Problem Set 5

Due Wednesday, May 9.

Real Analysis

Math 131A, Spring Quarter 2012

1. Do problems $10.7,10.10,11.6,11.8,11.10$ in the textbook.
2. Suppose that for each $n \geq 1$, we are given a closed and bounded interval $\left[a_{n}, b_{n}\right]$ in \mathbb{R}, such that $\left[a_{n+1}, b_{n+1}\right] \subseteq\left[a_{n}, b_{n}\right]$ for all $n \geq 1$. (Such a sequence $\left(\left[a_{n}, b_{n}\right]\right)_{n \geq 1}$ of intervals in \mathbb{R} is said to be nested.) Show that $\bigcap_{n \geq 1}\left[a_{n}, b_{n}\right] \neq \emptyset$, i.e.: there is a real number a such that $a \in\left[a_{n}, b_{n}\right]$ for all $n \geq 1$. (Hint: use the Bolzano-Weierstrass Theorem.)
3. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be bounded sequences of real numbers. Show that

$$
\limsup a_{n}+\liminf b_{n} \leq \limsup \left(a_{n}+b_{n}\right) \leq \limsup a_{n}+\limsup b_{n}
$$

Give an example of a single pair of sequences $\left(a_{n}\right),\left(b_{n}\right)$ for which both inequalities are strict.

