Problem Set 5 Due Wednesday, May 9.

Real Analysis

Math 131A, Spring Quarter 2012

- 1. Do problems 10.7, 10.10, 11.6, 11.8, 11.10 in the textbook.
- 2. Suppose that for each $n \geq 1$, we are given a closed and bounded interval $[a_n, b_n]$ in \mathbb{R} , such that $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$ for all $n \geq 1$. (Such a sequence $([a_n, b_n])_{n\geq 1}$ of intervals in \mathbb{R} is said to be *nested*.) Show that $\bigcap_{n\geq 1} [a_n, b_n] \neq \emptyset$, i.e.: there is a real number *a* such that $a \in [a_n, b_n]$ for all $n \geq 1$. (Hint: use the Bolzano-Weierstrass Theorem.)
- 3. Let (a_n) and (b_n) be bounded sequences of real numbers. Show that

 $\limsup a_n + \limsup b_n \le \limsup (a_n + b_n) \le \limsup a_n + \limsup b_n.$

Give an example of a *single* pair of sequences (a_n) , (b_n) for which both inequalities are strict.