Problem Set 8
 Solutions
 Mathematical Logic
 Math 114L, Spring Quarter 2008

1. No, v_{2} is not substitutable for v_{0}, since v_{2} is a quantified variable occurring in the term (namely, v_{2}) to be substituted.
2. In both parts show by induction on φ simultaneously that the given term t is substitutable in φ, and $\varphi_{x}^{t}=\varphi$. We only do it here for (b). If φ is atomic, t is always substitutable for x in φ, and if in addition $x \notin$ free (φ), then x does not occur in φ, so $\varphi_{x}^{t}=\varphi$. The inductive steps for $\varphi=(\neg \alpha)$ and $\varphi=(\alpha \rightarrow \beta)$ are routine. Suppose now that $\varphi=\forall y \alpha$, and $x \notin$ free (φ). Then by definition, t is substitutable for x in φ. Moreover, if $x=y$, then $\varphi_{t}^{x}=\varphi$. If $x \neq y$, then $\varphi_{t}^{x}=\forall y\left(\alpha_{t}^{x}\right) ;$ since free $(\varphi)=$ free $(\alpha) \backslash\{y\}$ and $x \neq y$, we have $x \notin$ free (α), so t is substitutable for x in α and $\alpha_{t}^{x}=\alpha$, by inductive hypothesis, hence $\varphi_{t}^{x}=\varphi$.
3. (a) Observe that any formula can built up from prime formulas by use of \neg and \rightarrow. To see this, let Φ be the set of formulas that can be built up from the prime formulas by use of \neg and \rightarrow. Then Φ includes all atomic formulas (which are prime). Φ is closed under quantification (because $\forall \boldsymbol{v}_{i} \varphi$ is prime). And Φ is closed under \neg and \rightarrow. So Φ includes all formulas.
Now suppose we are given any \mathfrak{A} and s, and we define the truth assignment v as specified. We seek to show that for every formula α

$$
\begin{equation*}
\bar{v}(\alpha)=T \quad \text { iff } \quad \mathfrak{A} \models \alpha[s] . \tag{*}
\end{equation*}
$$

We do this by induction.
Basis: α is prime. Then (\star) holds by the definition of v.
Inductive step for \neg :

$$
\begin{aligned}
\bar{v}(\neg \alpha)=T & \Leftrightarrow \bar{v}(\alpha) \neq T \quad \text { by definition of } \bar{v} \\
& \Leftrightarrow \mathfrak{A} \not \models \alpha[s] \text { by the inductive hypothesis } \\
& \Leftrightarrow \mathfrak{A} \models \neg \alpha[s] \text { by definition of } \models
\end{aligned}
$$

Inductive step for \rightarrow :

$$
\begin{aligned}
\bar{v}(\alpha \rightarrow \beta)=T & \Leftrightarrow \bar{v}(\alpha)=F \text { or } \bar{v}(\beta)=T \quad \text { by definition of } \bar{v} \\
& \Leftrightarrow \mathfrak{A} \not \vDash \alpha[s] \text { or } \mathfrak{A} \models \beta[s] \text { by inductive hypothesis } \\
& \Leftrightarrow \mathfrak{A} \vDash(\alpha \rightarrow \beta)[s] \text { by definition of } \models
\end{aligned}
$$

Hence by induction, (\star) holds for all formulas α.
(b) Assume \mathfrak{A} satisfies every member of Γ with s. Define the truth assignment v as in part (a). By (a), $\bar{v}(\gamma)=T$ for every γ in Γ. So if Γ tautologically implies φ, then $\bar{v}(\varphi)=T$. Now by part (a) again, $\mathfrak{A} \models \varphi[s]$.
Since \mathfrak{A} and s were arbitrary, we conclude that Γ logically implies φ.
4. We seek a deduction of $(\forall x \varphi \rightarrow \neg \forall x \neg \varphi)$. This is tautologically equivalent to $\neg(\forall x \varphi \wedge \forall x \neg \varphi)$. Both $(\forall x \varphi \rightarrow \varphi)$ and $(\forall x \neg \varphi \rightarrow \neg \varphi)$ are axioms, and they tautologically imply what we want.
Let τ be the formula:

$$
(\forall x \varphi \rightarrow \varphi) \rightarrow[(\forall x \neg \varphi \rightarrow \neg \varphi) \rightarrow(\forall x \varphi \rightarrow \neg \forall x \neg \varphi)]
$$

Then τ is a tautology, having the form

$$
(\mathbf{A} \rightarrow \mathbf{C}) \rightarrow[(\mathbf{B} \rightarrow \neg \mathbf{C}) \rightarrow(\mathbf{A} \rightarrow \neg \mathbf{B})]
$$

Then one deduction is the following quintuple of formulas:

$$
\begin{aligned}
& \langle\tau, \\
& (\forall x \varphi \rightarrow \varphi), \\
& {[(\forall x \neg \varphi \rightarrow \neg \varphi) \rightarrow(\forall x \varphi \rightarrow \neg \forall x \neg \varphi)],} \\
& (\forall x \neg \varphi \rightarrow \neg \varphi) \\
& (\forall x \varphi \rightarrow \neg \forall x \neg \varphi)\rangle
\end{aligned}
$$

where the third and fifth formulas are obtained by modus ponens from earlier formulas.
5. We want $\vdash P y \leftrightarrow \forall x(x=y \rightarrow P x)$. Working backwards, we see that it suffices to obtain lines 4 and 9 below.

1. $\vdash y=x \rightarrow(P y \rightarrow P x) \quad$ equality axiom
2. $\vdash x=y \rightarrow y=x \quad$ (equality is symmetric, proved in class)
3. $\vdash P y \rightarrow(x=y \rightarrow P x) \quad 1,2$; rule T
4. $P y \vdash x=y \rightarrow P x \quad 3 ; \mathrm{MP}$
5. $P y \vdash \forall x(x=y \rightarrow P x) \quad$ 4; generalization theorem
6. $\vdash P y \rightarrow \forall x(x=y \rightarrow P x) \quad$ 5; deduction theorem
7. $\forall x(x=y \rightarrow P x) \vdash y=y \rightarrow P y \quad$ substitution axiom \& MP
8. $\vdash y=y \quad$ equality axiom
9. $\forall x(x=y \rightarrow P x) \vdash P y \quad 7,8 ; \mathrm{MP}$
10. $\vdash \forall x(x=y \rightarrow P x) \rightarrow P y \quad 9$; deduction theorem
11. $\vdash P y \leftrightarrow \forall x(x=y \rightarrow P x) \quad 6,10$; rule T
12. We want

$$
\vdash(\forall x(\neg P x \rightarrow Q x) \rightarrow \forall y(\neg Q y \rightarrow P y))
$$

By the deduction theorem and the generalization theorem, it suffices to show that

$$
\forall x(\neg P x \rightarrow Q x) \vdash(\neg Q y \rightarrow P y) .
$$

And that we can do.

1. $\forall x(\neg P x \rightarrow Q x) \vdash(\neg P y \rightarrow Q y) \quad$ substitution axiom, MP
2. $\vdash(\neg P y \rightarrow Q y) \rightarrow(\neg Q y \rightarrow P y) \quad$ tautology
3. $\forall x(\neg P x \rightarrow Q x) \vdash(\neg Q y \rightarrow P y) \quad 1,2 ; \mathrm{MP}$
4. $\forall x(\neg P x \rightarrow Q x) \vdash \forall y(\neg Q y \rightarrow P y) \quad$ 3; generalization theorem
5. $\vdash(\forall x(\neg P x \rightarrow Q x) \rightarrow \forall y(\neg Q y \rightarrow P y)) \quad$; deduction theorem
