as a first-order structure is $\mathcal{G} = (G, R^{\mathcal{G}})$ where

$$G = \{a, b, c, d, e, f, g, h, i, j\}$$

and

$$\begin{split} R^{\mathcal{G}} &= \big\{(a,b), (b,a), (b,g), (g,b), (g,j), (j,g), \\ &\quad (i,j), (j,i), (d,i), (i,d), (d,a), (a,d), \\ &\quad (a,c), (c,a), (b,c), (c,b), (d,e), (e,d), \\ &\quad (f,g), (g,f), (j,h), (h,j), (i,h), (h,i), \\ &\quad (e,h), (h,e), (e,c), (c,e), (c,f), (f,c), (f,h), (h,f) \big\}. \end{split}$$

- (b) Take an assignment s in \mathcal{G} where s(x) = c, $s(y_1) = a$, $s(y_2) = b$, $s(y_3) = e$, $s(y_4) = f$. Then $\mathcal{G} \not\models \varphi[s]$.
- (c) For (i) we can use the sentence

$$\varphi_1 = \forall x \exists y \exists z (Rxy \land Rxz \land \neg y = z).$$

We have $\mathfrak{A} \models \varphi_1$, but $\mathfrak{B} \models \neg \varphi_1$, so \mathfrak{A} and \mathfrak{B} cannot be isomorphic. For (ii) we can use the sentence

$$\varphi_2 = \exists x_1 \exists x_2 \exists x_3 \exists x_4 \left(\bigwedge_{1 \le i < j \le 4} \neg x_i = x_j \right)$$

to distinguish \mathfrak{A} and \mathfrak{B} . Finally, for (iii) the sentence

$$\varphi_3 = \forall v \exists x \exists y \exists z \left(Rvx \land Rxy \land Ryz \land \neg v = z \right)$$

can be used.

- (d) The two graphs are not isomorphic: In the first graph, there are exactly 2 vertices which have 4 edges adjacent to it, whereas in the second graph, there are 6 such vertices. The property of a graph having exactly 2 vertices with 4 adjacent edges can be expressed using a first-order sentence; hence its truth value must be preserved under isomorphism.
- 5. Assume for a contradiction that $\mathfrak{A} \equiv \mathfrak{B}$ but $\mathfrak{A} \ncong \mathfrak{B}$. Hence no bijection $A \to B$ is an isomorphism $\mathfrak{A} \cong \mathfrak{B}$. By the definition of isomorphism, the failure of a bijection $\pi: A \to B$ being an isomorphism is witnessed by finitely many of the relation symbols, function symbols, and constant symbols in our language: π is *not* an isomorphism if and only if there exists a relation symbol R in our language and $a_1, \ldots, a_n \in A$ with $R^{\mathfrak{A}}(a_1, \ldots, a_n)$, but not $R^{\mathfrak{B}}(\pi(a_1), \ldots, \pi(a_n))$, or if there exists a function symbol f and but not $T (\pi(a_1), \ldots, \pi(a_n))$, or a constant symbol c with $\pi(f^{\mathfrak{A}}(a_1, \ldots, a_n)) \neq f^{\mathfrak{B}}(\pi(a_1), \ldots, \pi(a_n))$, or a constant symbol c with $\pi(c^{\mathfrak{A}}) \neq c^{\mathfrak{B}}$. Hence for any bijection $\pi: A \to B$ there exists a finite subset S of our parameters such that π is not an isomorphism of the structures $\mathfrak{A}|S$ and $\mathfrak{B}|S$. Here $\mathfrak{A}|S$ denotes the reduction of \mathfrak{A} to S, i.e., the structure in the language with parameter set S which has the same universe A as \mathfrak{A} and the same interpretations of the symbols in S as \mathfrak{A} . Note that this implies that for any finite subset S' of our parameters which contains S, π will also not be an isomorphism of the S'-structures $\mathfrak{A}|S'$ and $\mathfrak{B}|S'$. Since there are only finitely many bijections $A \to B$ (since A and B are finite sets), this means that there is some finite subset S' of S such that $\mathfrak{A}|S'$ and $\mathfrak{B}|S'$ are *not* isomorphic. But since $\mathfrak{A} \equiv \mathfrak{B}$, we clearly also have $\mathfrak{A}|S' \equiv \mathfrak{B}|S'$. So by the case of a finite language (Problem 1), we get $\mathfrak{A}|S' \cong \mathfrak{B}|S'$, a contradiction.