MIDTERM EXAM 1

Math 31B, Spring Quarter 2011
Integration and Infinite Series
April 15, 2011

ANSWERS

Problem 1. Consider the function

$$
f(x)=x^{3}+2 x+4 .
$$

1. Why is f invertible? Justify your answer.
2. Denoting the inverse of f by g, calculate $g^{\prime}(4)$.
(5+5 points.)

Answer:

1. We have $f^{\prime}(x)=3 x^{2}+2>0$ for every x, so f is strictly increasing and hence one-to-one, i.e., invertible.
2. We have $g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$ for every x. To find $g(4)$ we solve $f(x)=4$ for x and obtain $x=0$, so $g(4)=0$ and hence

$$
g^{\prime}(4)=\frac{1}{3 \cdot 0^{2}+2}=\frac{1}{2} .
$$

Problem 2. Find the y-coordinate of the intersection of the line $4 x=5$ with the tangent line to the curve $y=2^{x^{2}}$ at the point $(1,2)$. (10 points.)

Answer:
Observe that

$$
\frac{d}{d x}\left(2^{x^{2}}\right)=(\ln 2) 2^{x^{2}} \cdot 2 x
$$

Therefore, the slope of the tangent line at $x=1$ is $4(\ln 2)$. Now the tangent line satisfies

$$
y-2=4(\ln 2)(x-1) .
$$

To find the y-coordinate of the intersection of this line with the line $4 x=5$ amounts to setting $x=5 / 4$ and solving for y :

$$
y=2+4(\ln 2)(5 / 4-1)=2+\ln 2 .
$$

Problem 3.

The atmospheric pressure $P(h)$ (in pounds per square inch) at a height h (in miles) above sea level on earth satisfies the differential equation

$$
P^{\prime}=-k P \quad \text { for some positive constant } k \text {. }
$$

Measurements with a barometer show that

$$
P(0)=14.7 \quad \text { and } \quad P(10)=2 .
$$

Find k.

Answer:
We have

$$
P(h)=P_{0} e^{-k h}
$$

where $P_{0}=P(0)=14.7$. Since $P(10)=2$ we have

$$
2=14.7 \cdot e^{-10 k}
$$

and hence, taking \ln on both sides of the equation and solving for k :

$$
k=-\frac{1}{10} \ln \left(\frac{2}{14.7}\right)
$$

Problem 4. Compute the following limits:
1.

$$
\lim _{x \rightarrow \infty} \frac{(1+\ln x)^{1 / 3}}{1+x}
$$

2.

$$
\lim _{x \rightarrow 0}(1+2 x)^{2 / x}
$$

(10+10 points.)

Answer:

1. We have

$$
\lim _{x \rightarrow \infty}(1+\ln x)=\infty
$$

and hence

$$
\lim _{x \rightarrow \infty}(1+\ln x)^{1 / 3}=\infty
$$

Since also

$$
\lim _{x \rightarrow \infty}(1+x)=\infty,
$$

l'Hôpital's Rule applies, and we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{(1+\ln x)^{1 / 3}}{1+x}=\lim _{x \rightarrow \infty} \frac{(1 / 3)(1+\ln x)^{1 / 3-1} \cdot(1 / x)}{1}= \\
\frac{1}{3} \lim _{x \rightarrow \infty} \frac{1}{(1+\ln x)^{2 / 3} \cdot x}=0 .
\end{aligned}
$$

2. We have

$$
\ln (1+2 x)^{2 / x}=\frac{2}{x} \ln (1+2 x)=\frac{2 \ln (1+2 x)}{x}
$$

Now as $x \rightarrow 0$ both numerator and denominator of this fraction approach 0 , so l'Hôpital's Rule applies and we obtain

$$
\lim _{x \rightarrow 0} \frac{2 \ln (1+2 x)}{x}=\lim _{x \rightarrow 0} \frac{2 /(1+2 x) \cdot 2}{1}=4 .
$$

Hence

$$
\lim _{x \rightarrow 0}(1+2 x)^{2 / x}=\lim _{x \rightarrow 0} e^{\ln \left((1+2 x)^{2 / x}\right)}=e^{4} .
$$

Problem 5.

Evaluate the following indefinite integrals, using substitution if necessary.

1. $\int \sin x 4^{\cos x} d x$;
2. $\int \frac{4 x-2}{9-4 x+4 x^{2}} d x$.

Answer:

1. Let $u=\cos x$. Then $d u=-\sin x d x$, so:

$$
\int \sin x 4^{\cos x} d x=-\int 4^{u} d u=-\frac{1}{\ln 4} \int(\ln 4) 4^{u} d u=-\frac{4^{u}}{\ln 4}+C=-\frac{4^{\cos x}}{\ln 4}+C .
$$

2. Let $u=9-4 x+4 x^{2}$. Then $d u=(-4+8 x) d x$, and $-\frac{1}{2} d u=(4 x-2) d x$, so:

$$
\int \frac{4 x-2}{9-4 x-4 x^{2}} d x=-\frac{1}{2} \int \frac{1}{u} d u=-\frac{1}{2} \ln |u|+C=-\frac{1}{2} \ln \left|9-4 x+4 x^{2}\right|+C .
$$

Problem 6.

How large should N be to guarantee that the error in the Trapezoidal Rule approximation T_{N} to

$$
\int_{0}^{2} x^{3} d x
$$

is accurate within 0.1 ?
(10 points.)

Answer:
Let $f(x)=x^{3}$. Then

$$
f^{\prime}(x)=3 x^{2}, \quad f^{\prime \prime}(x)=6 x .
$$

Note that $f^{\prime \prime}$ is increasing and $f^{\prime \prime}(x) \geq 0$ on the interval $0 \leq x \leq 2$. So

$$
\left|f^{\prime \prime}(x)\right| \leq\left|f^{\prime \prime}(2)\right|=12 \quad \text { for } 0 \leq x \leq 2
$$

hence we can choose $K_{2}=12$. We now use the error bound for T_{N} :

$$
\operatorname{Error}\left(T_{N}\right)=\left|\int_{0}^{2} x^{3} d x-T_{N}\right| \leq \frac{K_{2}(b-a)^{3}}{12 N^{2}}=\frac{8}{N^{2}}
$$

We'd like to have $\operatorname{Error}\left(T_{N}\right) \leq 0.1$, and this is certainly the case if

$$
\frac{8}{N^{2}} \leq 0.1,
$$

or equivalently

$$
N^{2} \geq 80
$$

So $N=9$ is enough.

Problem 7. Consider the differential equation

$$
y^{\prime}(t)=5(y(t)+13)
$$

1. Without justification, write down the general solution of this differential equation.
2. Find a formula for the solution $y(t)$ satisfying $y(0)=a$, where a is a given constant. (Your answer should be a formula for $y(t)$ that depends on the parameter a.)

Answer:

1. The solution is $y(t)=-13+C e^{5 t}$, where C is a constant.
2. Evaluate $y(t)=-13+C e^{5 t}$ at $t=0$:

$$
a=y(0)=-13+C e^{5 \cdot 0}=-13+C,
$$

so $C=a+13$. Therefore $y(t)=-13+(a+13) e^{5 t}$.

