Problem Set 7 Solutions

Mathematical Logic

Math 114L, Spring Quarter 2008

1. This follows by checking the definition of an automorphism for $\alpha \circ \beta$ and α^{-1} . I'll just do it for $\alpha \circ \beta$. Clearly $\alpha \circ \beta$ is a bijection $A \to A$, since the composition of two bijections is a bijection. Moreover, if c is a constant symbol, then

$$(\alpha \circ \beta)(c^{\mathfrak{A}}) = \alpha(\beta(c^{\mathfrak{A}})) = \alpha(c^{\mathfrak{A}}) = c^{\mathfrak{A}}$$

since $c^{\mathfrak{A}} = \alpha(c^{\mathfrak{A}}) = \beta(c^{\mathfrak{A}})$. If f is an n-place function symbol and $a_1, \ldots, a_n \in A$, then

$$(\alpha \circ \beta) (f^{\mathfrak{A}}(a_1, \dots, a_n)) = \alpha (\beta (f^{\mathfrak{A}}(a_1, \dots, a_n)))$$
$$= \alpha (f^{\mathfrak{A}} (\beta (a_1), \dots, \beta (a_n)))$$
$$= f^{\mathfrak{A}} (\alpha (\beta (a_1)), \dots, \alpha (\beta (a_n)))$$
$$= f^{\mathfrak{A}} ((\alpha \circ \beta) (a_1), \dots, (\alpha \circ \beta) (a_n))$$

Here in the second equation we used that β is an automorphism, and in the third equation we used that α is an automorphism. For an *n*-place relation symbol R and $a_1, \ldots, a_n \in A$ we have

$$(a_1,\ldots,a_n) \in R^{\mathfrak{A}} \quad \iff \quad (\beta(a_1),\ldots,\beta(a_n)) \in R^{\mathfrak{A}}$$

since β is an automorphism of \mathfrak{A} . Since α is an automorphism of \mathfrak{A} :

$$(\beta(a_1),\ldots,\beta(a_n)) \in R^{\mathfrak{A}} \iff (\alpha(\beta(a_1)),\ldots,\alpha(\beta(a_n))) \in R^{\mathfrak{A}}.$$

Hence

$$(a_1,\ldots,a_n) \in R^{\mathfrak{A}} \quad \iff \quad ((\alpha \circ \beta)(a_1),\ldots,(\alpha \circ \beta)(a_n)) \in R^{\mathfrak{A}}.$$

This shows that $\alpha \circ \beta$ is an automorphism of \mathfrak{A} .

- 2. The automorphisms of $\mathfrak{Z} = (\mathbb{Z}, <^{\mathfrak{Z}})$ are exactly the maps $x \mapsto x+k \colon \mathbb{Z} \to \mathbb{Z}$ (for a constant $k \in \mathbb{Z}$). (So the map $\alpha \mapsto \alpha(0)$ is an automorphism of the automorphism group of \mathfrak{Z} onto the group $(\mathbb{Z}, +)$.)
- 3. Clearly \emptyset is defined by the formula $\neg v_1 = v_1$. Suppose that φ and ψ with $\operatorname{fr}(\varphi), \operatorname{fr}(\psi) \subseteq \{v_1, \ldots, v_k\}$ define D and E, respectively, that is,

$$D = \left\{ (a_1, \dots, a_k) \in A^k : \mathfrak{A} \models \varphi[a_1, \dots, a_k] \right\}$$

and

$$E = \{(a_1, \dots, a_k) \in A^k : \mathfrak{A} \models \psi[a_1, \dots, a_k]\}.$$

(a) We have

$$D \cap E = \{(a_1, \dots, a_k) \in A^k : \mathfrak{A} \models (\varphi \land \psi)[a_1, \dots, a_k]\},\$$
$$D \cup E = \{(a_1, \dots, a_k) \in A^k : \mathfrak{A} \models (\varphi \lor \psi)[a_1, \dots, a_k]\},\$$
$$A^k \setminus D = \{(a_1, \dots, a_k) \in A^k : \mathfrak{A} \models \neg \varphi[a_1, \dots, a_k]\},\$$

showing that $D \cap E$, $D \cup E$ and $A^k \setminus D$ are definable in \mathfrak{A} .

(b) We have

$$\pi(D) = \left\{ \pi(a_1, \dots, a_k) : (a_1, \dots, a_k) \in D \right\}$$

= $\left\{ (a_1, \dots, a_{k-1}) \in A^{k-1} : (a_1, \dots, a_{k-1}, a_k) \in D \right\}$
for some $a_k \in A$

and hence

$$\pi(D) = \{(a_1, \ldots, a_{k-1}) \in A^{k-1} : \mathfrak{A} \models \exists v_k \varphi \ [a_1, \ldots, a_{k-1}]\}.$$

This shows that $\pi(D)$ is definable in \mathfrak{A} .

- 4. (a) Here is an inductive definition of the set of positive formulas:
 - Every atomic formula is positive;
 - if φ, ψ are positive, then $(\varphi \to \psi)$ is positive;
 - if φ is positive, then $\forall v_i \varphi$ is positive.
 - (b) Consider the S-structure \mathfrak{A} whose universe consists of a single element a (so $A^n = \{(a, a, \dots, a)\}$ for every n > 0), and where
 - every *n*-place function symbol f is interpreted as the function $(a, a, \ldots, a) \mapsto a \colon A^n \to A;$
 - every *n*-place relation symbol R is interpreted as the relation $R^{\mathfrak{A}} = \{(a, a, \dots, a)\};$
 - every constant symbol c is interpreted as $c^{\mathfrak{A}} = a$.

There is only one assignment s in \mathfrak{A} , and clearly every atomic formula holds in \mathfrak{A} with s. By induction on the construction of positive formulas, it follows that $\mathfrak{A} \models \varphi[s]$ for every positive formula φ . (I am leaving out some details here which you were supposed to provide!)

5. Among many possible solutions, here is one: Let φ be the sentence

$$\forall x \forall y (fx = fy \to x = y) \land \exists z \forall x (\neg fx = z).$$

A structure $\mathfrak{A} = (A, f^{\mathfrak{A}})$ satisfies φ exactly if the map $f^{\mathfrak{A}} \colon A \to A$ is injective, but not surjective. But a set $A \neq \emptyset$ is infinite if and only if there exists a map $A \to A$ which is injective and not surjective. Hence φ cannot hold in \mathfrak{A} with finite universe A. For a language with a single 2-place relation symbol R, let φ be a sentence which expresses that R is an **ordering without right endpoint**:

 $\varphi = \forall x Rxx \land \forall x \forall y \forall z (Rxy \land Ryz \to Rxz) \land \forall x \exists y Rxy$

Any structure $\mathfrak{A} = (A, R^{\mathfrak{A}})$ satisfying φ has infinitely many elements.