Problem Set 6

Solutions

Model Theory

Math 506, Spring 2004.

- 1. Let $\mathcal{L} = \{0, 1, +, -, \cdot\}$ be the language of rings and consider the field \mathbb{R} of real numbers as an \mathcal{L} -structure as usual. Is the \mathcal{L} -theory $\mathrm{Th}(\mathbb{R})$ model-complete? Does $\mathrm{Th}(\mathbb{R})$ admit quantifier elimination?
 - **Solution.** A field K is real closed if and only if $\{a^2: a \in K\}$ is a positive cone of K, and every polynomial in K[X] of degree $\geqslant 3$ is reducible. These statements can be formulated as an \mathcal{L} -theory. Therefore every model of $Th(\mathbb{R})$ is a real closed field.

Let $K \subseteq L$ be an extension of models of $\operatorname{Th}(\mathbb{R})$. Then K and L can be equipped with unique orderings making them into ordered fields; with these orderings $K \subseteq L$ is an extension of ordered fields (in other words, the ordering of K is the restriction of the ordering of L). The ordered fields K and L are then models of the $L \cup \{c\}$ -theory RCF. Therefore (by q.e. qua model-completeness of RCF) we have $K \preceq L$ in the language $L \cup \{c\}$ and hence also in the language $L \cup \{c\}$ and hence also in the language $L \cup \{c\}$ are then model-complete.

We claim that $\operatorname{Th}(\mathbb{R})$ does *not* admit q.e.: a field whose theory admits quantifier elimination in the language \mathcal{L} is strongly minimal (same proof as for ACF), but \mathbb{R} is not strongly minimal: the set $\{x \in \mathbb{R}: x \geqslant 0\}$ is definable (by the formula $\varphi(x) = \exists y(y^2 = x)$) but neither finite nor cofinite.

- 2. Let $\mathcal{L}_E = \{L, B, C, A, D\}$ be the following language: L and B are ternary relation symbols; C and A are 6-ary relation symbols, and G is a 4-ary relation symbol. We let $\mathcal{E} = (E, L^{\mathcal{E}}, B^{\mathcal{E}}, C^{\mathcal{E}}, A^{\mathcal{E}}, D^{\mathcal{E}})$ be the \mathcal{L}_E -structure with universe $E = \mathbb{R}^2$ where
 - i. $\mathcal{E} \vDash L^{\mathcal{E}}(a, b, c)$ if and only if a, b, c are collinear, and $\mathcal{E} \vDash B^{\mathcal{E}}(a, b, c)$ if and only if a, b, c are collinear and c lies between a and b;
 - ii. $\mathcal{E} \vDash C^{\mathcal{E}}(a, b, c, a', b', c')$ if and only if the triangles with vertices a, b, c and a', b', c', respectively, are congruent; $\mathcal{E} \vDash A^{\mathcal{E}}(a, b, c, a', b', c')$ if and only if the angle between the line segments $a \ b$ and $b \ c$ is the same as the angle between $a' \ b'$ and $b' \ c'$;
 - iii. $\mathcal{E} \models D^{\mathcal{E}}(a, b, a', b')$ if and only if the distance between a and b is the same as the distance between a' and b'.

Show that $Th(\mathcal{E})$ is decidable. (Decidability of plane euclidean geometry; Tarski 1948.)

Solution. We know from class that the theory of \mathbb{R} , construed as a structure in the language $\mathcal{L} = \{0, 1, +, -, \cdot, < \}$, is decidable. (A consequence of the recursive axiomatization of $\operatorname{Th}(\mathbb{R})$.) Therefore it is enough to describe an algorithm which, given as input an \mathcal{L}_E -sentence φ , produces an \mathcal{L} -sentence φ^* such that $\mathcal{E} \models \varphi$ if and only if $\mathbb{R} \models \varphi^*$. This is easy, by interpreting the relation symbols in \mathcal{L}_E by the corresponding (definable) relations on cartesian powers of \mathbb{R}^2 — for example, the \mathcal{L}_E -sentence

$$\varphi = \forall a \forall b \forall c (L(a, b, c) \rightarrow a = b \lor B(a, b, c) \lor B(a, c, b) \lor B(c, b, a))$$

(which holds in \mathcal{E}) will be replaced by the \mathcal{L} -sentence

$$\varphi^* = \forall a_1 \forall a_2 \forall b_1 \forall b_2 \forall c_1 \forall c_2 (L^*(a_1, a_2, b_1, b_2, c_1, c_2) \rightarrow (a_1 = b_1 \land a_2 = b_2) \lor B^*(a_1, a_2, b_1, b_2, c_1, c_2) \lor B^*(a_1, a_2, c_1, c_2, b_1, b_2) \lor B^*(c_1, c_2, b_1, b_2, c_1, c_2)),$$

where

$$L^*(a_1, a_2, b_1, b_2, c_1, c_2) := (a_1 = b_1 \land a_2 = b_2) \lor \exists \lambda (\lambda(b_1 - a_1) = c_1 - a_1 \land \lambda(b_2 - a_2) = c_2 - a_2)$$

and

$$B^*(a_1, a_2, b_1, b_2, c_1, c_2) := (a_1 \neq b_1 \lor a_2 \neq b_2) \land \exists \lambda (0 < \lambda < 1 \land \lambda(b_1 - a_1) = c_1 - a_1 \land \lambda(b_2 - a_2) = c_2 - a_2).$$

- 3. Let F be an ordered field.
 - a) Show that F is real closed if and only if for every $P(X) \in F[X]$ and a < b in F such that P(a)P(b) < 0 there exists $c \in F$ with P(c) = 0 ("P has the intermediate value property").
 - b) Construe F as an \mathcal{L} -structure as usual, where $\mathcal{L} = \{0, 1, +, -, \cdot, <\}$. Use (a) to show that if $\operatorname{Th}(F)$ is o-minimal then F is real closed.

Solution.

a) Suppose first that every $P \in F[X]$ has the intermediate value property. Let a > 0 and put $P(X) := X^2 - a$. Then P(0) < 0 and P(1+a) > 0, hence there is $c \in F$ with $c^2 = a$. Now let $P(X) = X^n + \sum_{i=0}^{n-1} a_i X^i$ where $a_i \in F$ and n is odd. Then for $M := 1 + |a_{n-1}| + \dots + |a_0|$ we have P(M) > 0 and P(-M) < 0. This follows from

$$P(\pm M)/(\pm M)^n = 1 + a_{n-1}(\pm M)^{-1} + \dots + a_0(\pm M)^{-n} > 0$$

since

$$|a_{n-1}(\pm M)^{-1} + \dots + a_0(\pm M)^{-n}| \leq (|a_{n-1}| + \dots + |a_0|) \cdot |M|^{-1} < 1$$

by the triangle inequality, which holds for $|\cdot|$. (Why?) Hence P(c) = 0 for some $c \in F$ with -M < c < M. Therefore F is real closed. Conversely, suppose that F is real closed, and let $P(X) \in F[X]$, a < b in F with P(a)P(b) < 0. We may assume that P(a) < 0 < P(b) and P irreducible (why?). If P is not linear, then $P(X) = (X - d)^2 + e^2$ with $d, e \in F$, $e \neq 0$; but then P(x) > 0 for all $x \in F$, which contradicts P(a) < 0. So P(X) is linear, and hence has a zero in the interval (a, b).

- b) Suppose that F is o-minimal. We show that every $P(X) \in F[X]$ has the intermediate value property. Let a < b with P(a)P(b) < 0. Then both $A := \{x \in F : P(x) > 0\}$ and $B := \{x \in F : P(x) < 0\}$ are non-empty. As remarked in class, P gives rise to a continuous function $x \mapsto P(x)$. Hence both A and B are open. By o-minimality it follows that A and B are disjoint unions of open intervals in F, and their union is F. This is impossible.
- 4. Recall that a function $f: \mathbb{R} \to \mathbb{R}$ is called **semialgebraic** if its graph

$$\Gamma(f) = \{(x, f(x)) : x \in \mathbb{R}\} \subset \mathbb{R}^2$$

is semialgebraic.

- a) We say that a function $f: \mathbb{R} \to \mathbb{R}$ is **algebraic** if there is a non-zero polynomial $P(X, Y) \in \mathbb{R}[X, Y]$ such that P(x, f(x)) = 0 for all $x \in \mathbb{R}$. Show that every semialgebraic function $\mathbb{R} \to \mathbb{R}$ is algebraic.
- b) Use (a) to show that the exponential function $x \mapsto e^x : \mathbb{R} \to \mathbb{R}$ is not semialgebraic.

Solution.

a) The graph of a semialgebraic function $f: \mathbb{R} \to \mathbb{R}$ is a finite union of semialgebraic sets of the form

$$\{(x,y) \in \mathbb{R} \times \mathbb{R}: P_1(x,y) = \dots = P_m(x,y) = 0, Q_1(x,y) > 0, \dots, Q_n(x,y) > 0\}$$

where P_i , $Q_j \in \mathbb{R}[X, Y]$ and at least one among the P_i non-zero, since otherwise, the graph of f would contain a non-empty open subset of \mathbb{R} . If we take P to be the product of these non-zero polynomials, then P(x, f(x)) = 0 for all $x \in \mathbb{R}$.

b) By (a) it is enough to show the following: if $p_0, ..., p_n \in \mathbb{R}[X]$ are such that

$$p_n(x) e^{nx} + p_{n-1}(x) e^{(n-1)x} + \dots + p_0(x) = 0$$
 for all $x \in \mathbb{R}$,

then $p_0 = \cdots = p_n = 0$. Suppose that $p_n \neq 0$. Then for all sufficiently large x > 0 we have, $p_n(x) \neq 0$, hence by the triangle inequality (see the argument in 3.(a)):

$$e^x \le 1 + |p_{n-1}(x)/p_n(x)| + \dots + |p_0(x)/p_n(x)|$$

The right-hand side can be majorized by x^d for some d > 0. But it is well-known that $e^x \ge x^d$ for all sufficiently large x, a contradiction.

c) Clear from (a) and (b).