Problem Set 2 Due Friday, April 20.

Real Analysis

Math 131A, Spring Quarter 2018

1. Let K be a field, i.e., a set equipped with two operations + , on K satisfying the axioms (A1)-(A4), (M1)-(M4) and (DL) stated in class.
(a) Show that there is only one element 0 of K satisfying the property in (A3).
(b) Show that there is only one element 1 of K satisfying the property in (M3).
2. Consider the subset $K:=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ of \mathbb{R}.
(a) Show that $0,1 \in K$, and if $r, s \in K$, then $r+s$ and $r \cdot s$ also belong to K.
(b) Verify that equipping K with the usual addition and multiplication of real numbers, restricted to K, turns K into a field.
(c) Show that there exists a binary relation \leq on K so that K becomes an ordered field. Extra credit: can you find two distinct such relations?
3. Do problem 3.5 in the textbook.
4. Do problems 4.1-4.4 for (a), (b), (k), (u), (v), as well as 4.14, 4.15, in the textbook.
