Problem Set 1

Due February 6

Model Theory

Math 506, Spring 2004.

Do 7 of the following 8 problems!

- 1. Let $Q = (\mathbb{Q}, +, \cdot)$ be the field of rational numbers considered as an \mathcal{L} -structure in the language $\mathcal{L} = \{+, \cdot\}$. Show that the set $\mathbb{Q}^{\geqslant 0}$ of non-negative rationals is \emptyset -definable in Q. Hint: you may use the fact that every natural number can be written as the sum of four squares of natural numbers. (Lagrange's Theorem.) Show that $\mathbb{Q}^{\geqslant 0}$ is not \emptyset -definable if we drop the symbol \cdot from \mathcal{L} .
- 2. Write down an axiom system for the class of all groups:
 - a) in the language $\mathcal{L}_1 = \{1, \cdot, -1\}$ by universal sentences;
 - b) in the language $\mathcal{L}_2 = \{1, \cdot\}$ by $\forall \exists$ -sentences;
 - c) in the language $\mathcal{L}_3 = \{\cdot\}$ by $\exists \forall \exists$ -sentences.
- 3. Let $\mathcal{L} = \{+, -, 1\}$ where + is a binary function symbol, is a unary function symbol, and 1 is a constant symbol. We construe \mathbb{R} as a structure $\mathcal{R} = (\mathbb{R}, +, -, 1)$ in the natural way. Give an algebraic description of the class \mathcal{F} of all functions $f \colon \mathbb{R}^n \to \mathbb{R}$ which are interpretations of \mathcal{L} -terms, i.e., for which there exists an \mathcal{L} -term $t(x_1, ..., x_n)$ such that $f(a_1, ..., a_n) = t^{\mathcal{R}}(a_1, ..., a_n)$ for all $a_1, ..., a_n \in \mathbb{R}$.
- 4. Let \mathcal{L} be a language and let \mathcal{M} be an \mathcal{L} -structure. We say that $f: M^m \to M^n$ is A-definable (for some $A \subseteq M$) if the graph $\Gamma(f) := \{(a, f(a)) : a \in M^m\}$ of f is A-definable in \mathcal{M} (as a subset of M^{m+n}).
 - a) Show that if $f: M^m \to M^n$ and $g: M^n \to M^l$ are A-definable, then so is $g \circ f$.
 - b) Suppose that $f: M^m \to M^n$ is A-definable. Show that the image $f(M^m)$ of f is A-definable.
- 5. Let $\mathcal{L} = \{R\}$ where R is a binary relation symbol. A **graph** is an \mathcal{L} -structure $\mathcal{G} = (G, R^{\mathcal{G}})$ with the property that $(g, h) \in R^{\mathcal{G}} \iff (h, g) \in R^{\mathcal{G}}$ and $(g, g) \notin R^{\mathcal{G}}$ for all $g, h \in G$. We say that $g \in G$ and $h \in G$ are in the same connected component of \mathcal{G} if there exist $g_0, ..., g_n \in G$ (for some $n \geqslant 0$) with $R^{\mathcal{G}}(g_i, g_{i+1})$ for all i = 0, ..., n-1 and $g_0 = g, g_n = h$. We say that \mathcal{G} is connected if all $g, h \in G$ are in the same connected component of \mathcal{G} .
 - a) Show that the class of all connected graphs is not elementary.
 - b) Deduce that there is no \mathcal{L} -formula $\varphi(x, y)$ with the property that for all graphs $\mathcal{G} = (G, R^{\mathcal{G}})$ and $g, h \in G$: $\mathcal{G} \models \varphi(g, h) \iff g$ and h are in the same connected component of \mathcal{G} .
- 6. Let I be a non-empty set.
 - a) Show that a filter \mathcal{U} on I is a principal ultrafilter if and only if $\mathcal{U} = \langle b \rangle$ for some $b \in I$.

- b) Suppose that I is infinite, and let \mathcal{F} be the Fréchet filter of cofinite subsets of I. Show that \mathcal{F} is not principal and not an ultrafilter.
- c) Show that an ultrafilter \mathcal{U} on an infinite set I is non-principal if and only if $\mathcal{U} \supseteq \mathcal{F}$.
- 7. Let \mathcal{L} be a language and $\{\mathcal{A}_i\}_{i\in I}$ be a family of \mathcal{L} -structures, $I \neq \emptyset$. Let \mathcal{U} be a principal ultrafilter on I. Show that there exists $j \in I$ such that $\mathcal{A}_j \cong \prod_{i \in I} \mathcal{A}_i / \mathcal{U}$.
- 8. Let $\{K_i\}_{i\in I}$ be a family of fields, considered as \mathcal{L} -structures in the language $\mathcal{L}=\{0,\,1,\,+\,,\,-\,,\,\cdot\,\}$, where $I\neq\emptyset$. Put $R:=\prod_{i\in I}K_i$, and for an ultrafilter \mathcal{U} on I consider

$$\mathfrak{M}_{\mathcal{U}} := \{ r \in R \colon ||r = 0|| \in \mathcal{U} \}.$$

By Łos' Theorem, the ultraproduct $\prod_{i\in I} K_i/\mathcal{U}$ is a field. Show the following:

- a) $R/\mathfrak{M}_{\mathcal{U}} \cong \prod_{i \in I} K_i/\mathcal{U}$. (Hence $\mathfrak{M}_{\mathcal{U}}$ is a maximal ideal of R.)
- b) For every maximal ideal \mathfrak{m} of R there exists an ultrafilter \mathcal{U} on I with $\mathfrak{m} = \mathfrak{M}_{\mathcal{U}}$.