Problem Set 3 Due Wednesday, April 25.

Real Analysis

Math 131A, Spring Quarter 2012

- 1. Do problems 5.1, 5.3, 5.4 in the textbook.
- 2. Do problems 7.4, 8.1 (b), (d), 8.2 (b), (e), 8.4, 8.7 (b), 8.9 in the textbook.
- 3. A subset S of \mathbb{R} is said to be *closed* if whenever (s_n) is a sequence in S and (s_n) converges to a real number s, then $s \in S$.
 - (a) Prove that for any $a, b \in \mathbb{R}$ with a < b, the interval [a, b] is closed.
 - (b) Give an example of an unbounded, closed set $S \subseteq \mathbb{R}$.
 - (c) Suppose that $S \subseteq \mathbb{R}$ is closed and bounded from above. Prove that S has a largest element.
- 4. Let (s_n) be a sequence in \mathbb{R} with limit $s \in \mathbb{R}$. Show that then the sequence (σ_n) with $\sigma_n = \frac{1}{n}(s_1 + \cdots + s_n)$ also converges to s.