Problem Set 7 Due Friday, May 30.

Mathematical Logic

Math 114L, Spring Quarter 2008

- 1. (20 pt.) Let \mathfrak{A} be a structure. Show:
 - (a) If α and β are automorphisms of \mathfrak{A} , then so is $\alpha \circ \beta$.
 - (b) If α is an automorphism of \mathfrak{A} , then so is α^{-1} .

(For those of you who know about groups: this yields that the set of all automorphisms of \mathfrak{A} forms a group, with \circ as group operation, called the **automorphism group** of \mathfrak{A} .)

- 2. (20 pt.) Consider the first-order language whose only parameter is a 2-place relation symbol <. Without proof: what are all automorphisms of the structure $\mathfrak{Z} = (\mathbb{Z}, <^3)$, where $<^3$ is the usual ordering on the set \mathbb{Z} of integers?
- 3. (20+10 pt.) Let \mathfrak{A} be an structure, and suppose that D and E are subsets of A^k which are definable in \mathfrak{A} .
 - (a) Show that \emptyset , $D \cap E$, $D \cup E$, and $A^k \setminus D$ are definable in \mathfrak{A} .
 - (b) Show that if k > 1, then $\pi(D) \subseteq A^{k-1}$ is definable in \mathfrak{A} ; here $\pi \colon A^k \to A^{k-1}$ is given by $\pi(a_1, \ldots, a_k) = (a_1, \ldots, a_{k-1})$.
- 4. (10+20 pt.) A wff which does not contain \neg is called **positive**.
 - (a) Give an inductive definition of the set of positive wffs (similar to the definition of the set of all wffs).
 - (b) Show that every positive formula is satisfiable.
- 5. (20 pt. extra credit.) Consider the first-order language with a single 1place function symbol f. Find a sentence φ such that every structure satisfying φ has infinite universe. Also, do the same problem for the language with a single is a 2-place relation symbol R.