Problem Set 5
Solutions
Model Theory
Math 506, Spring 2004.

1. Let K be a field and let T be the theory of infinite K-vector spaces as in Problem 5 of the last
Problem Set. Let V be an infinite K-vector space and A a subset of V. Show that acly(A) is the
K-subspace of V spanned by A.

Solution. If b€V is in the K-subspace of V spanned by A, then a = Aja; + --- + Anay, for some

Ai € K and a; € A, and z = b is the only solution to the formula ¢(z, ay, ..., a,), where p is
the L-formula = = py,(y1) + - + px, (yn). Hence b € acl(A). Conversely, let ¢(z,y1, ..., yn) be
an L-formula and a = (ay, ...,a,) € A™ such that M F ¢(b, a) and there are only finitely many
b' € M such that M E ¢(b', a). By q.e. (see last Problem Set) we may assume that ¢ is
quantifier-free, in fact, that ¢ is a disjunction of formulas of the form

/\ (Z )\ijyj) +Xiz=0A /\ (Z Aéjﬂj) +)\£$750
i=1 J i=1 J

where A;;, Aj, Aij, Ai € K. Replacing ¢ with such a disjunct which is satisfied by (z, y) = (b,

a), we may assume that ¢ is of this form. Since ¢(z, a) only has finitely many solutions we
must have A; # 0 for some . Then b= /\L( — Zj Aij aj), showing that b is in the subspace of
V spanned by A.

2. Use properties of model-theoretic algebraic closure in algebraically closed fields to prove the fol-
lowing facts. Here p is a prime number or 0, and F' the prime field of characteristic p (that is, F' =
F, if pis a prime and F' = @ otherwise).

2)

Let k£ be a field of characteristic p and let K; and Ko be algebraic closures of k, that is,
algebraically closed extension fields of k which are algebraic over k (in the sense of fields).
Show that there is an isomorphism K; — K5 which is the identity on k.

Let K be an algebraically closed field of characteristic p. We call a subset B of K alge-
braically independent if P(Xj,..., X,) € F[Xj,....,X,] is a non-zero polynomial and by, ...,
by, € B are distinct elements of B, then P(by, ..., b,) #0. We call B a transcendence basis
for K if B is algebraically independent and K is algebraic over the subfield F(B) of K gen-
erated by B.

i. Show that there exists a transcendence basis for K.

ii. Show that B is a transcendence basis for K if and only if B is a minimal subset of K
with the property that K is algebraic over F'(B).

iii. Show that K is determined, up to isomorphism, by the cardinality of a transcendence
basis for K.



Solution.

a) The theory ACF of algebraically closed fields eliminates quantifiers, hence the iden-
tity map on k is elementary with respect to K7 and K. By Proposition (2.3.6) from
class it can be extended to a bijective map aclg, (k) — aclg,(k), which is also elemen-
tary with respect to K7, Ko. But since K; is algebraic over k, we have K; = aclg,(k)
for i = 1, 2. This proves the existence of the desired isomorphism K; — K5 which is
the identity on k.

i. Let B be a basis for K in the pre-geometry aclg. We claim that B is a tran-
scendence basis for K. Let P(Xj, ..., X;,) € F[Xj, ..., X;,] be non-zero, and let
by, ..., by € B be distinct elements of B with P(by, ..., b,) = 0. Then we can
write

d
P(X1, s Xn) =Y Qil(X1, 0, X)) X5y

=0

for certain Q; € F[Xy, ..., Xp—1], and we can assume Q4(b1, ..., bp—1) # 0. This
yields that we have

by, € aclg({b1,...,bn—1}) Caclg(B \ {bn}),

which contradicts the fact that B is acl-independent. Furthermore, we have
K = aclg(B), so K is algebraic over the subfield F'(B) generated by B, by
(2.3.2) in class. Hence B is a transcendence basis for K.

ii. By part (4) of Theorem (2.3.12) it suffices to show that B C K spans K in the
sense of aclg if and only if K is algebraic over F'(B), and that B C K is a
transcendence basis if and only if it is a basis for K with respect to aclg. The
first statement is clear by the fact (2.3.2) that aclx(A4) = F(A)2 for all AC K,
and the “<="-direction of the second one was proved in (i). The reverse impli-
cation “=" follows from the first statement and (2.3.2).

iii. Follows immediately from the fact that B C K is a transcendence basis for K
if and only if B is a basis for K with respect to aclg, and part (3) of Theorem
(2.3.16) from class.

3. Let M be an L-structure and A C M. We say that b € M is definable over A in M if there is a
formula ¢(z, y1, ..., yn) and a € A™ such that

MEp(b,a) AVy(p(y,a) > y=b),

that is, {b} is A-definable. Let dclp(A) :=dcl(A4) := {b € M: b is definable over A}, the definable
closure of A in M.

a) Show that dcl(A) is the universe of a substructure of M, and A Cdcl(4) C acl(A).

b) Show that b is definable over A if and only if for some n > 1 there is an (-definable function
f:M™— M and a € A™ such that f(a)=0».

c) Suppose that b is definable over A and ¢ is an automorphism of M such that o(a) = a for
all a € A. Show that o(b) =b.



d)
Solution.

a)

4. Let L

Show that dcl(dcl(A4)) =dcl(A).

If fis an n-ary function symbol from £ and b, ..., b, € dcl(A), defined by formulas ¢;(z,
Y)s -y on(x, y), where y = (y1, ..., Ym), using parameters a = (ai, ..., amy) from A, then
fM(by,...,by) is defined by the formula

b(z) :=3x1---axn( A so(xi,y)mzf(m,...,xn))

i=1

using the same parameters a. Therefore fM(by, ..., b,) € dcl(A). If ¢ is a constant symbol
from £ then ¢™ € dcl(A) is witness by the formula = = ¢. Hence dcl(A) is the universe of a
substructure of M. The formula z = y can be used to show that A C dcl(4), and dcl(A) C
acl(A) follows from the definitions.

Suppose that for some n > 1 there is an @-definable function f: M™ — M and a € A™ such
that f(a)=»b. Let ¢(z,y1,...,yn) be an L-formula such that (d,e) e '(f) <= ME p(e,d) for
allde M™, ee M. Then ME ¢(b,a), and b is the only solution to ¢(x,a), since I'(f) is the
graph of a function. Hence b € dcl(A). Conversely, suppose that b € dcl(A). Take a formula
o(z, y1, ..., Yn) and a € A™ witnessing this. Suppose first that n > 1. Then the formula
(Y1, -oey Yn) = Fz(0(z, Y1, -, Yn) AV2(z # 2 = —(2, Y1, ..., Yn))) defines a subset D of M™
containing a, and y(y1, ..., Yn, ) := (T, Y1, -+, Yn) A d(y1, ..., Yn) defines the graph of a func-
tion D — M with a— b. Now ¢¥(y1, ..., Yn, ) :=7V (-0 Az = y1) defines a function M"™— M
with a — b, as required. Now suppose n = 0. Then b is the unique solution to ¢(z), hence
¥(y,x) := @(x) defines the constant function M — M with value b.

Clear since automorphisms preserve the truth of formulas.

The inclusion D follows from (a). For C let b€ dcl(dcl(A4)). By (b) there exists a definable
function f: M™— M and a=(ay, ..., apn) € dcl(A)™ such that f(a)="b, for some n>1. By (b)
again there exists for each i a definable function g;; M™ — M and ¢; € A™: such that
gi(ci) = a;, for some m; > 1. Put m :=my + --- + m,, and define g: M™ — M™ by g(z, ...,
zZm) = (91(21), ..., gn(zm)) for all z; € M™:. Then g is a definable function, hence so is h :=
fog:M™— M, with h(ey,...,cm) =a. This shows that b€ dcl(4), by (b).

be a language which contains a binary relation symbol < . Suppose that M is an L-struc-

ture in which < is a linear ordering. Show that acla((A) =dcla(A) for all A C M.

Solution. Let b € acl(4) and ¥(z, y1, ..., y) be an L-formula, a = (a4, ..., a,) € A™ such that

M E (b, a), and ¥(z,a) has only finitely many solutions in M. Let b; <™ --- <M b,, be all
the different solutions to this formula, so b= b, for some j € {1,...,m}. Now define an L-for-
mula ¢ by ¢(z,y1, ..., yn) :=¥(x, Y1, ..., Yn) A “there are exactly j — 1 solutions of ¥ (z, y1, ...,
yn) smaller than z.” It is clear that M F ¢(b, a) and that b is the only solution to ¢(z, a).
Hence b € dcl(A), showing that acl(4) C dcl(A). The reverse inclusion holds by 3. (a).

5. [Optional.]| Give an example of a structure M (in some language £) such that acla(A) # dclap(A)
for some subset A of M.

Solution. Let £={0,1,+,—,-} and let K := Q8 be the algebraic closure of the field 4:=Q,

considered as an L-structure as usual. Obvisously acl(4) = K. We claim that dcl(4)=A4 (#
K). For this, let a € dcl(Q), and let P(X) € Q[X] be the minimal polynolmial of a over Q.
For every zero b of P(X) in K there exists an automorphism o € Gal(Q#|Q) with o(a) = b.
By 4. (c) we get a =b. Hence a is the only zero of P(X) in Q2. Since P is separable, this
implies P(X) =X — ¢ for some c € Q, therefore a=c€ Q.



