Math 31b : Integration and Infinite Series
 Midterm 1

1. Consider the function $f(x)=x^{e^{x}}$.
(a) (5 points) Find the derivative $f^{\prime}(x)$.

Solution. We use logarithmic differentiation. Since $\ln f(x)=\ln \left(x^{e^{x}}\right)=e^{x} \ln x$, we get

$$
\frac{f^{\prime}(x)}{f(x)}=(\ln f(x))^{\prime}=\left(e^{x} \ln x\right)^{\prime}=\frac{e^{x}}{x}+e^{x} \ln x
$$

so

$$
f^{\prime}(x)=\left(\frac{e^{x}}{x}+e^{x} \ln x\right) x^{e^{x}} .
$$

(b) (5 points) Let $g=f^{-1}$ denote the inverse function. Find $g^{\prime}(1)$.

Solution. We have $f(1)=1$, so $f^{-1}(1)=1$ and

$$
g^{\prime}(1)=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(1)}=\frac{1}{(e+1 \cdot 0) 1^{e}}=\frac{1}{e} .
$$

2. We have a sample consisting of 100 grams of a radioactive isotope. After one year it decays to 90 grams.
(a) (5 points) What is the half-life of the isotope?

Solution. The quantity must satisfy the exponential decay law $P(t)=P_{0} e^{-k t}$. We have

$$
P(1)=100 e^{-k}=90
$$

so the growth constant k satisfies $e^{-k}=9 / 10$, i.e. $k=-\ln (9 / 10)$. The half-life is $-\frac{\ln 2}{\ln (9 / 10)}$.
(b) (5 points) After how many years will the sample decay to 30 grams?

Solution.

$P(t)=30$ implies $100 e^{-k t}=30$ so $-k t=\ln (3 / 10)$. Therefore $t=\frac{\ln (3 / 10)}{\ln (9 / 10)}$.
3. A function $f(x)$ satisfies the differential equation

$$
f^{\prime}(x)+4 f(x)=2
$$

If $f(0)=1$, what is $f(1)$?
Solution. We can rewrite the equation as $f^{\prime}=-4(f-1 / 2)$, with solution

$$
f(t)=\frac{1}{2}+C e^{-4 t}
$$

for some C. From $f(0)=1$ we get $C=\frac{1}{2}$ and

$$
f(1)=\frac{1+e^{-4}}{2}
$$

4. Calculate the following limits:
(a) (5 points)

$$
\lim _{x \rightarrow \pi} \frac{e^{\sin x}-1}{x-\pi}
$$

Solution. It is of the form $0 / 0$. Using l'Hôpital we get

$$
\lim _{x \rightarrow \pi} \frac{e^{\sin x}-1}{x-\pi}=\lim _{x \rightarrow \pi} \frac{(\cos x) e^{\sin x}}{1}=\frac{-1 \cdot e^{0}}{1}=-1
$$

(b) (5 points)

$$
\lim _{x \rightarrow 0+} \frac{e^{-1 / x^{4}}}{x}
$$

Solution. Substitute $t=1 / x$. In terms of t, the limit is

$$
\lim _{t \rightarrow \infty} t e^{-t^{4}}=\lim _{t \rightarrow \infty} \frac{t}{e^{t^{4}}}=\text { (by l'Hôpital) } \lim _{t \rightarrow \infty} \frac{1}{4 t^{3} e^{t^{4}}}=0
$$

5. Calculate the definite integral:

$$
\int_{0}^{\sqrt{\pi / 4}} x^{3} \cos \left(2 x^{2}\right) d x
$$

Solution.

Substitute $2 x^{2}=u$ so $4 x d x=d u$. We get

$$
\int_{0}^{\sqrt{\pi / 4}} x^{3} \cos \left(2 x^{2}\right) d x=\int_{0}^{\pi / 2}(u / 2) \cos (u) \frac{d u}{4}=\frac{1}{8} \int_{0}^{\pi / 2} u \cos (u) d u
$$

Using integration by parts, the last expression equals

$$
\frac{1}{8}\left(\left.u \sin (u)\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2} \sin (u) d u\right)=\frac{1}{8}\left(\frac{\pi}{2}-0+\left.\cos u\right|_{0} ^{\pi / 2}\right)=\frac{1}{8}\left(\frac{\pi}{2}-1\right)
$$

