Problem Set 8 Solutions

Mathematical Logic Math 114L, Spring Quarter 2008

- 1. No, v_2 is not substitutable for v_0 , since v_2 is a quantified variable occurring in the term (namely, v_2) to be substituted.
- 2. In both parts show by induction on φ simultaneously that the given term t is substitutable in φ , and $\varphi_x^t = \varphi$. We only do it here for (b). If φ is atomic, t is always substitutable for x in φ , and if in addition $x \notin \text{free}(\varphi)$, then x does not occur in φ , so $\varphi_x^t = \varphi$. The inductive steps for $\varphi = (\neg \alpha)$ and $\varphi = (\alpha \to \beta)$ are routine. Suppose now that $\varphi = \forall y\alpha$, and $x \notin \text{free}(\varphi)$. Then by definition, t is substitutable for x in φ . Moreover, if x = y, then $\varphi_t^x = \varphi$. If $x \neq y$, then $\varphi_t^x = \forall y(\alpha_t^x)$; since $\text{free}(\varphi) = \text{free}(\alpha) \setminus \{y\}$ and $x \notin y$, we have $x \notin \text{free}(\alpha)$, so t is substitutable for x in α and $\alpha_t^x = \alpha$, by inductive hypothesis, hence $\varphi_t^x = \varphi$.
- 3. (a) Observe that any formula can built up from prime formulas by use of \neg and \rightarrow . To see this, let Φ be the set of formulas that can be built up from the prime formulas by use of \neg and \rightarrow . Then Φ includes all atomic formulas (which are prime). Φ is closed under quantification (because $\forall v_i \varphi$ is prime). And Φ is closed under \neg and \rightarrow . So Φ includes all formulas.

Now suppose we are given any \mathfrak{A} and s, and we define the truth assignment v as specified. We seek to show that for every formula α

$$\overline{v}(\alpha) = T \quad \text{iff} \quad \mathfrak{A} \models \alpha[s]. \tag{(\star)}$$

We do this by induction.

Basis: α is prime. Then (\star) holds by the definition of v. Inductive step for \neg :

$$\overline{v}(\neg \alpha) = T \quad \Leftrightarrow \quad \overline{v}(\alpha) \neq T \quad \text{by definition of } \overline{v} \\ \Leftrightarrow \quad \mathfrak{A} \not\models \alpha[s] \quad \text{by the inductive hypothesis} \\ \Leftrightarrow \quad \mathfrak{A} \models \neg \alpha[s] \quad \text{by definition of } \models$$

Inductive step for \rightarrow :

$$\begin{array}{ll} \overline{v}(\alpha \to \beta) = T & \Leftrightarrow & \overline{v}(\alpha) = F \text{ or } \overline{v}(\beta) = T & \text{by definition of } \overline{v} \\ & \Leftrightarrow & \mathfrak{A} \not\models \alpha[s] \text{ or } \mathfrak{A} \models \beta[s] & \text{by inductive hypothesis} \\ & \Leftrightarrow & \mathfrak{A} \models (\alpha \to \beta)[s] & \text{by definition of } \models \end{array}$$

Hence by induction, (\star) holds for all formulas α .

(b) Assume A satisfies every member of Γ with s. Define the truth assignment v as in part (a). By (a), v(γ) = T for every γ in Γ. So if Γ tautologically implies φ, then v(φ) = T. Now by part (a) again, A ⊨ φ[s].

Since \mathfrak{A} and s were arbitrary, we conclude that Γ logically implies φ .

4. We seek a deduction of $(\forall x \varphi \rightarrow \neg \forall x \neg \varphi)$. This is tautologically equivalent to $\neg(\forall x \varphi \land \forall x \neg \varphi)$. Both $(\forall x \varphi \rightarrow \varphi)$ and $(\forall x \neg \varphi \rightarrow \neg \varphi)$ are axioms, and they tautologically imply what we want.

Let τ be the formula:

$$(\forall \, x \, \varphi \to \varphi) \to [(\forall \, x \neg \, \varphi \to \neg \, \varphi) \to (\forall \, x \, \varphi \to \neg \, \forall \, x \neg \, \varphi)]$$

Then τ is a tautology, having the form

$$(\mathbf{A} \to \mathbf{C}) \to [(\mathbf{B} \to \neg \, \mathbf{C}) \to (\mathbf{A} \to \neg \, \mathbf{B})].$$

Then one deduction is the following quintuple of formulas:

$$\begin{array}{l} \langle \tau, \\ (\forall x \, \varphi \rightarrow \varphi), \\ [(\forall x \neg \varphi \rightarrow \neg \varphi) \rightarrow (\forall x \, \varphi \rightarrow \neg \forall x \neg \varphi)], \\ (\forall x \neg \varphi \rightarrow \neg \varphi), \\ (\forall x \, \varphi \rightarrow \neg \forall x \neg \varphi) \rangle \end{array}$$

where the third and fifth formulas are obtained by modus ponens from earlier formulas.

- 5. We want $\vdash Py \leftrightarrow \forall x(x = y \rightarrow Px)$. Working backwards, we see that it suffices to obtain lines 4 and 9 below.
 - 1. $\vdash y = x \rightarrow (Py \rightarrow Px)$ equality axiom 2. $\vdash x = y \rightarrow y = x$ (equality is symmetric, proved in class) 3. $\vdash Py \rightarrow (x = y \rightarrow Px)$ 1,2; rule T 4. $Py \vdash x = y \rightarrow Px$ 3; MP 5. $Py \vdash \forall x(x = y \rightarrow Px)$ 4; generalization theorem 6. $\vdash Py \longrightarrow \forall x(x = y \longrightarrow Px)$ 5; deduction theorem 7. $\forall x(x = y \rightarrow Px) \vdash y = y \rightarrow Py$ substitution axiom & MP 8. $\vdash y = y$ equality axiom 9. $\forall x(x = y \rightarrow Px) \vdash Py$ 7.8; MP 10. $\vdash \forall x(x = y \rightarrow Px) \rightarrow Py$ 9; deduction theorem 11. $\vdash Py \leftrightarrow \forall x(x = y \rightarrow Px)$ 6,10; rule T

6. We want

$$\vdash (\forall x (\neg Px \rightarrow Qx) \rightarrow \forall y (\neg Qy \rightarrow Py)).$$

By the deduction theorem and the generalization theorem, it suffices to show that

$$\forall x(\neg Px \rightarrow Qx) \vdash (\neg Qy \rightarrow Py).$$

And that we can do.

1.	$\forall x (\neg Px \longrightarrow Qx) \vdash (\neg Py \longrightarrow Qy)$	substitution axiom, MP
2.	$\vdash (\neg Py \longrightarrow Qy) \longrightarrow (\neg Qy \longrightarrow Py)$	tautology
3.	$\forall x (\neg Px \longrightarrow Qx) \vdash (\neg Qy \longrightarrow Py)$	1,2; MP
4.	$\forall x (\neg Px \longrightarrow Qx) \vdash \forall y (\neg Qy \longrightarrow Py)$	3; generalization theorem
5.	$\vdash (\forall x (\neg Px \longrightarrow Qx) \longrightarrow \forall y (\neg Qy \longrightarrow Py)) \vdash (\forall x (\neg Qy \longrightarrow Qy) \longrightarrow Qy) \mapsto (\forall x (\neg Qy \longrightarrow Qy)) \mapsto (\forall x (\neg Qy \longrightarrow Qy))$	(y)) 4; deduction theorem