Problem Set 4
Solutions
Model Theory
Math 506, Spring 2004.

1. [Optional] We say that an L-structure M F T is an existentially closed model of T if M is exis-
tentially closed in every N ET with M CN.

a) Suppose that T is a V3-theory. Show that for every model M of T there exists a model
M* ET with M C M*, having the following property: for every quantifier-free £-formula
o(T, Y1, ..., Ym) and ay, ..., am € M, if there exists some N ET with M* C AN and b€ N such
that N'E ¢(b,ay, ..., an), then there exists ¢ € M* such that M*F p(c,ay,-...,am).

b) Use (a) to show that for any model M of a V3-theory T there is some existentially closed
NET with M CN and |N|=max {|M|,|L],Ro}.

Solution.

a) Let (¢x)a<ks be an enumeration of all £L(M)-formulas of the form Jzp(z, a1, ..., am)
where ¢(z, y1, ..., Ym) is a quantifier-free L-formula and as, ..., ay, € M. (Here & is
some limit ordinal.) We define recursively an increasing sequence (My)a<, of models
of T as follows: My := M; if A is a limit ordinal, then we put M, := U“</\ My; if
there exists a model N'ET with M, CAN and (N, M) E @), then we put My 1:=N,
and otherwise we let M1 := M. Since T is V3 we have M E T for all A (by an
earlier homework problem). Put M*:={J, _, M. Then M*ET, and if N'F T with
M* C N such that (N, M) E @y, then M, C N and hence (Mx11, M) E ¢, by con-
struction; therefore (M*, M) E ¢,. This shows that M* has the required property.
Note that |M*| =max {|M|,|L], Ro}.

b) We define an increasing chain (My),en of models of T' as follows: put Mg := M and
Mgy := M5, for all n. Let N :=|J, Mpy, a model of T (since T is V3) and |N| =
max {|M|, |L], No}. We claim that A is an existentially closed model of T. To see
this, let A/ D N be a model of T and ¢ an existential £(/V)-sentence with one exis-
tential quantifier, such that (N’ N)F ¢. There is some n such that ¢ is a sentence of
L(M,) (since only finitely many constant symbols from N appear in ¢), so (N,
M,) E . By choice of M, 1 (cf. (a)!) we have (My11, M) E ¢ and hence (N,
N)E ¢, as required.

2. Let T be an L-theory.

a) Show that if M C N are models of T and M is an existentially closed model of T, then
there is M7 ET such that M CN C M; with M < M;. (Hint: Diagram Lemma.)

b) Show that T' is model-complete if and only if every model of T is existentially closed. (Hint
for “ < ”: suppose that Mo C Ny are models of T’; use (a) to build a chain Mg C Ny C M; C
N1 C M3 C - of models of T such that M; < M; 1 and N;xNii1.)

Solution.

a) By the Diagram Lemma it suffices to show that the L(NN)-theory Diage(M) U
Diag(N) is satisfiable. For this, let ¢(z, ¥) be a quantifier-free L-formula, = (z1, ...,
Tn), Y= (Y1, ., Ym), and a € M™, be (N \ M)™, with N E ¢(a,b). Then N F Jy(¢(a,



¥)), hence M E Jy(y(a, y)), so M E ¢(a, c¢) for some ¢ € M™. This shows that the
L(M)-structure (M, M) can be expanded to a model of Diage (M) U {¢(a,b)}. Hence
the L(N)-theory Diage(M) U Diag(N), being finitely satisfiable, is satisfiable, by
compactness.

The forward direction is trivial. For the converse, suppose that My C Ny are models
of T. As in the hint we use (a) to build a chain Mo C Ny C M; C N7 C M5 C -+ of
models of T such that M; x M;;1 and N; x Niy1. Let M ={J, M;. Note that then
M= N;. By Proposition 2.3.11 in the textbook we have Mg < M and Ng < M.
Hence Mo < Ny as required.

3. Let T be an L-theory.

a) Show that 7' admits quantifier-elimination if and only if for all M E Ty the £(M)-theory T'U
Diag(M) is complete.

b) Show that T is model-complete if and only if for all M E T, the £(M)-theory T U Diag(M)
is complete. (This explains the origin of the term “model-complete.”)

Solution.

a)

A model of the £L(M)-theory T'U Diag(M) is essentially a model of T' which contains
M as a submodel (by the Diagram Lemma). Using this observation, the g.e. test dis-
cussed in class easily translates into the criterion given here. (Because of this charac-
terization of g.e., some people speak of a “substructure complete theory” when they
mean “a theory which admits g.e.”.)

By definition, T is model-complete if M C N = M < N for all models M and A of
T. Therefore if T is model-complete, then 7" U Diag(M) is complete for all M E T
(using the observation made in part (a) above). Conversely, suppose that the L£(M)-
theory T UDiag(M) is complete, and let M C N be models of T'. Then both (M, M)
and (N, M) are models of T'U Diag(M), hence (M, M) = (N, M). This means that
M=<N.

4. An L-structure M is called ultra-homogeneous if every isomorphism between finitely generated
substructures of M can be extended to an automorphism of M.

a) Let M be a finite L-structure. Show that Th(M) admits quantifier-elimination if and only
if M is ultra-homogeneous.

b) Show that the finite abelian group Z/2Z & Z/4Z (construed as a structure in the language
L£={0,+,—}) is not ultra-homogeneous.

Solution.

2)

Suppose first that T'= Th(M) has g.e., and let A and B be isomorphic substructures
of M, say with isomorphism o: A — B. We can expand M to an L(A)-structure in
two ways: by interpreting (the constant symbol corresponding to) a as a, for all a € A,
or by interpreting a as o(a), for all a € A. The first structure is just M* := (M, A);
we denote the other one by M**. Note that then both M* and M** are models of
the L£(A)-theory T' U Diag(A). Since T has q.e., this yields M* = M** by Problem
3.(a). Since these are finite £(A)-structures, there exists an isomorphism h: M* —
M**. (By Problem 5.(d) on Homework Set 2.) Then h is an automorphism of M
which extends o, as required. Conversely, suppose that M is ultra-homogeneous, and
let NET and let A be a common substructure of M and A. Since M =N and M is
finite, there exists an isomorphism o: N'— M. Then o|A: A — B is an isomorphism
between the substructures A and B := g(A) of M. By ultrahomogeneity there exists
an automorphism h of M which extends ¢. Then o~! o A is an isomorphism (M,
A) = (N, A) of L(A)-structures. Thus (M, A) = (N, A), showing that 7' has q.e.



b) Consider the elements e :=(1,0) and f := (0, 1) of G :=Z/2Z & Z/4Z. The isomor-
phism between the subgroups A and B of G generated by e and 2f cannot be
extended to an automorphism of the group G, since G/A = Z/4Z and G/B=7Z[27Z &
Z /27 are not isomorphic.

5. Let K be a field and let £ be the language of vector spaces over K, consisting of the binary func-
tion symbol + , the unary function symbol — , a constant symbol 0, and for each a € K a unary
function symbol u,. We construe each K-vector space V' as an L-structure by interpreting +, —
and 0 as usual and p, by scalar multiplication v — a v by a. Let T be the theory of infinite K-
vector spaces in this language. Show that T admits quantifier elimination, and use this to show
that T' is complete.

Solution. This is very similar to the proof, done in class, that DAG has q.e. and is complete.

6. Let L={ <} and let T be a satisfiable theory containing the axioms for linearly ordered sets which
contain at least two elements. Show that if 7' admits quantifier-elimination, then Mod(T") =
Mod(DLO).

Solution. By completeness of DLO it is enough to show that every model A= (A4, <*) of T is
a model of DLO. Let a < b be elements of A, and consider the L-formula ¢(z, y) = -Jz(z <
z A z < y). Suppose that AF ¢(a, b). Then, for all ¢ < d in a model B of T, we must have
B E ¢(c, d), by our qg.e. test from class (since the substructures of A and B with universes
{a, b} and {e, d}, respectively, are isomorphic). Therefore every model of T has only two
elements. This is impossible: the £-formula ¢(z) =3Jy(z < y) holds for a in A, but not for b;
this contradicts the q.e. criterion. Hence the ordering <* is dense. Similarly one shows
that < does not have endpoints.



