Problem Set 4

Due March 29

Model Theory

Math 506, Spring 2004.

- 1. [Optional] We say that an \mathcal{L} -structure $\mathcal{M} \models T$ is an **existentially closed** model of T if \mathcal{M} is existentially closed in every $\mathcal{N} \models T$ with $\mathcal{M} \subset \mathcal{N}$.
 - a) Suppose that T is a $\forall \exists$ -theory. Show that for every model \mathcal{M} of T there exists a model $\mathcal{M}^* \models T$ with $\mathcal{M} \subseteq \mathcal{M}^*$, having the following property: for every quantifier-free \mathcal{L} -formula $\varphi(x, y_1, ..., y_m)$ and $a_1, ..., a_m \in \mathcal{M}$, if there exists some $\mathcal{N} \models T$ with $\mathcal{M}^* \subseteq \mathcal{N}$ and $b \in \mathcal{N}$ such that $\mathcal{N} \models \varphi(b, a_1, ..., a_m)$, then there exists $c \in \mathcal{M}^*$ such that $\mathcal{M}^* \models \varphi(c, a_1, ..., a_m)$.
 - b) Use (a) to show that for any model \mathcal{M} of a $\forall \exists$ -theory T there is some existentially closed $\mathcal{N} \models T$ with $\mathcal{M} \subseteq \mathcal{N}$ and $|N| = \max\{|M|, |\mathcal{L}|, \aleph_0\}$.
- 2. Let T be an \mathcal{L} -theory.
 - a) Show that if $\mathcal{M} \subseteq \mathcal{N}$ are models of T and \mathcal{M} is an existentially closed model of T, then there is $\mathcal{M}_1 \models T$ such that $\mathcal{M} \subseteq \mathcal{N} \subseteq \mathcal{M}_1$ with $\mathcal{M} \preceq \mathcal{M}_1$. (Hint: Diagram Lemma.)
 - b) Show that T is model-complete if and only if every model of T is existentially closed. (Hint for " \Leftarrow ": suppose that $\mathcal{M}_0 \subseteq \mathcal{N}_0$ are models of T; use (a) to build a chain $\mathcal{M}_0 \subseteq \mathcal{N}_0 \subseteq \mathcal{M}_1 \subseteq \mathcal{N}_1 \subseteq \mathcal{M}_2 \subseteq \cdots$ of models of T such that $\mathcal{M}_i \preceq \mathcal{M}_{i+1}$ and $\mathcal{N}_i \preceq \mathcal{N}_{i+1}$.)
- 3. Let T be an \mathcal{L} -theory.
 - a) Show that T admits quantifier-elimination if and only if for all $\mathcal{M} \models T_{\forall}$ the $\mathcal{L}(M)$ -theory $T \cup \text{Diag}(\mathcal{M})$ is complete.
 - b) Show that T is model-complete if and only if for all $\mathcal{M} \models T$, the $\mathcal{L}(M)$ -theory $T \cup \text{Diag}(\mathcal{M})$ is complete. (This explains the origin of the term "model-complete.")
- 4. An \mathcal{L} -structure \mathcal{M} is called **ultra-homogeneous** if every isomorphism between finitely generated substructures of \mathcal{M} can be extended to an automorphism of \mathcal{M} .
 - a) Let \mathcal{M} be a finite \mathcal{L} -structure. Show that $\mathrm{Th}(\mathcal{M})$ admits quantifier-elimination if and only if \mathcal{M} is ultra-homogeneous.
 - b) Show that the finite abelian group $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ (construed as a structure in the language $\mathcal{L} = \{0, +, -\}$) is not ultra-homogeneous.
- 5. Let K be a field and let \mathcal{L} be the language of vector spaces over K, consisting of the binary function symbol +, the unary function symbol -, a constant symbol 0, and for each $a \in K$ a unary function symbol μ_a . We construe each K-vector space V as an \mathcal{L} -structure by interpreting +, and 0 as usual and μ_a by scalar multiplication $v \mapsto a v$ by a. Let T be the theory of infinite K-vector spaces in this language. Show that T admits quantifier elimination, and use this to show that T is complete.
- 6. Let $\mathcal{L} = \{<\}$ and let T be a satisfiable theory containing the axioms for linearly ordered sets which contain at least two elements. Show that if T admits quantifier-elimination, then Mod(T) = Mod(DLO).