31B/1 - Midterm 2 - Solutions

4 November 2011

Name:
Student ID \#:

This is a closed-book, closed-notes exam. Calculators are not allowed.
Show all work.
If you need more room, write on the back, and make a note on the front. There are 5 problems of 20 points each for a total of 100 points.

POINTS:

1.
2.
3.
4.
5.

TOTAL:

1. (20 points). Determine (with proof) whether or not the integral

$$
\int_{0}^{1} \frac{d x}{x^{1 / 3}\left(1+x^{2}\right)}
$$

converges.

Solution On the interval $[0,1]$,

$$
x^{1 / 3} \leq x^{1 / 3}\left(1+x^{2}\right),
$$

so that

$$
\int_{0}^{1} \frac{d x}{x^{1 / 3}\left(1+x^{2}\right)} \leq \int_{0}^{1} \frac{d x}{x^{1 / 3}}
$$

The right-hand integral converges, so the original integral converges by the comparison test.
2. (20 points). Compute, using the method for surface area of a solid of revolution, the surface area of a sphere of radius R.

Solution We can take the function $f(x)=\sqrt{R^{2}-x^{2}}$ on the domain $[-R, R]$. When rotated this gives a sphere of radius R. The derivative of this function is $-\frac{x}{\sqrt{R^{2}-x^{2}}}$. Let S denote the surface area. We have

$$
\begin{aligned}
S & =2 \pi \int_{-R}^{R} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x \\
& =2 \pi \int_{-R}^{R} \sqrt{1+\frac{x^{2}}{{\sqrt{R^{2}-x^{2}}}^{2}}} \sqrt{R^{2}-x^{2}} d x \\
& =2 \pi \int_{-R}^{R} \sqrt{R^{2}-x^{2}+x^{2}} d x \\
& =2 \pi \int_{-R}^{R} R d x \\
& =\left.2 \pi R x\right|_{-R} ^{R} \\
& =4 \pi R^{2} .
\end{aligned}
$$

3. (20 points). Compute the indefinite integral

$$
\int \frac{x+7}{x^{2}(x+2)} d x
$$

Solution First, we write the integrand as a partial fraction

$$
\frac{x+7}{x^{2}(x+2)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+2},
$$

where we determine A, B, C now. Clear denominators to obtain

$$
x+7=A x(x+2)+B(x+2)+C x^{2}=(A+C) x^{2}+(2 A+B) x+2 B .
$$

This yields the system of equations

$$
\begin{aligned}
& A+C=0 \\
& 2 A+B=1 \\
& 2 B=7 .
\end{aligned}
$$

Solving, we see that $B=\frac{7}{2}, A=-\frac{5}{4}$, and $C=\frac{5}{4}$. Thus, the integral is

$$
\begin{aligned}
\int \frac{x+7}{x^{2}(x+2)} d x & =\int\left(-\frac{5}{4 x}+\frac{7}{2 x^{2}}+\frac{5}{4(x+2)}\right) d x \\
& =-\frac{5}{4} \int \frac{d x}{x}+\frac{7}{2} \int \frac{d x}{x^{2}}+\frac{5}{4} \int \frac{d x}{x+2} \\
& =-\frac{5}{4} \ln |x|-\frac{7}{2 x}+\frac{5}{4} \ln |x+2|+C
\end{aligned}
$$

4. (20 points) Find an interval $[a, b]$ containing 0 such that if x is in $[a, b]$, the error of the 5th Taylor polynomial for $f(x)=e^{x}$ (with $a=0$) is less than or equal to 10^{-18}.

Solution The error bound is

$$
\left|T_{5}(x)-e^{x}\right| \leq \frac{K_{6}(x-0)^{6}}{6!}
$$

where K_{6} is an upper bound for $f^{6}(x)=e^{x}$ on some interval as yet to be determined. So we solve for x in the inequality

$$
\frac{K_{6} x^{6}}{6!} \leq 10^{-18}
$$

Let $b_{0}=1$, so that $e^{b_{0}}=e$. We have $b_{0}>0$ and on the interval $\left(-\infty, b_{0}\right], e^{x} \leq e$. So, for any x in the interval $\left(-\infty, b_{0}\right]$, the error is at most

$$
\frac{e x^{6}}{6!}=\frac{e x^{6}}{360}
$$

Since $e \leq 3, \frac{e}{3} \leq 1$. Thus,

$$
\frac{e x^{6}}{360} \leq \frac{x^{6}}{120}
$$

Set

$$
x^{6} \leq 120 \cdot 10^{-18} .
$$

We can require even more strictly that

$$
x^{6} \leq 2^{6} \cdot 10^{-18}=64 \cdot 10^{-18}
$$

Then, we see that

$$
|x| \leq 2 \cdot 10^{-3}
$$

has the indicated error. Thus, on the interval $\left[-\frac{1}{500}, \frac{1}{500}\right]$, the error

$$
\left|T_{5}(x)-e^{x}\right|
$$

is less than or equal to 10^{-18}.
5. (20 points). Compute the value of $\ln 2$ to an error of at most 10^{-3}. You should use Taylor polynomials, but you do not have to actually simplify the final approximation $T_{n}(2)$.

Solution We use the Taylor polynomials $T_{n}(x)$ for $f(x)=\ln x$ centered at $a=1$. The general form for the error bound is then,

$$
\left|T_{n}(2)-\ln 2\right| \leq \frac{K_{n+1}(2-1)^{n+1}}{(n+1)!}
$$

where K_{n+1} is an upper bound for $f^{(n+1)}(x)$ on the interval $[1,2]$. The first few derivatives of $f(x)$ are

$$
\begin{array}{r}
f^{\prime}(x)=\frac{1}{x} \\
f^{(2)}(x)=-\frac{1}{x^{2}} \\
f^{(3)}(x)=\frac{2}{x^{3}}
\end{array}
$$

The absolute values of these derivatives are all decreasing on the interval [1, 2], so we can take their values at $x=1$ as upper bounds. In fact, we can take

$$
K_{n+1}=n!
$$

for $n \geq 0$. Now, we have that $\left|f^{(n+1)}(x)\right| \leq K_{n+1}$ on the interval $[1,2]$. Thus, we can take

$$
\left|T_{n}(2)-\ln 2\right| \leq \frac{n!}{(n+1)!}=\frac{1}{n+1}
$$

Thus,

$$
\left|T_{999}(2)-\ln 2\right| \leq 10^{-3}
$$

The corresponding approximation is

$$
T_{999}(2)=\Sigma_{k=1}^{999}(-1)^{k-1} \frac{1}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots+\frac{1}{999} .
$$

