Homework 1

Metamathematics II Math 503, Spring 2006

Due February 13.

- 1. Show that the following subsets of \mathbb{N} are diophantine:
 - (a) the set of all composite numbers;
 - (b) the set of numbers which are not powers of 2;
 - (c) the set of numbers which are not perfect squares.
- 2. Show that the function $F \colon \mathbb{N} \to \mathbb{N}$ given by

$$F(n) = 1 + 2 + \dots + n$$
 for each $n \in \mathbb{N}$

is diophantine.

3. Suppose $F: S \to \mathbb{N}$, where $S \subseteq \mathbb{N}^m$, is a diophantine function. Let

$$G_1: T \to N, \ldots, G_m: T \to \mathbb{N},$$

where $T \subseteq \mathbb{N}^n$, be diophantine functions such that $(G_1(y), \ldots, G_m(y)) \in S$ for all $y \in T$. Show that the function

$$y \mapsto F(G_1(y), \ldots, G_m(y)) \colon T \to \mathbb{N}$$

is diophantine.

4. Let $G_1, G_2: T \to \mathbb{N}$, where $T \subseteq \mathbb{N}^n$, be diophantine functions. Use the previous problem to show that

$$y \mapsto G_1(y) + G_2(y), y \mapsto G_1(y) \cdot G_2(y)$$

are diophantine functions $T \to \mathbb{N}$.

- 5. Let $S \subseteq \mathbb{N}^n$ be diophantine. Show that there are polynomials $P_1, \ldots, P_n \in \mathbb{Z}[X_1, \ldots, X_m]$ (for some positive $m \in \mathbb{N}$) with $S = P(\mathbb{N}^m) \cap \mathbb{N}^n$, where $P(x) := (P_1(x), \ldots, P_n(x))$ for $x \in \mathbb{N}^m$.
- 6. Let $a, b \in \mathbb{N}, b \ge 2$. Show that if there exists $n \in \mathbb{N}$ such that $a = \alpha_b(n)$ then

$$z^{2} - ((b/2)^{2} - 1)a^{2} = 1$$
 for some $z \in \mathbb{Q}$.

7. Let $b, m, n \in \mathbb{N}, b \ge 2$. Show that

$$n < m \implies \alpha_b(n) < \alpha_b(m)$$

8. Let $b_1, b_2, q \in \mathbb{N}, b_1, b_2 \ge 2, q > 0$. Show that

$$b_1 \equiv b_2 \mod q \implies \alpha_{b_1}(n) \equiv \alpha_{b_2}(n) \mod q \text{ for all } n \in \mathbb{N}$$