Problem Set 4 Due Monday, Nov. 1.

Formal Logic

Math 430, Fall 2004

- 1. Let S be a symbol set and let \mathcal{M} be an S-structure, and suppose that D and E are subsets of \mathcal{M}^m which are definable without parameters in \mathcal{M} .
 - (a) Show that $D \cap E$, $D \cup E$, and $M^m \setminus D$ are definable without parameters in \mathcal{M} .
 - (b) Show that if m > 1, then $\pi(D) \subseteq M^{m-1}$ is definable without parameters in \mathcal{M} ; here $\pi \colon M^m \to M^{m-1}$ is given by $\pi(a_1, \ldots, a_m) = (a_1, \ldots, a_{m-1}).$
- 2. Let $S = \{1, \cdot, <\}$ be a symbol set consisting of a constant symbol 1, a 2-place function symbol \cdot , and a 2-place relation symbol <. We construe \mathbb{N} as an S-structure \mathcal{N} in the usual way, by interpreting 1 by the element 1 of \mathbb{N} , \cdot by multiplication on \mathbb{N} , and < by the usual ordering on \mathbb{N} . Show that the set

$$P := \{ p \in \mathbb{N} : p \text{ is prime} \}$$

of prime numbers is definable without parameters in \mathcal{N} .

- 3. The purpose of this problem is to show that the complement of a union of finitely many intervals in \mathbb{Q} is also of this kind.
 - (a) Let I be an interval in \mathbb{Q} . Show that $\mathbb{Q} \setminus I$ is a union of finitely many intervals in \mathbb{Q} .
 - (b) Let A and B be unions of finitely many intervals in \mathbb{Q} . Show that $A \cap B$ is a union of finitely many intervals in \mathbb{Q} .
 - (c) Let A be a union of finitely many intervals in \mathbb{Q} . Show that $\mathbb{Q} \setminus A$ is a union of finitely many intervals in \mathbb{Q} .
- 4. Let a and b be positive real numbers. Consider the logarithmic spiral

$$S_{a,b} := \left\{ \left(ab^t \cos(t), ab^t \sin(t) \right) : t \in \mathbb{R} \right\} \subseteq \mathbb{R}^2.$$

Is $S_{a,b}$ definable with parameters in the structure

$$\mathcal{R} = (\mathbb{R}, 0^{\mathcal{R}}, 1^{\mathcal{R}}, +^{\mathcal{R}}, -^{\mathcal{R}}, \cdot^{\mathcal{R}}, <^{\mathcal{R}})$$

(With justification.)

5. Show that $<^{\mathcal{R}}$ is not definable without parameters in the S-structure $(\mathbb{R}, 0^{\mathcal{R}}, +^{\mathcal{R}})$, where $S = \{0, +\}$.

(please turn)

- 6. Let $f, g: \mathbb{R} \to \mathbb{R}$ be functions that are definable with parameters in \mathcal{R} . Show that there is some $a \in \mathbb{R}$ such that either
 - (a) f(t) > g(t) for all t > a, or
 - (b) f(t) = g(t) for all t > a, or
 - (c) f(t) < g(t) for all t > a.
- 7. (Extra credit.) Let $S = \{f\}$ be a symbol set consisting of a single 1-place function symbol f. Find an S-sentence φ such that every S-structure satisfying φ has infinite universe. Also, do the same problem for $S = \{R\}$, where R is a 2-place relation symbol.