Problem Set 7

Due Wednesday, May 23.

Real Analysis

Math 131A, Spring Quarter 2012

1. Do problems $15.2,15.4,17.5,17.6,17.10,17.12,17.13,17.14,18.4$, in the textbook.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function with $f(0)=f(1)$. Show that there is some $x \in[0,1]$ such that $f(x)=f\left(x+\frac{1}{2}\right)$.
3. Let $S \subseteq \mathbb{R}$ and $x_{0} \in S$. One says that x_{0} is isolated if there is an $\varepsilon>0$ such that $\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right) \cap S=\left\{x_{0}\right\}$. Show that every function $f: S \rightarrow \mathbb{R}$ is continuous at each isolated $x_{0} \in S$.
4. Let $g: S \rightarrow \mathbb{R}$ be continuous at $x_{0} \in S$, and suppose $g\left(x_{0}\right) \neq 0$.
(a) Show that there is an open interval I such that $x_{0} \in I$ and $g(x) \neq 0$ for each $x \in I \cap S$. (Distinguish between the case where x_{0} is isolated and non-isolated.)
(b) Show that $1 / g: I \cap S \rightarrow \mathbb{R}$ is continuous at x_{0}.
