Problem Set 3

Due March 5

Model Theory

Math 506, Spring 2004.

1. Let \mathcal{M} be an \mathcal{L} -structure and A a non-empty subset of its domain. Show that the set

$$B := \{ t^{\mathcal{M}}(a_1, ..., a_n) : t(x_1, ..., x_n) \ \mathcal{L}\text{-term}, n \in \mathbb{N}, a_1, ..., a_n \in A \}$$

contains A and is the domain of a substructure of \mathcal{M} , called the **substructure of \mathcal{M} generated** by A and denoted by $\langle A \rangle_{\mathcal{M}}$. Show that $\langle A \rangle_{\mathcal{M}}$ is the smallest substructure of \mathcal{M} which contains A, that is, whenever \mathcal{C} is a substructure of \mathcal{M} whose domain C contains A as a subset, then $\mathcal{C} \supseteq \langle A \rangle_{\mathcal{M}}$.

Solution. Clearly B contains A, since $a = t^{\mathcal{M}}(a)$ for the \mathcal{L} -term t(x) = x. Similarly we have $c^{\mathcal{M}} \in B$ for every constant symbol c of \mathcal{L} (use the \mathcal{L} -term t = c). Let f be an m-ary function symbol of \mathcal{L} and $b_1, \ldots, b_m \in B$. Then there are $a_1, \ldots, a_n \in A$ and \mathcal{L} -terms $t_1(x_1, \ldots, x_n), \ldots, t_m(x_1, \ldots, x_n)$ such that $b_i = t_i^{\mathcal{M}}(a_1, \ldots, a_n)$ for all i. Hence $f^{\mathcal{M}}(b_1, \ldots, b_m) = s^{\mathcal{M}}(a_1, \ldots, a_n) \in B$, where s is the \mathcal{L} -term $s(x_1, \ldots, x_n) = f(t_1(x_1, \ldots, x_n), \ldots, t_m(x_1, \ldots, x_n))$. Therefore by setting

 $\begin{array}{ll} f^{\langle A \rangle_{\mathcal{M}}} := & f^{\mathcal{M}} | B^m & \text{for an m-ary function symbol f of \mathcal{L},} \\ c^{\langle A \rangle_{\mathcal{M}}} := & c^{\mathcal{M}} & \text{for a constant symbol c of \mathcal{L},} \end{array}$

 $R^{\langle A \rangle_{\mathcal{M}}} := R^{\mathcal{M}} \cap B^m$ for an m-ary relation symbol R of \mathcal{L}

we obtain an \mathcal{L} -substructure $\langle A \rangle_{\mathcal{M}}$ of \mathcal{M} with domain B. Now let \mathcal{C} be any substructure of \mathcal{M} whose domain contains A as a subset. Then $t^{\mathcal{M}}(c_1, ..., c_n) \in C$ for all \mathcal{L} -terms $t(x_1, ..., x_n)$ and all $c_1, ..., c_n \in C$. In particular $t^{\mathcal{M}}(a_1, ..., a_n) \in C$ for all \mathcal{L} -terms $t(x_1, ..., x_n)$ and all $a_1, ..., a_n \in A$, hence $B \subseteq C$. Therefore $\mathcal{C} \supseteq \langle A \rangle_{\mathcal{M}}$.

- 2. Let $\mathcal{L} = \{0, 1, +, -, \cdot, <\}$ and $\mathcal{Q} = (\mathbb{Q}, 0, 1, +, -, \cdot, <)$ (the ordered field \mathbb{Q}).
 - a) Show that for every subset S of $\mathbb Q$ definable in $\mathcal Q$ by a quantifier-free $\mathcal L$ -formula there exists $q \in \mathbb Q$ such that $(q, \infty) \subseteq S$ or $(q, \infty) \cap S = \emptyset$.
 - b) Use (a) to show that Th(Q) does not admit quantifier elimination.

Solution.

- a) Let \mathfrak{S} be the collection of all subsets $S \subseteq \mathbb{Q}$ such that there exists $q \in \mathbb{Q}$ such that $(q, \infty) \subseteq S$ or $(q, \infty) \cap S = \emptyset$. We will show that all quantifier-free definable subsets of \mathbb{Q} belong to \mathfrak{S} . Let first $\varphi(x)$ be an atomic \mathcal{L} -formula. Then $\varphi(x)$ is equivalent (in $\mathrm{Th}(\mathcal{Q})$) to a formula of the form "P(x) = 0" or "P(x) < 0" for some polynomial $P(X) \in \mathbb{Z}[X]$. In the first case, $\varphi(x)$ defines a finite set (if $P \neq 0$) or \mathbb{Q} (if P = 0), hence the set defined by $\varphi(x)$ belongs to \mathfrak{S} . In the second case, the set $A := \{r \in \mathbb{R}: P(r) < 0\}$ is a finite union of open intervals in \mathbb{R} , hence the set $A \cap \mathbb{Q}$ defined by $\varphi(x)$ belongs to \mathfrak{S} . Observe that by the symmetry in the definition of \mathfrak{S} , we have that $S \in \mathfrak{S} \Rightarrow \mathbb{Q} \setminus S \in \mathfrak{S}$. Now suppose $S_1, S_2 \in \mathfrak{S}$, and let $q_i \in \mathbb{Q}$ such that $(q_i, \infty) \subseteq S_i$ or $(q_i, \infty) \cap S_i = \emptyset$ for i = 1, 2. We distinguish two cases:
 - i. For some $i \in \{1, 2\}$ we have $(q_i, \infty) \subseteq S_i$. Then $(q_i, \infty) \subseteq S_1 \cup S_2$ and thus $S_1 \cup S_2 \in \mathfrak{S}$.

ii. For all $i \in \{1, 2\}$ we have $(q_i, \infty) \subseteq \mathbb{Q} \setminus M_i$. Then we have, with $q := \max\{q_1, q_2\}$:

$$(q, \infty) \subset (\mathbb{Q} \setminus S_1) \cap (\mathbb{Q} \setminus S_2) = \mathbb{Q} \setminus (S_1 \cup S_2),$$

so $S_1 \cup S_2 \in \mathfrak{S}$.

It follows that \mathfrak{S} contains all quantifier-free definable subsets of \mathbb{Q} , as claimed.

- b) The subset $S := \{q^2 : q \in \mathbb{Q}\}$ of \mathbb{Q} is definable in \mathcal{Q} by the formula $\varphi(x) = \exists y (y^2 = x)$. By (a), S cannot be defined by a quantifier-free \mathcal{L} -formula. Hence $\operatorname{Th}(\mathcal{Q})$ does not admit quantifier elimination.
- 3. Let K be a field and let K^{alg} be an algebraic closure of K. A polynomial $f \in K[X_1, ..., X_n]$ is called **absolutely irreducible** if f is irreducible when considered as an element of the polynomial ring $K^{\text{alg}}[X_1, ..., X_n]$. (For example, the polynomial $X^2 + 1 \in \mathbb{Q}[X]$ is not absolutely irreducible, since $X^2 + 1 = (X i) (X + i)$ in $\mathbb{Q}^{\text{alg}}[X]$, whereas $XY 1 \in \mathbb{Q}[X, Y]$ is absolutely irreducible.) For a polynomial $f \in \mathbb{Z}[X_1, ..., X_n]$ and a prime number f we denote by f the polynomial in $\mathbb{F}_{p}[X_1, ..., X_n]$ obtained by reducing the coefficients of f modulo f. Show: $f \in \mathbb{Z}[X_1, ..., X_n]$ is absolutely irreducible if and only if f is absolutely irreducible for all but finitely many primes f. (This fact is known as the Noether-Ostrowski Irreducibility Theorem.)

Solution. We let λ , μ , ν range over \mathbb{N}^n , and for $\nu = (\nu_1, ..., \nu_n) \in \mathbb{N}^n$ we write $|\nu| := \nu_1 + \cdots + \nu_n$ and $X^{\nu} = X_1^{\nu_1} \cdots X_n^{\nu_n}$. Let $f \in \mathbb{Z}[X_1, ..., X_n]$ be a polynomial of degree d. Write $f = \sum_{\nu} a_{\nu} X^{\nu}$ with $a_{\nu} \in \mathbb{Z}$. We let $y = (y_{\mu})_{|\mu| \leq d}$ and $z = (z_{\lambda})_{|\lambda| \leq d}$ be (finite) tuples of variables. Consider the sentence σ in the language $\mathcal{L} = \{0, 1, +, -, \cdot\}$ of rings:

$$\sigma := \forall y \forall z \left(\left(\bigwedge_{|\nu| \leqslant d} \sum_{\mu + \lambda = \nu} y_{\mu} z_{\lambda} = a_{\nu} \right) \to \left(\bigwedge_{|\mu| > 0} y_{\mu} = 0 \right) \vee \left(\bigwedge_{|\lambda| > 0} z_{\lambda} = 0 \right) \right)$$

Then $K \vDash \sigma$ if and only if the image of the polynomial f under the natural homomorphism $\mathbb{Z}[X_1,...,X_n] \to K[X_1,...,X_n]$ is irreducible, for every field K. In particular $\mathbb{Q}^{\mathrm{alg}} \vDash \sigma$ if and only if f is absolutely irreducible, and $\mathbb{F}_p^{\mathrm{alg}} \vDash \sigma$ if and only if f_p is absolutely irreducible. The claim now follows from the Lefschetz Principle.

- 4. Let T be an \mathcal{L} -theory and $T_{\forall} := \{ \varphi : \varphi \text{ universal sentence}, T \models \varphi \}$. Show that an \mathcal{L} -structure \mathcal{A} is a model of T_{\forall} if and only if there exists a model \mathcal{M} of T such that $\mathcal{A} \subseteq \mathcal{M}$.
 - **Solution.** If $A \subseteq \mathcal{M}$ are \mathcal{L} -structures and $\mathcal{M} \models T$, then every universal sentence which holds in \mathcal{M} will also hold in A. This shows the "if" direction. For the converse, suppose that the \mathcal{L} -structure A is a model of T_{\forall} . By the Diagram Lemma it is enough to show that the $\mathcal{L}(A)$ -theory $T \cup \text{Diag}(A)$ is satisfiable. By Compactness, we need to show that every finite subset of it is satisfiable. For this, let $\psi_1(x), ..., \psi_m(x)$ with $x = (x_1, ..., x_n)$ be quantifier-free \mathcal{L} -formulas and $a = (a_1, ..., a_n) \in A^n$ such that $\psi_i(a) \in \text{Diag}(A)$ for every i. It suffices to show that $T \cup \{\psi_1(a), ..., \psi_m(a)\}$ has a model. Suppose not. Then $T \models \forall x(\neg \psi_1(x) \lor \cdots \lor \neg \psi_m(x))$. Now $\varphi := \forall x(\neg \psi_1(x) \lor \cdots \lor \neg \psi_m(x))$ is a universal sentence in T_{\forall} , hence $A \models \varphi$. Therefore $A \models \neg \psi_i(a)$ for some i, a contradiction to $\psi_i(a) \in \text{Diag}(A)$.
- 5. We say that an \mathcal{L} -structure \mathcal{M} is **existentially closed** in an \mathcal{L} -structure \mathcal{N} with $\mathcal{M} \subseteq \mathcal{N}$ if for every quantifier-free \mathcal{L} -formula $\varphi(x, y)$ with $x = (x_1, ..., x_n), \ y = (y_1, ..., y_m), \ \psi(y) = \exists x(\varphi(x, y)),$ and $a = (a_1, ..., a_m) \in M^m$, we have $\mathcal{N} \models \psi(a) \Rightarrow \mathcal{M} \models \psi(a)$. (It is enough that this holds for n = 1.) Let K be an infinite field and t an indeterminate over K. Show that K is existentially closed in K[t] (in the language $\mathcal{L} = \{0, 1, +, \cdot, -\}$).

Solution. Every quantifier-free formula $\varphi(x,y)$ in the language $\mathcal{L} = \{0,1,+,\cdot,-\}$ is equivalent (in the theory of integral domains) to a disjunction of formulas of the form

$$P_1(x,y) = 0 \land \dots \land P_k(x,y) = 0 \land Q(x,y) \neq 0 \tag{1}$$

where the $P_j(x, y)$ and Q(x, y) are polynomials with integer coefficients. If $K[t] \vDash \varphi(a, b(t))$ for some $a \in K^n$ and $b(t) = (b_1(t), ..., b_m(t)) \in K[t]^m$ then one of this disjuncts has to hold when a and b(t) are substituted for x and y, respectively. Hence we may assume that our formula $\varphi(x, y)$ has the form (1). Then each $P_j(a, b(t)) \in K[t]$ is the zero polynomial in K[t], and $Q(a, b(t)) \neq 0$ in K[t]. A non-zero polynomial in one indeterminate has only finitely many zeros in K. Hence, since K is infinite, there is $\tau \in K$ such that $Q(a, b(\tau)) \neq 0$, and thus $K \vDash \varphi(a, b(\tau))$.

- 6. Let (I, <) be a totally ordered set, $I \neq \emptyset$, and suppose that for every $i \in I$ we are given an \mathcal{L} -structure \mathcal{M}_i . We say that $(\mathcal{M}_i)_{i \in I}$ is a **chain** of \mathcal{L} -structures if $\mathcal{M}_i \subseteq \mathcal{M}_j$ for all i < j in I. Show that there exists a unique \mathcal{L} -structure $\mathcal{M} := \bigcup_{i \in I} \mathcal{M}_i$ (the **union** of the chain) with the following properties: $\mathcal{M}_i \subseteq \mathcal{M}$ for all i, and if \mathcal{N} is any \mathcal{L} -structure with $\mathcal{M}_i \subseteq \mathcal{N}$ for all i, then $\mathcal{M} \subseteq \mathcal{N}$.
 - **Solution.** We define an \mathcal{L} -structure \mathcal{M} as follows. Its universe will be the union $M:=\bigcup_i M_i$ of the universes of the M_i . If c is a constant symbol in \mathcal{L} then $c^{\mathcal{M}_i}=c^{\mathcal{M}_j}$ for all $i,j\in I$; we put $c^{\mathcal{M}}:=c^{\mathcal{M}_i}$ where i is arbitrary. Suppose that $a_1,...,a_n\in M$ and f is an n-ary function symbol of \mathcal{L} . Since I is linearly ordered we find $i\in I$ such that $a_1,...,a_n\in M_i$. If i< j then $f^{\mathcal{M}_i}(a_1,...,a_n)=f^{\mathcal{M}_j}(a_1,...,a_n)$, hence there is a well-defined function $f^{\mathcal{M}}:M^n\to M$ whose graph is the union of the graphs of the $f^{\mathcal{M}_i}$. Similarly, if R is an n-ary relation symbol of \mathcal{L} and i< j then $(a_1,...,a_n)\in R^{\mathcal{M}_i}$ if and only if $(a_1,...,a_n)\in R^{\mathcal{M}_j}$. We let $R^{\mathcal{M}}:=\bigcup_{i\in I}R^{\mathcal{M}_i}$. It is easy to check that the structure thus defined has the required properties.
- 7. An \mathcal{L} -theory T is a $\forall \exists$ -theory if T consists only of sentences of the form $\forall x_1 \cdots \forall x_n \exists y_1 \cdots \exists y_m(\varphi)$, where $\varphi(x_1, ..., x_n, y_1, ..., y_m)$ is a quantifier-free \mathcal{L} -formula. Show that the union of a chain of models of a $\forall \exists$ -theory T is again a model of T.
 - **Solution.** Let $(\mathcal{M}_i)_{i\in I}$ be a chain of \mathcal{L} -structures and $\mathcal{M} = \bigcup_{i\in I} \mathcal{M}_i$. Let $\varphi(x_1,...,x_n,y_1,...,y_m)$ be a quantifier-free \mathcal{L} -formula such that $\mathcal{M}_i \vDash \forall x_1 \cdots \forall x_n \exists y_1 \cdots \exists y_m(\varphi)$ for all i. We need to show that $\mathcal{M} \vDash \forall x_1 \cdots \forall x_n \exists y_1 \cdots \exists y_m(\varphi)$. For this let $a_1, ..., a_n \in \mathcal{M}$. Then there is $i_k \in I$ with $a_k \in \mathcal{M}_{i_k}$ for every k. Let $i = \max\{i_1, ..., i_n\}$. Then $a_k \in \mathcal{M}_i$ for all k. Since $\mathcal{M}_i \vDash \forall x_1 \cdots \forall x_n \exists y_1 \cdots \exists y_m(\varphi)$ we find $b_1, ..., b_m \in \mathcal{M}_i$ such that $\mathcal{M}_i \vDash \varphi(a_1, ..., a_n, b_1, ..., b_m)$. Hence $\mathcal{M} \vDash \varphi(a_1, ..., a_n, b_1, ..., b_m)$ since the formula φ is quantifier-free. This shows $\mathcal{M} \vDash \forall x_1 \cdots \forall x_n \exists y_1 \cdots \exists y_m(\varphi)$ as required.