FINAL EXAM

Math 31B, Spring Quarter 2011
Integration and Infinite Series
June 8, 2011

ANSWERS

Problem 1. Find derivative of

$$
\ln \left(\frac{\sin (x)+1}{x^{2}+2}\right) .
$$

Answer:

$$
\frac{d}{d x} \ln \left(\frac{\sin (x)+1}{x^{2}+2}\right)=\frac{x^{2}+2}{\sin (x)+1} \times \frac{\cos (x)\left(x^{2}+2\right)-(\sin (x)+1)(2 x)}{\left(x^{2}+2\right)^{2}}
$$

Problem 2.

The population of a city grows exponentially. Suppose that the population is currently 2 million people, and that the population after 5 years is going to be two times the current population. Compute the population after 10 years.
(10 points.)

Answer:
The population grows according to $P(t)=P_{0} e^{r t}$, where t is the time in years. From the information we have that

$$
P_{0} e^{5 r}=2 P_{0} .
$$

Simplifying we have that

$$
e^{5 r}=2
$$

and thus

$$
r=\frac{\ln 2}{5} .
$$

Thus, after 10 years the population is (in million):

$$
P(10)=2 e^{10 r}=2 e^{\frac{10 \ln 2}{5}}=2 \cdot e^{2 \ln 2}=2 \cdot 2^{2}=8 .
$$

Problem 3. Compute the sum of the infinite series

$$
2+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\cdots+\left(\frac{2}{3}\right)^{n}+\cdots
$$

(5 points.)

Answer:

$$
\begin{aligned}
2+\left(\frac{2}{3}\right)^{2}+\cdots+\left(\frac{2}{3}\right)^{n}+\cdots & =2+\left(\frac{2}{3}\right)^{2}\left[1+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\cdots+\left(\frac{2}{3}\right)^{n}+\cdots\right] \\
& =2+\left(\frac{2}{3}\right)^{2}\left[\frac{1}{1-\frac{2}{3}}\right]=2+\frac{4}{3}=\frac{10}{3}
\end{aligned}
$$

Problem 4.

1. Use the Integral Test to show that the following series converges:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

2. Does the infinite series

$$
\sum_{n=1}^{\infty} \frac{n^{3}}{n^{5}+1}
$$

converge? Explain why or why not. (Hint: you might want to use the result of part (1.).)
3. Does the series

$$
\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{n}
$$

converge? Justify your answer.

$$
(5+5+5=15 \text { points. })
$$

Answer:

1. We have $\int \frac{1}{x^{2}} d x=-\frac{1}{x}+C$, hence

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{R \rightarrow \infty}-\frac{1}{R}+1=1
$$

converges. So by the Integral Test, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
2. The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by part (1.) and $0<\frac{n^{3}}{n^{5}+1} \leq \frac{n^{3}}{n^{5}}=$ $\frac{1}{n^{2}}$ for all $n \geq 1$. Hence the given infinite series converges by the Comparison Test.
3. Note that

$$
\frac{2+(-1)^{n}}{n}= \begin{cases}1 / n & \text { if } n \text { is odd } \\ 3 / 4 & \text { if } n \text { is even }\end{cases}
$$

Therefore $\frac{2+(-1)^{n}}{n} \geq 1 / n$ for all n. All terms are positive, so we may apply the Comparison Test. Since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, so does $\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{n}$ by the Comparison Test.

Problem 5.

1. Find the radius of convergence R of the power series

$$
\sum_{n=0}^{\infty} \frac{3^{n}}{n!} x^{n} .
$$

2. The power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n} n^{2}}(x-1)^{n}
$$

has radius of convergence $R=2$. Determine whether this power series converges for the endpoints of its interval of convergence. (Hint: you might want to use the result of part (1.) of the previous problem.)

$$
(5+5=10 \text { points. })
$$

Answer:

1. We have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{3^{n+1}}{(n+1)!}}{\frac{3^{n}}{n!}}\right|=\frac{3^{n+1}}{(n+1)!} \frac{n!}{3^{n}}=\frac{3}{n+1}
$$

and thus

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{3}{n+1}=0
$$

Hence $R=\infty$. That is, this series converges for all x.
2. The endpoints of the interval of convergence of this power series are $x=-1$ and $x=3$. We test for convergence:

$$
x=3: \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n} n^{2}}(3-1)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}},
$$

which converges by the Leibniz alternating series test or by the fact that this series converges absolutely, namely $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by the hint.

$$
x=-1: \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n} n^{2}}(-1-1)^{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}},
$$

which converges by the hint.

Problem 6. Evaluate

$$
I=\int e^{x} \cos x d x
$$

(Hint: integration by parts.)

Answer:
Let $u=e^{x}, v^{\prime}=\cos x$, then $u^{\prime}=e^{x}, v=\sin x$, thus

$$
I=e^{x} \sin x-\int e^{x} \sin x d x
$$

Now for the integral $\int e^{x} \sin x d x$, use integration by parts again, set $u=e^{x}$, $v^{\prime}=\sin x$, so $u^{\prime}=e^{x}, v=-\cos x$, then

$$
\int e^{x} \sin x d x=-e^{x} \cos x+\int e^{x} \cos x d x=-e^{x} \cos x+I
$$

So we have:

$$
I=e^{x} \sin x-\int e^{x} \sin x d x=e^{x} \sin x+e^{x} \cos x-I .
$$

Solving for I, we have

$$
I=\frac{e^{x} \cos x+e^{x} \sin x}{2}+C .
$$

Problem 7. Consider the following improper integral:

$$
I=\int_{2}^{\infty} \frac{2 x}{x^{2}-1} d x
$$

1. Use the Comparison Test to determine whether or not I converges.
2. Compute $\int_{2}^{R} \frac{2 x}{x^{2}-1} d x$, where $R>2$.
3. By computing $I=\lim _{R \rightarrow \infty} \int_{2}^{R} \frac{2 x}{x^{2}-1} d x$, justify your conclusion in (1.).

$$
(3+5+2=10 \text { points. })
$$

Answer:

1. $\frac{2 x}{x^{2}-1}=\frac{2}{x-\frac{1}{x}}>\frac{2}{x}$ for $x>2$. Also, $\int_{2}^{\infty} \frac{2}{x} d x$ diverges. Hence by the Comparison Test, $\int_{2}^{\infty} \frac{2 x}{x^{2}-1} d x$ also diverges.
2. We use the partial fraction decomposition:

$$
\frac{2 x}{x^{2}-1}=\frac{A}{x-1}+\frac{B}{x+1}=\frac{A(x+1)+B(x-1)}{(x-1)(x+1)}=\frac{(A+B) x+A-B}{x^{2}-1} .
$$

Hence $A+B=2$ and $A-B=0$, so $A=B=1$. This allows us to compute the integral:

$$
\int_{2}^{R} \frac{1}{x-1} d x+\int_{2}^{R} \frac{1}{x+1} d x=\left.(\ln |x-1|+\ln |x+1|)\right|_{2} ^{R}=\ln |(R-1)(R+1)|-\ln 3
$$

3. $\mathrm{By}(2$.$) ,$

$$
I=\lim _{R \rightarrow \infty}(\ln |(R-1)(R+1)|)-\ln 3=\infty,
$$

therefore I diverges.

Problem 8.

Let f be a differentiable function and assume that f^{\prime} is continuous on an interval $[a, b]$.

1. Give a formula for the arc length of the graph of $y=f(x)$ over $[a, b]$.
2. Suppose $f(x)>0$ for each x and let $g(x)=\ln (f(x))$. Express the arc length of the graph of $y=g(x)$ over $[a, b]$ as an integral depending only on $f(x)$ and its derivatives.

$$
(3+2=5 \text { points. })
$$

Answer:

1. The arc length is given by $\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x$.
2. We have $g^{\prime}(x)=\frac{f^{\prime}(x)}{f(x)}$ and hence the desired arc length is given by

$$
\int_{a}^{b} \sqrt{1+g^{\prime}(x)^{2}} d x=\int_{a}^{b} \sqrt{1+\left(\frac{f^{\prime}(x)}{f(x)}\right)^{2}} d x=\int_{a}^{b} \frac{\sqrt{f(x)^{2}+f^{\prime}(x)^{2}}}{f(x)} d x .
$$

Problem 9. Compute

$$
\lim _{x \rightarrow 0}(\sin x)^{x} .
$$

Answer:
Let $f(x)=(\sin x)^{x}$. Then

$$
\ln (f(x))=x \ln (\sin x)=\frac{\ln (\sin x)}{1 / x} .
$$

Note that

$$
\lim _{x \rightarrow 0} \frac{\ln (\sin x)}{1 / x}=\lim _{x \rightarrow 0} \frac{\frac{\cos x}{\sin x}}{-1 / x^{2}}=\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right) \lim _{x \rightarrow 0}(-x \cos x)=1 \times 0=0
$$

where we used l'Hôpital's Rule for the first equality and the fact (also obtain via l'Hôpital's Rule) that

$$
\lim _{x \rightarrow 0} \frac{x}{\sin x}=\lim _{x \rightarrow 0} \frac{1}{\cos x}=1 .
$$

Consequently, $\lim _{x \rightarrow 0} f(x)=1$.

Problem 10. Consider the following integral:

$$
I=\int_{0}^{1} e^{x^{2}} d x
$$

1. Compute the 4 th trapezoidal aproximation T_{4} to I.
2. Find a bound for $\operatorname{Error}\left(T_{4}\right)=\left|T_{4}-I\right|$.
3. Explain graphically whether T_{4} is larger or smaller than I.

$$
(5+3+2=10 \text { points. })
$$

Answer:
1.

$$
T_{4}=\frac{1}{2} \cdot \frac{1}{4}\left(e^{0}+2 e^{\frac{1}{16}}+2 e^{\frac{1}{4}}+2 e^{\frac{9}{16}}+e\right)=\frac{1}{8}\left(1+2 e^{\frac{1}{16}}+2 e^{\frac{1}{4}}+2 e^{\frac{9}{16}}+e\right) .
$$

2. We have

$$
f^{\prime}(x)=2 x e^{x^{2}}, \quad f^{\prime \prime}(x)=2 e^{x^{2}}+4 x^{2} e^{x^{2}}
$$

so if $0 \leq x \leq 1$ then $\left|f^{\prime \prime}(x)\right| \leq f^{\prime \prime}(1)=2 e+4 e=6 e=K_{2}$, hence

$$
\operatorname{Error}\left(T_{4}\right) \leq \frac{6 e(1-0)^{3}}{12 \cdot 4^{2}}=\frac{e}{32}
$$

3. We have $f^{\prime \prime}(x) \geq 0$ for $0 \leq x \leq 1$, thus $f(x)$ is concave up and hence T_{4} is too large.

Problem 11. Evaluate

$$
I=\int \frac{x}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x
$$

(Hint: substitution $x=\sin \theta$.)
(10 points.)

Answer:
Let $x=\sin \theta$, so $d x=\cos \theta d \theta$. Then

$$
I=\int \frac{\sin \theta \cos \theta}{\cos ^{3} \theta} d \theta=\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta
$$

Now take $u=\cos \theta$, so $d u=-\sin \theta$. Then

$$
I=-\int \frac{d u}{u^{2}}=\frac{1}{u}+C=\frac{1}{\cos \theta}+C=\frac{1}{\sqrt{1-x^{2}}}+C .
$$

Problem 12.

Show that the N th Taylor polynomial for $f(x)=\frac{1}{1+x}$ centered at $c=1$ is

$$
T_{N}(x)=\sum_{n=0}^{N} \frac{(-1)^{n}(x-1)^{n}}{2^{n+1}} .
$$

Answer:
Write

$$
f(x)=\frac{1}{1+x}=\frac{1}{2(1-(-1 / 2)(x-1))} .
$$

Using the geometric series expansion, for $|(1 / 2)(x-1)|<1$ we have the following power series expansion for $f(x)$:

$$
f(x)=\frac{1}{2} \sum_{n=0}^{\infty}\left(-\frac{1}{2}(x-1)\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(x-1)^{n} .
$$

This is the Taylor series for $f(x)$ centered at $c=1$; its N th partial sum is the N th Taylor polynomial for $f(x)$ centered at $c=1$, so

$$
T_{N}(x)=\sum_{n=0}^{N} \frac{(-1)^{n}(x-1)^{n}}{2^{n+1}}
$$

as claimed. (This answer can also be obtained by deducing a formula for $f^{(n)}(x)$ and this way computing T_{N} directly.)

