Problem Set 5 Due Friday, May 11.

Real Analysis

Math 131A, Spring Quarter 2018

- 1. Do problems 11.1, 11.6 in the textbook.
- 2. Let (s_n) be a sequence. A real number s is called an *accumulation point* of (s_n) if for each $\varepsilon > 0$ there are infinitely many n such that $|s_n s| < \varepsilon$. In class we proved that this is equivalent to the existence of a subsequence of (s_n) converging to s.
 - (a) Prove that a bounded sequence with exactly one accumulation point must converge. Can the requirement that the sequence is bounded be dropped?
 - (b) Suppose (s_n) is bounded. The Bolzano-Weierstrass Theorem states that (s_n) has at least one accumulation point. The *limit superior* of (s_n) is defined as

 $\limsup s_n := \sup \{s : s \text{ is an accumulation point of } (s_n) \}.$

Show that if $\limsup s_n < a$ then there is some n_0 such that $s_n < a$ for all $n \ge n_0$.

- 3. Do 14.1, 14.5, 14.6, 14.8, 14.14 in the textbook.
- 4. Extra credit: 14.7 in the textbook.