Quiz questions on Sections 2.6-4.3

Calculus I

Math 180, Fall Semester 2003

Here are the questions which appeared on the quizzes covering Sections 2.6-4.3. Needless to say, they make good review problems for the Hour Exam II.

1. Sketch the graph of a function whose first derivative is everywhere negative and whose second derivative is negative for some x-values and positive for other x-values.
2. Find the slope of the line tangent to the graph of the function f at the point $(1,1)$ where f is given by $f(x)=2 x^{3}-2 x^{2}+1$.
3. 4. Using the rules for differentiation discussed in class, find the derivative of
(a) $2^{\sin x}$
(b) $\left(e^{x}-17 x\right) / x^{2}$

Indicate for each step which rule you are using!
4. If $f(1)=3, f(1 / 2)=1$ and $f^{\prime}(1)=2, f^{\prime}(1 / 2)=0$, what is the derivative of
(a) $f\left(4 x^{2}\right)$ when $x=1 / 2$?
(b) $f(x) \cdot 4 x^{2}$ when $x=1 / 2$?
5. Find $d y / d x$ given the equation $x^{2}+y^{2}-4 x y=11$.
6. On which intervals is $y=\ln \left(x^{2}+3\right)$ concave up?
7. Find the following limits:
(a)

$$
\lim _{x \rightarrow \infty} \frac{7 x^{2}+3 x}{2 x^{2}+1}
$$

(b)

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}
$$

8. Let $f(x)=\sqrt{x^{3}+1}$. Find the linear approximation of f near $x=2$.
9. Under what conditions on a and b does the function

$$
f(x)=x^{3}+a x^{2}+b
$$

have exactly one critical point? What is this critical point? Is it a local maximum, local minimum, or neither? Justify your answer.
10. Find the best possible A and B such that $A \leq \ln \left(1+x^{2}\right) \leq B$ for all x with $-1 \leq x \leq 1$.

