Problem Set 5

Due April 16

Model Theory

Math 506, Spring 2004.

- 1. Let K be a field and let T be the theory of infinite K-vector spaces as in Problem 5 of the last Problem Set. Let V be an infinite K-vector space and A a subset of V. Show that $\operatorname{acl}_V(A)$ is the K-subspace of V spanned by A.
- 2. Use properties of model-theoretic algebraic closure in algebraically closed fields to prove the following facts. Here p is a prime number or 0, and F the prime field of characteristic p (that is, $F = \mathbb{F}_p$ if p is a prime and $F = \mathbb{Q}$ otherwise).
 - a) Let k be a field of characteristic p and let K_1 and K_2 be algebraic closures of k, that is, algebraically closed extension fields of k which are algebraic over k (in the sense of fields). Show that there is an isomorphism $K_1 \to K_2$ which is the identity on k.
 - b) Let K be an algebraically closed field of characteristic p. We call a subset B of K algebraically independent if $P(X_1, ..., X_n) \in F[X_1, ..., X_n]$ is a non-zero polynomial and $b_1, ..., b_n \in B$ are distinct elements of B, then $P(b_1, ..., b_n) \neq 0$. We call B a transcendence basis for K if B is algebraically independent and K is algebraic over the subfield F(B) of K generated by B.
 - i. Show that there exists a transcendence basis for K.
 - ii. Show that B is a transcendence basis for K if and only if B is a minimal subset of K with the property that K is algebraic over F(B).
 - iii. Show that K is determined, up to isomorphism, by the cardinality of a transcendence basis for K.
- 3. Let \mathcal{M} be an \mathcal{L} -structure and $A \subseteq M$. We say that $b \in M$ is **definable over** A in \mathcal{M} if there is a formula $\varphi(x, y_1, ..., y_n)$ and $a \in A^n$ such that

$$\mathcal{M} \vDash \varphi(b, a) \land \forall y(\varphi(y, a) \rightarrow y = b),$$

that is, the set $\{b\}$ is A-definable. Let $dcl_{\mathcal{M}}(A) := dcl(A) := \{b \in M : b \text{ is definable over } A\}$, the **definable closure of** A in \mathcal{M} .

- a) Show that dcl(A) is the universe of a substructure of \mathcal{M} , and $A \subseteq dcl(A) \subseteq acl(A)$.
- b) Show that b is definable over A if and only if for some $n \ge 1$ there is an \emptyset -definable function $f: M^n \to M$ and $a \in A^n$ such that f(a) = b.
- c) Suppose that b is definable over A and σ is an automorphism of \mathcal{M} such that $\sigma(a) = a$ for all $a \in A$. Show that $\sigma(b) = b$.
- d) Show that dcl(dcl(A)) = dcl(A).
- 4. Let \mathcal{L} be a language which contains a binary relation symbol <. Suppose that \mathcal{M} is an \mathcal{L} -structure in which $<^{\mathcal{M}}$ is a linear ordering. Show that $\operatorname{acl}_{\mathcal{M}}(A) = \operatorname{dcl}_{\mathcal{M}}(A)$ for all $A \subseteq M$.
- 5. [Optional.] Give an example of a structure \mathcal{M} (in some language \mathcal{L}) such that $\operatorname{acl}_{\mathcal{M}}(A) \neq \operatorname{dcl}_{\mathcal{M}}(A)$ for some subset A of M.