Problem Set 7

Solutions

Mathematical Logic

Math 114L, Spring Quarter 2008

1. This follows by checking the definition of an automorphism for $\alpha \circ \beta$ and α^{-1}. I'll just do it for $\alpha \circ \beta$. Clearly $\alpha \circ \beta$ is a bijection $A \rightarrow A$, since the composition of two bijections is a bijection. Moreover, if c is a constant symbol, then

$$
(\alpha \circ \beta)\left(c^{\mathfrak{A}}\right)=\alpha\left(\beta\left(c^{\mathfrak{A}}\right)\right)=\alpha\left(c^{\mathfrak{A}}\right)=c^{\mathfrak{A}}
$$

since $c^{\mathfrak{A}}=\alpha\left(c^{\mathfrak{A}}\right)=\beta\left(c^{\mathfrak{A}}\right)$. If f is an n-place function symbol and $a_{1}, \ldots, a_{n} \in A$, then

$$
\begin{aligned}
(\alpha \circ \beta)\left(f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)\right) & =\alpha\left(\beta\left(f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)\right)\right) \\
& =\alpha\left(f^{\mathfrak{A}}\left(\beta\left(a_{1}\right), \ldots, \beta\left(a_{n}\right)\right)\right) \\
& =f^{\mathfrak{A}}\left(\alpha\left(\beta\left(a_{1}\right)\right), \ldots, \alpha\left(\beta\left(a_{n}\right)\right)\right) \\
& =f^{\mathfrak{A}}\left((\alpha \circ \beta)\left(a_{1}\right), \ldots,(\alpha \circ \beta)\left(a_{n}\right)\right) .
\end{aligned}
$$

Here in the second equation we used that β is an automorphism, and in the third equation we used that α is an automorphism. For an n-place relation symbol R and $a_{1}, \ldots, a_{n} \in A$ we have

$$
\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathfrak{A}} \quad \Longleftrightarrow \quad\left(\beta\left(a_{1}\right), \ldots, \beta\left(a_{n}\right)\right) \in R^{\mathfrak{A}}
$$

since β is an automorphism of \mathfrak{A}. Since α is an automorphism of \mathfrak{A} :

$$
\left(\beta\left(a_{1}\right), \ldots, \beta\left(a_{n}\right)\right) \in R^{\mathfrak{A}} \quad \Longleftrightarrow \quad\left(\alpha\left(\beta\left(a_{1}\right)\right), \ldots, \alpha\left(\beta\left(a_{n}\right)\right)\right) \in R^{\mathfrak{A}}
$$

Hence

$$
\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathfrak{A}} \quad \Longleftrightarrow \quad\left((\alpha \circ \beta)\left(a_{1}\right), \ldots,(\alpha \circ \beta)\left(a_{n}\right)\right) \in R^{\mathfrak{A}}
$$

This shows that $\alpha \circ \beta$ is an automorphism of \mathfrak{A}.
2. The automorphisms of $\mathfrak{Z}=\left(\mathbb{Z},<^{\mathfrak{Z}}\right)$ are exactly the maps $x \mapsto x+k: \mathbb{Z} \rightarrow \mathbb{Z}$ (for a constant $k \in \mathbb{Z}$). (So the map $\alpha \mapsto \alpha(0)$ is an automorphism of the automorphism group of \mathfrak{Z} onto the group $(\mathbb{Z},+)$)
3. Clearly \emptyset is defined by the formula $\neg v_{1}=v_{1}$. Suppose that φ and ψ with $\operatorname{fr}(\varphi), \operatorname{fr}(\psi) \subseteq\left\{v_{1}, \ldots, v_{k}\right\}$ define D and E, respectively, that is,

$$
D=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: \mathfrak{A} \models \varphi\left[a_{1}, \ldots, a_{k}\right]\right\}
$$

and

$$
E=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: \mathfrak{A} \models \psi\left[a_{1}, \ldots, a_{k}\right]\right\} .
$$

(a) We have

$$
\begin{aligned}
D \cap E & =\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: \mathfrak{A} \models(\varphi \wedge \psi)\left[a_{1}, \ldots, a_{k}\right]\right\}, \\
D \cup E & =\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: \mathfrak{A} \models(\varphi \vee \psi)\left[a_{1}, \ldots, a_{k}\right]\right\}, \\
A^{k} \backslash D & =\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: \mathfrak{A} \models \neg \varphi\left[a_{1}, \ldots, a_{k}\right]\right\},
\end{aligned}
$$

showing that $D \cap E, D \cup E$ and $A^{k} \backslash D$ are definable in \mathfrak{A}.
(b) We have

$$
\begin{aligned}
\pi(D) & =\left\{\pi\left(a_{1}, \ldots, a_{k}\right):\left(a_{1}, \ldots, a_{k}\right) \in D\right\} \\
& =\left\{\left(a_{1}, \ldots, a_{k-1}\right) \in A^{k-1}:\left(a_{1}, \ldots, a_{k-1}, a_{k}\right) \in D\right.
\end{aligned}
$$

$$
\text { for some } \left.a_{k} \in A\right\}
$$

and hence

$$
\pi(D)=\left\{\left(a_{1}, \ldots, a_{k-1}\right) \in A^{k-1}: \mathfrak{A} \mid=\exists v_{k} \varphi\left[a_{1}, \ldots, a_{k-1}\right]\right\} .
$$

This shows that $\pi(D)$ is definable in \mathfrak{A}.
4. (a) Here is an inductive definition of the set of positive formulas:

- Every atomic formula is positive;
- if φ, ψ are positive, then $(\varphi \rightarrow \psi)$ is positive;
- if φ is positive, then $\forall v_{i} \varphi$ is positive.
(b) Consider the S-structure \mathfrak{A} whose universe consists of a single element a (so $A^{n}=\{(a, a, \ldots, a)\}$ for every $\left.n>0\right)$, and where
- every n-place function symbol f is interpreted as the function $(a, a, \ldots, a) \mapsto a: A^{n} \rightarrow A$;
- every n-place relation symbol R is interpreted as the relation $R^{\mathfrak{A}}=\{(a, a, \ldots, a)\} ;$
- every constant symbol c is interpreted as $c^{\mathfrak{A}}=a$.

There is only one assigment s in \mathfrak{A}, and clearly every atomic formula holds in \mathfrak{A} with s. By induction on the construction of positive formulas, it follows that $\mathfrak{A} \models \varphi[s]$ for every positive formula φ. (I am leaving out some details here which you were supposed to provide!)
5. Among many possible solutions, here is one: Let φ be the sentence

$$
\forall x \forall y(f x=f y \rightarrow x=y) \wedge \exists z \forall x(\neg f x=z)
$$

A structure $\mathfrak{A}=\left(A, f^{\mathfrak{A}}\right)$ satisfies φ exactly if the map $f^{\mathfrak{A}}: A \rightarrow A$ is injective, but not surjective. But a set $A \neq \emptyset$ is infinite if and only if there exists a map $A \rightarrow A$ which is injective and not surjective. Hence φ cannot hold in \mathfrak{A} with finite universe A. For a language with a single 2-place relation symbol R, let φ be a sentence which expresses that R is an ordering without right endpoint:

$$
\varphi=\forall x R x x \wedge \forall x \forall y \forall z(R x y \wedge R y z \rightarrow R x z) \wedge \forall x \exists y R x y
$$

Any structure $\mathfrak{A}=\left(A, R^{\mathfrak{A}}\right)$ satisfying φ has infinitely many elements.

