Problem Set 1

Solutions

Model Theory

Math 506, Spring 2004.

1. Let $Q = (\mathbb{Q}, +, \cdot)$ be the field of rational numbers considered as an \mathcal{L} -structure in the language $\mathcal{L} = \{+, \cdot\}$. Show that the set $\mathbb{Q}^{\geqslant 0}$ of non-negative rationals is \emptyset -definable in Q. Hint: you may use the fact that every natural number can be written as the sum of four squares of natural numbers. (Lagrange's Theorem.) Show that $\mathbb{Q}^{\geqslant 0}$ is not \emptyset -definable if we drop the symbol \cdot from \mathcal{L} .

Solution. We claim that the formula $\varphi(x) = \exists a \exists b \exists c \exists d \ x = a^2 + b^2 + c^2 + d^2$ does the job, that is, given $r \in \mathbb{Q}$ we have

$$Q \vDash \varphi(r) \qquad \Leftrightarrow \qquad r \geqslant 0$$

Here the direction \Rightarrow is trivial. For the converse, suppose that $r \in \mathbb{Q}$ is non-negative, say r = p/q with $p, q \in \mathbb{Z}$, $q \neq 0$. Then pq is a non-negative integer, hence may be written as the sum of four squares of natural numbers: $pq = a^2 + b^2 + c^2 + d^2$ for some $a, b, c, d \in \mathbb{N}$. Hence

$$r = \frac{p}{q} = \frac{p\,q}{q^2} = \left(\frac{a}{q}\right)^2 + \left(\frac{b}{q}\right)^2 + \left(\frac{c}{q}\right)^2 + \left(\frac{d}{q}\right)^2$$

showing that $Q \models \varphi(r)$. For the second part of the problem, it suffices to show that there exists an automorphism σ of $(\mathbb{Q}, +)$ such that $\sigma(\mathbb{Q}^{\geqslant 0}) \neq \mathbb{Q}^{\geqslant 0}$. Any map $\sigma: \mathbb{Q} \to \mathbb{Q}$ given by $\sigma(x) = \lambda x$ with $\lambda \in \mathbb{Q}$, $\lambda < 0$ works.

- 2. Write down an axiom system for the class of all groups:
 - a) in the language $\mathcal{L}_1 = \{1, \cdot, ^{-1}\}$ by universal sentences;
 - b) in the language $\mathcal{L}_2 = \{1, \cdot\}$ by $\forall \exists$ -sentences;
 - c) in the language $\mathcal{L}_3 = \{\cdot\}$ by $\exists \forall \exists$ -sentences.

Solution.

- a) $\forall x \forall y \forall z (x \cdot (y \cdot z) = (x \cdot y) \cdot z), \forall x (x \cdot 1 = 1 \cdot x = x), \forall x (x \cdot x^{-1} = x^{-1} \cdot x = 1)$
- b) $\forall x \forall y \forall z (x \cdot (y \cdot z) = (x \cdot y) \cdot z), \forall x (x \cdot 1 = 1 \cdot x = x), \forall x \exists y (x \cdot y = y \cdot x = 1)$
- c) $\forall x \forall y \forall z (x \cdot (y \cdot z) = (x \cdot y) \cdot z), \exists e \forall z \forall x \exists y (z \cdot e = e \cdot z = z \land x \cdot y = y \cdot x = e)$
- 3. Let $\mathcal{L} = \{+, -, 1\}$ where + is a binary function symbol, is a unary function symbol, and 1 is a constant symbol. We construe \mathbb{R} as a structure $\mathcal{R} = (\mathbb{R}, +, -, 1)$ in the natural way. Given an algebraic description of the class \mathcal{F} of all functions $f: \mathbb{R}^n \to \mathbb{R}$ which are interpretations of \mathcal{L} -terms, i.e., for which there exists an \mathcal{L} -term $t(x_1, ..., x_n)$ such that $f(a_1, ..., a_n) = t^{\mathcal{R}}(a_1, ..., a_n)$ for all $a_1, ..., a_n \in \mathbb{R}$.

Solution. We claim that \mathcal{F} is the class of all functions $f: \mathbb{R}^n \to \mathbb{R}$ of the form

1

$$f(x_1, ..., x_n) = a_0 + a_1 x_1 + \cdots + a_n x_n$$

with $a_0, ..., a_n \in \mathbb{Z}$. To see this, note first that every such affine function is in \mathcal{F} : if $a_0 \neq 0$, then it is the interpretation of the term (in infix notation)

$$+(t_0,+(\cdot(t_1,x_{i_1}),+(\cdot(t_2,x_{i_2}),\ldots)))$$

where $1 \le i_1 < i_2 < \cdots < i_k \le n$ are exactly the indices i with $a_i \ne 0$ and $t_i = +(1, +(1, \ldots))$ $(a_i \mod t)$ many times) if $a_i > 0$, $t_i = -(+(1, +(1, \ldots)))$ $(|a_i| \mod t)$ many times) if $a_i < 0$. (Similarly if $a_0 \ne 0$.) As for the converse, we show by induction on terms that the interpretation of every term t has the desired form. This is clear if t = x is a variable or t = 1. If s and t are terms and

$$s^{\mathcal{R}}(x_1, ..., x_n) = a_0 + a_1 x_1 + \cdots + a_n x_n$$

for some $a_0, ..., a_n \in \mathbb{Z}$,

$$t^{\mathcal{R}}(x_1, ..., x_n) = b_0 + b_1 x_1 + \cdots + b_n x_n$$

for some $b_0, ..., b_n \in \mathbb{Z}$, then

$$(+(s,t))^{\mathcal{R}}(x_1,...,x_n) = (a_0+b_0) + (a_1+b_1)x_1 + \cdots + (a_n+b_n)x_n$$

is again of this form. Similarly for the term -t.

- 4. Let \mathcal{L} be a language an \mathcal{M} be an \mathcal{L} -structure. We say that $f: M^m \to M^n$ is A-definable (for some $A \subseteq M$) if the graph $\Gamma(f) := \{(a, f(a)) : a \in M^m\}$ of f is A-definable in \mathcal{M} (as a subset of M^{m+n}).
 - a) Show that if $f: M^m \to M^n$ and $g: M^n \to M^l$ are A-definable, then so is $g \circ f$.
 - b) Suppose that $f: M^m \to M^n$ is A-definable. Show that the image $f(M^m)$ of f is A-definable.

Solution.

a) Let $\varphi(x, y, u)$ and $\psi(y, z, v)$ with $x = (x_1, ..., x_m), y = (y_1, ..., y_n), z = (z_1, ..., z_l), u = (u_1, ..., u_p), v = (v_1, ..., v_q)$ be \mathcal{L} -formulas and $a \in A^p, a' \in A^q$ such that

$$\Gamma(f) = \{(b,c) \in M^m \times M^n : \mathcal{M} \vDash \varphi(b,c,a)\},$$

$$\Gamma(g) = \{(c,d) \in M^n \times M^l : \mathcal{M} \vDash \psi(c,d,a')\}.$$

Then $\Gamma(g \circ f) = \{(b, d) \in M^m \times M^l : \mathcal{M} \models \theta(b, d, a, a')\}$ where

$$\theta(x, z, u, v) := \exists y_1 \cdots \exists y_n (\varphi \wedge \psi)$$

b) Let $\varphi(x,y,u)$ and $a\in A^p$ be as in (a). Then $f(M^m)$ is defined by $\gamma(y,a)$ where

$$\gamma(y,u) := \exists x_1 \cdots \exists x_m(\varphi).$$

- 5. Let $\mathcal{L} = \{R\}$ where R is a binary relation symbol. A **graph** is an \mathcal{L} -structure $\mathcal{G} = (G, R^{\mathcal{G}})$ with the property that $(g, h) \in R^{\mathcal{G}} \iff (h, g) \in R^{\mathcal{G}}$ and $(g, g) \notin R^{\mathcal{G}}$ for all $g, h \in G$. We say that $g \in G$ and $h \in G$ are in the same connected component of \mathcal{G} if there exist $g_0, ..., g_n \in G$ (for some $n \geqslant 0$) with $R^{\mathcal{G}}(g_i, g_{i+1})$ for all i = 0, ..., n-1 and $g_0 = g, g_n = h$. We say that \mathcal{G} is connected if all $g, h \in G$ are in the same connected component of \mathcal{G} .
 - a) Show that the class of all connected graphs is not elementary.

- b) Deduce that there is no \mathcal{L} -formula $\varphi(x,y)$ with the property that for all graphs \mathcal{G} and $g,h \in G$: $\mathcal{G} \models \varphi(g,h) \iff g$ and h are in the same connected component of \mathcal{G} .
- **Solution.** It is clearly enough to show (a): if there was a formula $\varphi(x, y)$ with the purported property in (b), then the class of connected graphs would be axiomatized by the conjunction of the sentence $\forall x \forall y \varphi(x, y), \forall x \forall y (R(x, y) \leftrightarrow R(y, x))$ and $\forall x (\neg R(x, x)).$

As for (a), suppose for a contradiction that the class \mathcal{C} of all connected graphs is elementary. For every $m \geq 0$, there do certainly exist connected graphs in which some elements can only be connected by a path of length $\geq m$: for example $\mathcal{G}_m = (G_m, R^{\mathcal{G}_m})$ with $G_m = \mathbb{Z}/2m\mathbb{Z}$ and $R^{\mathcal{G}_m}$ defined by: $(g,h) \in R^{\mathcal{G}_m} \iff h = g+1$ or g = h-1. Then every path g_0, \ldots, g_n from $g_0 = 0$ to $g_n = m$ in \mathcal{G}_m has length $n \geq m$. Let now \mathcal{U} be a non-principal ultrafilter on \mathbb{N} , and let $\mathcal{G} = (G, R^{\mathcal{G}})$ be the ultraproduct of the family $\{\mathcal{G}_m\}_{m \in \mathbb{N}}$ with respect to \mathcal{U} . By Łos' Theorem, \mathcal{G} is a graph. Now consider the \mathcal{L} -formula $\varphi_m(x, y)$, for $m \in \mathbb{N}$, given by:

$$\varphi_m(x,y) := \forall x_0 \cdots \forall x_m \left(x_0 \neq x \lor x_m \neq y \lor \bigvee_{i=0}^{m-1} \neg R(x_i, x_{i+1}) \right)$$

Let $g = (0)_{m \in \mathbb{N}}$ and $h = (m)_{m \in \mathbb{N}}$ (elements of $\prod_m G_m$). Then $\|\varphi_m(g,h)\| \supseteq \{m,m+1,\ldots\}$, hence $\mathcal{G} \models \varphi_m(g/\mathcal{U}, h/\mathcal{U})$. Since this holds for every $m \in \mathbb{N}$, g/\mathcal{U} and h/\mathcal{U} are not in the same connected component of \mathcal{G} . Hence \mathcal{G} is not connected, contradicting the fact that elementary classes are closed under ultraproducts. This contradiction shows that \mathcal{C} is not elementary.

- 6. Let I be a non-empty set.
 - a) Show that a filter \mathcal{U} on I is a principal ultrafilter if and only if $\mathcal{U} = \langle b \rangle$ for some $b \in I$.
 - b) Suppose that I is infinite, and let \mathcal{F} be the Fréchet filter of cofinite subsets of I. Show that \mathcal{F} is not principal and not an ultrafilter.
 - c) Show that an ultrafilter \mathcal{U} on an infinite set I is non-principal if and only if $\mathcal{U} \supseteq \mathcal{F}$.

Solution.

- a) Suppose first that $\mathcal{U} = \langle b \rangle$ for some $b \in I$. Then \mathcal{U} is principal. If A is a subset of I with $A \notin \langle b \rangle$, that is, if $b \notin A$, then $b \in I \setminus A$ and hence $I \setminus A \in \langle b \rangle = \mathcal{U}$. So for every subset A of I, either $A \in \mathcal{U}$ or $I \setminus A \in \mathcal{U}$, that is, \mathcal{U} is an ultrafilter. Conversely, suppose that \mathcal{U} is a principal ultrafilter on I. Say $\mathcal{U} = \langle B \rangle$ for some $B \subseteq I$. Then $B \neq \emptyset$, and $\mathcal{U} \subseteq \langle b \rangle$ for every $b \in B$. Since \mathcal{U} is maximal, $\mathcal{U} = \langle b \rangle$ for every $b \in B$.
- b) If $\mathcal{F} = \langle B \rangle$ for some $B \subseteq I$ then $I \setminus B$ is finite; hence if we pick $b \in B$ arbitrary and set $B' := B \setminus \{b\}$, then $I \setminus B' = (I \setminus B) \cup \{b\}$ is also finite. But $B' \not\supseteq B$, a contradiction. This shows that \mathcal{F} is not principal. To see that \mathcal{F} is not an ultrafilter let A be any infinite subset of I whose complement $I \setminus A$ is also infinite; then neither A nor $I \setminus A$ belong to \mathcal{F} .
- c) Suppose first that \mathcal{U} is a principal ultrafilter on an infinite set I. Then $\mathcal{U} = \langle b \rangle$ for some $b \in I$, by (a). There certainly are cofinite subsets of I which do not contain b, for example $I \setminus \{b\}$. Hence $\mathcal{U} \not\supseteq \mathcal{F}$. Now suppose that \mathcal{U} is an ultrafilter on an infinite set I, but $B \notin \mathcal{U}$ for some cofinite subset B of I. Then $I \setminus B \in \mathcal{U}$, since \mathcal{U} is an ultrafilter. Now $I \setminus B$ is finite, say $I \setminus B = \{a_1, ..., a_n\}$ for pairwise distinct $a_1, ..., a_n \in I$. In order to show that \mathcal{U} is principal, it is enough to see that $\mathcal{U} \subseteq \langle a_i \rangle$ for some i. Now if we had $\mathcal{U} \not\subseteq \langle a_i \rangle$ for all i, then for each i there exists $A_i \in \mathcal{U}$ with $a_i \notin A_i$. Hence $\emptyset = (I \setminus B) \cap A_1 \cap \cdots \cap A_n \in \mathcal{U}$, a contradiction.

- 7. Let \mathcal{L} be a language and $\{\mathcal{A}_i\}_{i\in I}$ be a family of \mathcal{L} -structures, $I\neq\emptyset$. Let \mathcal{U} be a principal ultrafilter on I. Show that there exists $j\in I$ such that $\mathcal{A}_j\cong\prod_{i\in I}\mathcal{A}_i/\mathcal{U}$.
 - **Solution.** By 6.(a) there exists $j \in I$ such that $\langle j \rangle = \mathcal{U}$. For every $i \in I \setminus \{j\}$ pick an arbitrary element a_i of A_i , and consider the map $h: A_j \to \prod_{i \in I} A_i/\mathcal{U}$ given $h(x) := a/\mathcal{U}$ where a is given by $a(i) = a_i$ for $i \neq j$ and a(j) = x. We claim the h is an isomorphism $A_j \to \prod_{i \in I} A_i/\mathcal{U}$. Injectivity: if h(x) = h(y) then the set of indices i with (h(x))(i) = (h(y))(i) is an element of \mathcal{U} and hence contains j; therefore x = y. Surjectivity: if y/\mathcal{U} is an arbitrary element of $\prod_{i \in I} A_i/\mathcal{U}$, then let $a \in \prod_{i \in I} A_i$ be defined by $a(i) = a_i$ for $i \neq j$ and a(j) = y(j). Then $h(x) = a/\mathcal{U}$ for x = y(j), and a(j) = y(j), so the set of indices $i \in I$ with a(i) = y(i) is an element of \mathcal{U} ; hence $y/\mathcal{U} = h(x)$. In a similar way one checks that h is an embedding of \mathcal{L} -structures.
- 8. Let $\{K_i\}_{i\in I}$ be a family of fields, considered as \mathcal{L} -structures in the language $\mathcal{L} = \{0, 1, +, -, \cdot\}$, where $I \neq \emptyset$. Put $R := \prod_{i \in I} K_i$, and for an ultrafilter \mathcal{U} on I consider

$$\mathfrak{M}_{\mathcal{U}} := \{ r \in R \colon ||r = 0|| \in \mathcal{U} \}.$$

By Łos' Theorem, the ultraproduct $\prod_{i\in I} K_i/\mathcal{U}$ is a field. Show the following:

- a) $R/\mathfrak{M}_{\mathcal{U}} \cong \prod_{i \in I} K_i/\mathcal{U}$. (Hence $\mathfrak{M}_{\mathcal{U}}$ is a maximal ideal of R.)
- b) For every maximal ideal \mathfrak{m} of R there exists an ultrafilter \mathcal{U} on I with $\mathfrak{m} = \mathfrak{M}_{\mathcal{U}}$.

Solution.

a) We have a natural surjective map $R \to \prod_{i \in I} K_i/\mathcal{U}$ given by $r = (r(i)) \mapsto r/\mathcal{U}$, which we denote by h. In class we have already verified that h is a ring homomorphism; hence it is enough to show that $\ker h = \mathfrak{M}_{\mathcal{U}}$. We have

$$r = (r(i)) \in \ker h \iff r/\mathcal{U} = 0$$

 $\iff \{i \in I : r(i) = 0\} \in \mathcal{U}$
 $\iff ||r = 0|| \in \mathcal{U}$
 $\iff r \in \mathfrak{M}_{\mathcal{U}}.$

b) Let \mathfrak{m} be a maximal ideal of R. Define \mathcal{U} to be the collection of all subsets A of I such that $A=\|r=0\|$ for some $r\in\mathfrak{m}$. We claim that \mathcal{U} is an ultrafilter on I. To see this, we first define, for every $r\in R$, an element $r'\in R$ by r'(i)=0 if r(i)=0 and r'(i)=1 otherwise, and an element $r''\in R$ by r''(i)=0 if r(i)=0 and r''(i)=1/r(i) otherwise. Then $r=r\cdot r'$ and $r'=r\cdot r''$. It follows that $r\in\mathfrak{m}\iff r'\in\mathfrak{m}$. Note that $\emptyset\notin\mathcal{U}$, since $\|r=0\|=\emptyset$ with $r\in\mathfrak{m}$ implies $1=r'\in\mathfrak{m}$, which is impossible. So \mathcal{U} satisfies axiom (F1) for filters. If $r,s\in\mathfrak{m}$ then $\|r'+s'-r's'=0\|=\|r=0\|\cap\|s=0\|$ (as one easily checks) hence \mathcal{U} is closed under finite intersection (i.e., satisfies (F2)). Now let $A\subseteq I$ with $A\notin\mathcal{U}$. Define $r\in R$ by r(i)=1 if $i\in A$ and R(i)=0 otherwise. Then $\|r=0\|=A$, hence $r\notin\mathfrak{m}$, and $r\cdot(1-r)=0$; therefore $1-r\in\mathfrak{m}$, and $\|1-r=0\|=I\setminus A$; hence $I\setminus A\in\mathcal{U}$. This also shows that \mathcal{U} is closed under supersets (and hence an ultrafilter on \mathcal{U}): if $A\supseteq B$ for some $B\in\mathcal{U}$ and $A\notin\mathcal{U}$, then $I\setminus A\in\mathcal{U}$ and hence $\emptyset=(I\setminus A)\cap B\in\mathcal{U}$, a contradiction to what we have already shown. It is clear that $\mathfrak{m}\subseteq\mathfrak{M}_{\mathcal{U}}$, by definition of \mathcal{U} , and hence $\mathfrak{m}=\mathfrak{M}_{\mathcal{U}}$, since \mathfrak{m} is a maximal ideal.