Problem Set 4

Due Monday, Nov. 1.

Formal Logic

Math 430, Fall 2004

1. Let S be a symbol set and let \mathcal{M} be an S-structure, and suppose that D and E are subsets of M^{m} which are definable without parameters in \mathcal{M}.
(a) Show that $D \cap E, D \cup E$, and $M^{m} \backslash D$ are definable without parameters in \mathcal{M}.
(b) Show that if $m>1$, then $\pi(D) \subseteq M^{m-1}$ is definable without parameters in \mathcal{M}; here $\pi: M^{m} \rightarrow M^{m-1}$ is given by $\pi\left(a_{1}, \ldots, a_{m}\right)=$ $\left(a_{1}, \ldots, a_{m-1}\right)$.
2. Let $S=\{1, \cdot,<\}$ be a symbol set consisting of a constant symbol 1 , a 2 -place function symbol \cdot, and a 2 -place relation symbol $<$. We construe \mathbb{N} as an S-structure \mathcal{N} in the usual way, by interpreting 1 by the element 1 of \mathbb{N}, by multiplication on \mathbb{N}, and $<$ by the usual ordering on \mathbb{N}. Show that the set

$$
P:=\{p \in \mathbb{N}: p \text { is prime }\}
$$

of prime numbers is definable without parameters in \mathcal{N}.
3. The purpose of this problem is to show that the complement of a union of finitely many intervals in \mathbb{Q} is also of this kind.
(a) Let I be an interval in \mathbb{Q}. Show that $\mathbb{Q} \backslash I$ is a union of finitely many intervals in \mathbb{Q}.
(b) Let A and B be unions of finitely many intervals in \mathbb{Q}. Show that $A \cap B$ is a union of finitely many intervals in \mathbb{Q}.
(c) Let A be a union of finitely many intervals in \mathbb{Q}. Show that $\mathbb{Q} \backslash A$ is a union of finitely many intervals in \mathbb{Q}.
4. Let a and b be positive real numbers. Consider the logarithmic spiral

$$
S_{a, b}:=\left\{\left(a b^{t} \cos (t), a b^{t} \sin (t)\right): t \in \mathbb{R}\right\} \subseteq \mathbb{R}^{2}
$$

Is $S_{a, b}$ definable with parameters in the structure

$$
\mathcal{R}=\left(\mathbb{R}, 0^{\mathcal{R}}, 1^{\mathcal{R}},+^{\mathcal{R}},-^{\mathcal{R}}, \cdot \mathcal{R}^{\mathcal{R}},<^{\mathcal{R}}\right) ?
$$

(With justification.)
5. Show that $<^{\mathcal{R}}$ is not definable without parameters in the S-structure $\left(\mathbb{R}, 0^{\mathcal{R}},+^{\mathcal{R}}\right)$, where $S=\{0,+\}$.
6. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be functions that are definable with parameters in \mathcal{R}. Show that there is some $a \in \mathbb{R}$ such that either
(a) $f(t)>g(t)$ for all $t>a$, or
(b) $f(t)=g(t)$ for all $t>a$, or
(c) $f(t)<g(t)$ for all $t>a$.
7. (Extra credit.) Let $S=\{f\}$ be a symbol set consisting of a single 1-place function symbol f. Find an S-sentence φ such that every S-structure satisfying φ has infinite universe. Also, do the same problem for $S=\{R\}$, where R is a 2-place relation symbol.

