Problem Set 2
Due February 20
Model Theory

Math 506, Spring 2004.

1. Prove: if F is a filter on a set I # @) such that (| F =0, then every ultrafilter &/ O F on I is non-
principal. (Hint: use problem 6. (a) on Problem Set 1.)

Solution. If ¢/ is a principal ultrafilter on I, then ¢ = (b) for some b € I, by problem 6. (a) on
Problem Set 1. Hence if F CU is a filter on I, then be ) F.

2. Let £ be a language and let T' and T’ be L-theories. Suppose that for every model M of T there
exists o € T’ such that M F o. Show that there exists a finite subset {oy, ..., o} of T" such that
TEoLV Vo

Solution. We consider the £-theory T" :=T U {—o: 0 € T'}. By assumption, 7" is not satisfi-
able. Hence by the Compactness Theorem, some finite subset of 7" is not satisfiable. There-
fore there exist oy, ..., 05 € T’ such that T'U {—0o1, ...., mop } is not satisfiable. This is equiva-
lent with TF oV -V oy,

3. Let £ be a language and M C A be L-structures.

a) Suppose that for every finite subset A of M and every b € N there exists an automorphism
f of N which fixes A pointwise (i.e., f(a) =a for all a € A) and such that f(b) € M. Show
that then M V.

b) Now suppose £=1{ <} with a binary relation symbol <. We consider M =(Q,<) and N =
(R, <) as L-structures in the natural way. Use (a) to show that (Q, <) =< (R, <).

c) Show that the converse in (a) does not hold in general. (Hint: consider M = (N, <).)

d) [Optional.] Let R be a commutative ring and let X and Y be infinite sets of indeterminates
over R, with X CY. Show that R[X] =< R[Y], considered as structures in the language £ =
{0,1,+,- } of rings.

Solution.

a) We use the Tarski-Vaught test. Let o(z, y1, ..., ¥») be an L-formula and a = (a4, ...,
a,) € M™ such that for some b€ N we have N F o(b, ay, ..., a,). We have to show that
there is ¢ € M with A F o(c, a4, ..., a,). For this, we choose an automorphism f of A/
which fixes A = {ay, ..., ap} pointwise and such that f(b) € M. Since f is elementary,
we obtain N F o( f(b), f(a1), ..., f(ay)). Hence with ¢ := f(b) we have N E g(c, ay, ...,
ay,) as required.



b) By (a) we have to show that given ay, ..., a, € Q and b € R there exists an automor-
phism f of (R, <) with f(a;) =a; for all i and f(b) € Q. If b=a; for some %, then the
identity automorphism f=idgr does the job. Suppose b+ a; for all i. After reordering
the a; we may assume a; < --- < a,. Moreover we may assume that a; < b < a;4; for
some i. (Why?) Choose a rational number ¢ with a; < ¢ < a;41. We define f: R - R
as follows:

x if JIGR\ [ai,ai_,_l]
Flo) = %(w—b)+c if z €[a;,b]
%(m—b)—f—c if xe[b,a;t+1]

Then f is bijective and z < y <= f(z) < f(y) for all z, y € R, that is, f is an auto-
morphism of (R, <). Clearly f(a;)=a; for all j, and f(b) =c as required.

c) By the Compactness Theorem (or Lowenheim-Skolem “upwards”) there exists a
proper elementary extension V' = (N, <) of M = (N, <), that is, M N and N #
N. Let a € N \ N. We claim that for every automorphism f of N we have f(n) =n
for all n € N. (This implies immediately that there cannot be an automorphism f of
N with f(a) € N.) To see this, note first that for all n € N, since M E ¢(n,n + 1) for
o(z,y)=Vz2(z>x—2=9yV2z>y), we have N E p(n,n+ 1), because A is an elemen-
tary extension of M. Similarly it follows that there is no a € N with a < 0. Hence
there are no a € N \ N with a <" n for some n € N. This implies that f(n)=mn for all
n € N.

d) According to (a) it suffices to show that for any as,...,an € R[X] and for any b€ R[Y]
there is an automorphism of R[Y] which fixes ay, ..., a;, and maps b into R[X]. Let
X1, ..., X be all the indeterminates from X which occur in ay, ..., a,, b, and let Y, ...,
Y be all the indeterminates from Y \ X which occur in b. Define a bijection f:Y =Y
which fixes X1, ..., X,, pointwise and which maps each Y; to some indeterminate in X.
(Since X is infinite, such a bijection must exist.) The bijection f has a natural exten-
sion F: R[Y] — R[Y] to an R-algebra automorphism. Then F' fixes a1, ..., amy and
maps b into R[X], as required.

4. We say that an L-theory T has definable Skolem functions if for every formula ¢(z1, ..., Zpn, y)
there exists a formula ¥(z1, ..., T,, y) such that

a) TEVzy---Va,y(z1, ..., Tn, ¥)
b) TEVzy--Ve,YyVy' (Y(z1, ... Tpn, Y)Y A(T1, s Tny ¥ ) 2 y=19")
C) T Izvmlvmn(ay(p(xh ey Ty y) - Hy(lﬁ(l‘l, ey T,y y) A QO(Q?l, ey Ty y)))

In other words, in every model N of T, 1 defines the graph of a function f: N® — N such that
NE p(a, f(a)) for all a € N™ for which N EJyp(a,y).

a) Show that if 7" has built-in Skolem functions, then T" has definable Skolem functions.

b) Let £L={0,+ } where + is a binary function symbol and 0 is a constant symbol. Show that
T =Th(N, 0, +) has definable Skolem functions.

Solutions.

a) Suppose that T has built-in Skolem function, that is, for every formula ¢(x1, ..., Zpn, y)
there exists an n-ary function symbol f, such that T'EVz;---Vz,(Jy(p(z1, ..., Tn, y) —
O(T1, oo Ty fo(T1, .., n))). Then (1, ..., zpn, y) =“fo(z1, ..., Tn) = y” satisfies condi-
tions (a)—(b).



b)

We write N'= (N, 0,+ ). Let o(y, 2) :=Jw(w #0Aw+ z=y). Then NF o(n,m) <=
n>m. Given an L-formula ¢(z,y) with = (z1,...,x,), the L-formula

¥ =("3z(¢(z,2)) 2 y=0)V (p(z,y) AVz(0(y, 2) = ~¢(z, 2)))

satisfies conditions (a)—(b) from above. Hence T has definable Skolem functions.

5. An L-theory T is called (absolutely) categorical if it is satisfiable and any two models of T are

isomorphic.

a) Show that if T' is categorical, then its unique model must be finite.

b) Let £L={f} where f is a unary function symbol. Give an example of a finite £-theory T all
of whose models are infinite. (Hence T is not categorical.)

¢) Suppose that £ is finite, and let M be an L-structure whose universe is finite. Show that
there exists an £-sentence ¢ with the property that AN E o <= M 2~ N for every L-structure
N. (In particular, M =N <= M = N; thus Th(M) is categorical.)

d) [Optional.] Show that if £ is an arbitrary language, and M an L-structure whose universe is
finite, then for all £L-structures N' we have M =N <= M2 N.

Solutions.

a)

Suppose that 7' has an infinite model M. Then by compactness (or Lowenheim-
Skolem “upwards”) T' has an infinite model of cardinality > |M|. Hence T' cannot be
categorical.

There are many possible solutions. Here is one: let ¢ be the L-sentence

VaVy(f(z) = f(y) =z =y) AT2Va (= f(z) = 2).
Then an L-structure M = (M, fM) satisfies ¢ if and only if fM: M — M is injective
but not surjective. But a non-empty set S is finite if and only if every injective map
S — S is surjective. Hence T'={¢} only has infinite models.
Suppose that M = {ay, ..., a,,} with pairwise distinct ay, ..., a,, (n € N). Let ¢y, ..., ¥g
enumerate all the atomic formulas ¥ (=, ..., z,) of £ such that if ¢ is a terms which

occurs in 1, then t contains at most one occurrence of a function symbol. There are
only finitely many such formulas ¢. (Why?) For ¢ =0, ...,k let

L ’(/Jl lfM k: 1/1,-(a0, ...,an)
PiT = if ME—s(ao, .., an)

Let now

Then
w=Two---Fxn(OA o A+ A @p,)

has the required property.



d) If £ is finite, this follows from (c). Suppose that £ is infinite. It is enough to show
the direction = . So assume for a contradiction that M = N but M2N. Hence no
bijection m: M — N is an isomorphism M — N. By the definition of isomorphism of
L-structures, the failure of a bijection 7: M — N being an isomorphism is witnessed
by finitely many of the relation symbols, function symbols, and constant symbols of
L: 7 is not an isomorphism if and only if there exists a relation symbol R of £ and
a1, ..., ap € M with RM(ay, ..., a,), but not RN (w(a1), ..., w(ay)), or if there exists a
function symbol f of £ and ay, ..., an € M with ©(fM(aq, ..., an)) # NV (x(ay), ...,
m(ay)), or a constant symbol ¢ with 7(cM) # ¢V. Hence for any bijection 7: M — N
there exists a finite sublanguage £’ of £ such that 7 is not an isomorphism of the £'-
structures M |L" and N'|L'. Note that this implies that for any finite sublanguage £"”
of £ which contains £’; 7 will also not be an isomorphism of the £'-structures M|L"
and N|L". Since there are only finitely many bijections 7: M — N (since M and N
are finite sets), this means that there is some finite subset £" of £ such that M|L"
and N|L" are not isomorphic. But since M = N, we clearly have M|L" = N|L".
Hence by (b) we get M|L" =N |L", a contradiction.

6. Let M and N be L-structures with M =N. Show (without using the Keisler-Shelah theorem) that
there exists an ultrafilter 2/ on some index set I and an elementary embedding N'— M!/U.

Solution. We let T' = Diage(N), an L(N)-theory. We claim that for every finite non-empty
subset ® ={¢1, ..., om} of T we can expand M to a model Mg of ®. To see this, write p; =
¥i(c) for each i, where ¢ = (¢, ..., ¢p) are new constant symbols in L(N) \ £ and the ¢;(x)
are L-formulas, z = (21, ..., z,). Now clearly N satisfies the £-sentence o :=3z (1)1 A -+ A ¢y,)
(the elements of N corresponding to the ¢y, ..., ¢, serve as witnesses). Hence M F o, since
M = N by assumption. Interpreting the ¢; by witnesses for 11 A -+ A ¢y, in M, and the
other constant symbols in £(N) \ £ arbitrarily, yields an expansion of M to a model of the
L(N)-theory ® as claimed. Now as in the proof of the Compactness Theorem we obtain an
ultrafilter & on the set I of finite non-empty subsets of T such that the L(INNV)-structure
M* = H<I>€I Mg /U is a model of T'. The reduct of each Mg to £ is M. Hence the reduct
of M* to L is M!/U. By the Diagram Lemma it follows that there exists an elementary
embedding N — M!/U.



