Problem Set 1
Solutions
Model Theory
Math 506, Spring 2004.

1. Let @=(Q,+,-) be the field of rational numbers considered as an L-structure in the language £ =
{+,-}. Show that the set @>° of non-negative rationals is (-definable in Q. Hint: you may use the
fact that every natural number can be written as the sum of four squares of natural numbers.
(Lagrange’s Theorem.) Show that Q> is not (-definable if we drop the symbol - from L.

Solution. We claim that the formula o(z) = JaFbIc3d z = a® + b? + ¢ + d? does the job, that
is, given r € Q we have
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Here the direction = is trivial. For the converse, suppose that r € @ is non-negative, say
r=p/q with p,q€ Z, ¢#0. Then pq is a non-negative integer, hence may be written as the
sum of four squares of natural numbers: pq= a2+ b%+ ¢ + d? for some a,b,c,d € N. Hence
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showing that Q F ¢(r). For the second part of the problem, it suffices to show that there

exists an automorphism o of (Q, + ) such that o(Q>%) # QZ°. Any map o: Q — Q given by
o(z)=Az with A€ Q, A <0 works.

2. Write down an axiom system for the class of all groups:

a) in the language £1={1,-,71} by universal sentences;

b) in the language £2={1,-} by V3-sentences;

c) in the language £3={-} by 3V3-sentences.

Solution.
a) VaVyVz(z-(y-2)=(z-y)-2),Ve(z-1=1-z=2),Vz(z-z =z 1 -2=1)
b) VaVyVz(z - (y-2)=(z-y) 2),Ve(z-1=1-z=2),VaIy(z-y=y-z=1)
c) VaVyVz(z-(y-2)=(z-y)-2),3eVeVey(z-e=e-z=zAz-y=y-z=e¢)

3. Let L={+,—,1} where + is a binary function symbol, — is a unary function symbol, and 1 is a
constant symbol. We construe R as a structure R = (R, + , — , 1) in the natural way. Given an
algebraic description of the class F of all functions f: R™— R which are interpretations of L-terms,
i.e., for which there exists an £-term ¢(z1, ..., z,) such that f(ay...., an) =t%(ay, ..., ap) for all a; ...,
an€R.

Solution. We claim that F is the class of all functions f:IR™— IR of the form

f@y, @) =ao+a1x1+ -+ anty



with ag, ..., ap € Z. To see this, note first that every such affine function is in F: if ag # 0,
then it is the interpretation of the term (in infix notation)

+ (th + ( ) (tlﬂwi1)7 + ( ) (t2,£l3i2), )))
where 1 <41 <i2 < --- <i < n are exactly the indices ¢ with a; # 0 and t; =+ (1,+ (1,...)) (a;
many times) if a; >0, ¢;=— (+ (1,+ (1, ...))) (Ja;| many times) if a; < 0. (Similarly if ap #
0.) As for the converse, we show by induction on terms that the interpretation of every term
t has the desired form. This is clear if ¢t == is a variable or t=1. If s and ¢ are terms and

sR(@1y ey Tp) = A0+ a1 T1 + -+ 0y Ty,
for some ay, ..., a, € 7Z,

tn(mla awn) =bo+bixyi+-+byzn
for some by, ..., b, € Z, then

(+(5,0))R(21, s Tn) = (a0 + o) + (a1 +b1) Z1 + - + (an+ bn) Tn

is again of this form. Similarly for the term —t.

4. Let L be a language an M be an L-structure. We say that f: M™— M" is A-definable (for some
A C M) if the graph T'(f):={(a, f(a)):a€ M™} of fis A-definable in M (as a subset of M™*").

a) Show that if f: M™— M™ and g: M™— M! are A-definable, then so is go f.
b) Suppose that f: M™— M™ is A-definable. Show that the image f(M™) of f is A-definable.
Solution.

a) Let p(z,y,u) and ¥(y, z,v) with 2= (21, ..., Tm), Y= (Y1, -y Yn), 2 = (21, vy 21), U =
(U1, ey Up), v=(v1,...,v4) be L-formulas and a € AP, a’ € A? such that

T(f) = {(b,c) € M™ x M": ME (b, c,a)},
I(g) = {(e,d) €M™ x Ml ME 9(c,d,a’)}.

Then I'(go f)={(b,d) e M™ x M": MEO(b,d,a,a’)} where
O(z,z,u,v):=Jy;---Typ(@ A 1Y)
b) Let ¢(x,y,u) and a € AP be as in (a). Then f(M™) is defined by v(y,a) where
Y(y,u) :=3z1--Fom(p).
5. Let £L={R} where R is a binary relation symbol. A graph is an L-structure G = (G, RY) with the
property that (g, h) € R9 <= (h, g) € RY and (g, g) ¢ RY for all g, h € G. We say that g € G and
h € G are in the same connected component of G if there exist gy, ..., gn € G (for some n >
0) with RY(g;, gi+1) for all i=0,...,n — 1 and go =g, gn = h. We say that G is connected if all g,

h € G are in the same connected component of G.

a) Show that the class of all connected graphs is not elementary.



b) Deduce that there is no L-formula ¢(z,y) with the property that for all graphs G and g, h €
G: GE p(g,h)<= g and h are in the same connected component of G.

Solution. It is clearly enough to show (a): if there was a formula ¢(z, y) with the purported
property in (b), then the class of connected graphs would be axiomatized by the conjunction
of the sentence VzVyp(z, y), VzVy(R(z,y) <> R(y, z)) and Vz(-R(z, z)).

As for (a), suppose for a contradiction that the class C of all connected graphs is elementary.
For every m > 0, there do certainly exist connected graphs in which some elements can only
be connected by a path of length > m: for example G,,, = (G,,, R9™) with G,, = Z/2mZ and
RY9 defined by: (g,h) € R <= h=g+1or g=h — 1. Then every path go, ..., gn from
go=0to g, =m in G, has length n > m. Let now U be a non-principal ultrafilter on IN, and
let G = (G, RY) be the ultraproduct of the family {G, }men with respect to ¢. By Los’ The-
orem, G is a graph. Now consider the £-formula ¢,,(z,y), for m € N, given by:

m—1
Ym(x, y) :=Vrg--Va,, (z‘o FaVTmFyV \/ = R(x;, $i+1)>

i=0
Let g = (0)men and h = (m)men (elements of [~ Gm). Then |om(g, h)|| 2 {m,m +1, ...},
hence G F on(g/U, h/U). Since this holds for every m € N, g/U and h/U are not in the
same connected component of G. Hence G is not connected, contradicting the fact that ele-
mentary classes are closed under ultraproducts. This contradiction shows that C is not ele-
mentary.

6. Let I be a non-empty set.
a) Show that a filter I on I is a principal ultrafilter if and only if &/ = (b) for some b€ I.

b) Suppose that I is infinite, and let F be the Fréchet filter of cofinite subsets of I. Show that
F is not principal and not an ultrafilter.

c) Show that an ultrafilter &/ on an infinite set [ is non-principal if and only if & D F.
Solution.

a) Suppose first that ¢ = (b) for some b € I. Then U is principal. If A is a subset of I
with A ¢ (b), that is, if b¢ A, then be I \ A and hence I \ A € (b) =U. So for every
subset A of I, either A€l or I \ A €U, that is, U is an ultrafilter. Conversely, sup-
pose that U is a principal ultrafilter on I. Say U = (B) for some B C I. Then B # (),
and U C (b) for every be B. Since U is maximal, & = (b) for every b€ B.

b) If F =(B) for some B C I then I \ B is finite; hence if we pick b € B arbitrary and
set B':= B\ {b}, then I\ B'= (I \ B) U {b} is also finite. But B'2B, a contradiction.
This shows that F is not principal. To see that F is not an ultrafilter let A be any
infinite subset of I whose complement I \ A is also infinite; then neither A nor I \ A
belong to F.

c) Suppose first that ¢/ is a principal ultrafilter on an infinite set I. Then U = (b) for
some b € I, by (a). There certainly are cofinite subsets of I which do not contain b,
for example I \ {b}. Hence &/ 2F. Now suppose that I/ is an ultrafilter on an infinite
set I, but B ¢ U for some cofinite subset B of I. Then I \ B € U, since U is an ultra-
filter. Now I \ B is finite, say I \ B ={ay,...,ay} for pairwise distinct a1, ...,an, € I. In
order to show that ¢/ is principal, it is enough to see that ¢/ C (a;) for some i. Now if
we had Ug(ai) for all 4, then for each i there exists A; € U with a; ¢ A;. Hence ) =
(I\B)NnA;n---NA,€lU, a contradiction.



7. Let £ be a language and {A;};cs be a family of L-structures, I # (). Let U be a principal ultrafilter
on I. Show that there exists j € I such that A; =T[, ., Ai/U.

Solution. By 6.(a) there exists j € I such that (j) =U. For every i € I \ {j} pick an arbitrary

element a; of A;, and consider the map h: Aj — [[;.; Ai/U given h(z) := a/U where a is
given by a(i) =a; for i # j and a(j) = z. We claim the h is an isomorphism A; — [],.; Ai/
U. Injectivity: if h(z) = h(y) then the set of indices ¢ with (h(z))(¢) = (h(y))(i) is an element
of U and hence contains j; therefore x = y. Surjectivity: if y/U is an arbitrary element of
[I;c; Ai/U, then let a € ,.; Ai be defined by a(i) = a; for i # j and a(j) = y(j). Then
h(z) = a/U for x = y(j), and a(j) =y(j), so the set of indices i € I with a(i) = y(¢) is an ele-
ment of U; hence y/U = h(z). In a similar way one checks that h is an embedding of £-
structures.

8. Let {K;}ics be a family of fields, considered as L-structures in the language £ = {0, 1, +, —, - },
where I # 0. Put R:=]],., K;, and for an ultrafilter ¢/ on I consider
My:={reR:||r=0||€lU}.

By Los’ Theorem, the ultraproduct [].., Ki/U is a field. Show the following:

iel
a) R/My=T];c, Ki/U. (Hence 9y is a maximal ideal of R.)

b) For every maximal ideal m of R there exists an ultrafilter / on I with m=0,.
Solution.

a) We have a natural surjective map R — [[,.; Ki/U given by r = (r(i)) = r/U, which
we denote by h. In class we have already verified that h is a ring homomorphism;
hence it is enough to show that ker h =2;,. We have

r=(r(i)) €kerh < r/U=0
— {iel:r(i)=0}el
= ||[r=0||elU
<= reMy.

b) Let m be a maximal ideal of R. Define U/ to be the collection of all subsets A of I
such that A =||r = 0| for some r € m. We claim that ¢/ is an ultrafilter on I. To see
this, we first define, for every r € R, an element r’ € R by r'(i) = 0 if r(i) = 0 and
r'(i) = 1 otherwise, and an element 7" € R by r"(¢) =0 if r(¢) =0 and r"(3) = 1/r(3)
otherwise. Then r =7 -7’ and r' =r - r". It follows that r € m <= r’ € m. Note that
0 ¢U, since ||r =0|| =0 with » € m implies 1 =r’ € m, which is impossible. So U satis-
fies axiom (F1) for filters. If r,s € m then ||r'+ s’ —r's'=0||=|r=0||N||s=0| (as
one easily checks) hence U is closed under finite intersection (i.e., satisfies (F2)). Now
let AC 1T with A¢U. Definer € Rby r(i)=11if i € A and R(i) =0 otherwise. Then
|[r =0|| = A, hence r ¢ m, and r - (1 —r) =0; therefore 1 —r€m, and ||[1 —r=0||=1)
A; hence I \ A € Y. This also shows that ¢ is closed under supersets (and hence an
ultrafilter on U): if A D B for some B € Y and A ¢ U, then I \ A € U and hence 0 =
(I \ A)N B €U, a contradiction to what we have already shown. It is clear that m C
My, by definition of U, and hence m =My, since m is a maximal ideal.



