HOUR EXAM II

Math 180, Fall 2003
Calculus I

November 14, 2003

ANSWERS

Problem 1.

Find the derivatives of the following functions. Indicate which rules of differentiation you used. You do not need to simplify after taking derivatives.

$$
f(x)=e^{2}+2 \sqrt{x e^{x}} \quad g(x)=\frac{\cos (5 x)}{5 x}
$$

Answer:
We have, using the Chain and Product Rules:

$$
f^{\prime}(x)=\left(e^{2}\right)^{\prime}+\left(2 \sqrt{x e^{x}}\right)^{\prime}=2 \frac{1}{2}\left(x e^{x}\right)^{-1 / 2} \cdot\left(1 \cdot e^{x}+x \cdot e^{x}\right)=\frac{e^{x}(x+1)}{\sqrt{x e^{x}}} .
$$

Using the Quotient Rule we get

$$
g^{\prime}(x)=\frac{-\sin (5 x) \cdot 5 \cdot 5 x-\cos (5 x) \cdot 5}{(5 x)^{2}}=\frac{-5 x \sin (5 x)-\cos (5 x)}{5 x^{2}} .
$$

Problem 2.

Consider the function

$$
f(x)=\frac{1}{1+x^{2}}
$$

Find the local linearization of f at $x=1$.

Answer:
We have

$$
f^{\prime}(x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}},
$$

so $f^{\prime}(1)=-\frac{1}{2}$. Since $f(1)=\frac{1}{2}$, the local linearlization of f at 1 is

$$
y=-\frac{1}{2}(x-1)+\frac{1}{2}=-\frac{1}{2} x+1 .
$$

Problem 3. Find the following limits:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{3 x}} \quad \lim _{x \rightarrow 0} \frac{x}{\cos x}
$$

If you use L'Hopital's Rule, make sure that its hypotheses are satisfied!

Answer:
For the first limit, we may use L'Hopital's Rule, since $x^{2} \rightarrow \infty$ and $e^{3 x} \rightarrow \infty$ as $x \rightarrow \infty$. We get

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{3 x}}=\lim _{x \rightarrow \infty} \frac{2 x}{3 e^{3 x}}
$$

Now $2 x \rightarrow \infty$ and $3 e^{3 x} \rightarrow \infty$ as $x \rightarrow \infty$, so we may use L'Hopital's Rule again:

$$
\lim _{x \rightarrow \infty} \frac{2 x}{3 e^{3 x}}=\lim _{x \rightarrow \infty} \frac{2}{9 e^{3 x}}=0
$$

since $9 e^{3 x} \rightarrow \infty$ as $x \rightarrow \infty$. In the second limit, the hypotheses of L'Hopital's Rule are not satisfied. We have $\frac{x}{\cos x} \rightarrow \frac{0}{1}=0$ as $x \rightarrow 0$.

Problem 4.

If you have 200 feet of fencing and you want to enclose a rectangular area up against a long straight wall of length ℓ, what is the largest area you can enclose?

Answer:

Let us denote the length of the other side of the rectangle by x. Then the area of the rectangle is given by $A=x \ell$. We also have the requirement that its circumference, minus the length of the wall, equal 200 , that is, $2 x+\ell=200$, or in other words, $\ell=200-2 x$. Hence $A(x)=x \ell=x(200-2 x)$. We have $A^{\prime}(x)=200-4 x$, which equals 0 exactly if $x=50$. So $x=50$ is a critical point of A, and it is a global maximum of A since $A^{\prime \prime}(x)=-4<0$ for all x. The corresponding area is $A(50)=50(200-2 \cdot 50)=5000$ (square feet).

Problem 5.

Consider the equation

$$
\ln (x y)+y^{2}=x
$$

for positive x, y.

1. Find $\frac{d y}{d x}$.
2. How many points (x, y) are there where the tangent line is horizontal?

Answer:
Using implicit differentiation we get

$$
\frac{1}{x y}\left(y+x \frac{d y}{d x}\right)+2 y \frac{d y}{d x}=1
$$

and solving for $\frac{d y}{d x}$ yields

$$
\frac{d y}{d x}=\frac{y(x-1)}{x\left(2 y^{2}+1\right)} .
$$

Now the tangent line at (x, y) is horizontal exactly if $\frac{d y}{d x}=0$, and this is the case if $x=1$. So we need to investigate whether there exists a point with coordinates $(1, y), y>0$, on the graph defined by the given equation, that is, whether $\ln y+y^{2}=1$ for some $y>0$. The function $\ln y+y^{2}$ has derivative $1 / y+2 y>0$ for all $y>0$, hence is strictly increasing. For $y=1$ we get $\ln 1+1^{2}=1$. So there is exactly one point, namely $(1,1)$, at which the tangent line is horizontal.

Problem 6. (Extra credit- 10 bonus points, but no partial credit.)

Find the derivative of the function

$$
f(x)=x^{x}
$$

defined for all $x>0$. (Hint: remember that $a=e^{\ln a}$ for every $a>0$.)

Answer:
By the hint we get $x^{x}=e^{\ln x^{x}}$. By the rules for computing with \ln we also have $\ln x^{x}=x \ln x$, so $f(x)=x^{x}=e^{x \ln x}$. By the Chain Rule followed by an application of the Product Rule we get

$$
\begin{aligned}
f^{\prime}(x) & =e^{x \ln x} \cdot(x \ln x)^{\prime} \\
& =e^{x \ln x} \cdot(1 \cdot \ln x+x \cdot 1 / x) \\
& =x^{x}(\ln x+1)
\end{aligned}
$$

