Homework 1
 Metamathematics II

Math 503, Spring 2006
Due February 13.

1. Show that the following subsets of \mathbb{N} are diophantine:
(a) the set of all composite numbers;
(b) the set of numbers which are not powers of 2 ;
(c) the set of numbers which are not perfect squares.
2. Show that the function $F: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
F(n)=1+2+\cdots+n \quad \text { for each } n \in \mathbb{N}
$$

is diophantine.
3. Suppose $F: S \rightarrow \mathbb{N}$, where $S \subseteq \mathbb{N}^{m}$, is a diophantine function. Let

$$
G_{1}: T \rightarrow N, \ldots, G_{m}: T \rightarrow \mathbb{N}
$$

where $T \subseteq \mathbb{N}^{n}$, be diophantine functions such that $\left(G_{1}(y), \ldots, G_{m}(y)\right) \in S$ for all $y \in T$. Show that the function

$$
y \mapsto F\left(G_{1}(y), \ldots, G_{m}(y)\right): T \rightarrow \mathbb{N}
$$

is diophantine.
4. Let $G_{1}, G_{2}: T \rightarrow \mathbb{N}$, where $T \subseteq \mathbb{N}^{n}$, be diophantine functions. Use the previous problem to show that

$$
y \mapsto G_{1}(y)+G_{2}(y), y \mapsto G_{1}(y) \cdot G_{2}(y)
$$

are diophantine functions $T \rightarrow \mathbb{N}$.
5. Let $S \subseteq \mathbb{N}^{n}$ be diophantine. Show that there are polynomials $P_{1}, \ldots, P_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{m}\right]$ (for some positive $m \in \mathbb{N}$) with $S=P\left(\mathbb{N}^{m}\right) \cap \mathbb{N}^{n}$, where $P(x):=\left(P_{1}(x), \ldots, P_{n}(x)\right.$) for $x \in \mathbb{N}^{m}$.
6. Let $a, b \in \mathbb{N}, b \geqslant 2$. Show that if there exists $n \in \mathbb{N}$ such that $a=\alpha_{b}(n)$ then

$$
z^{2}-\left((b / 2)^{2}-1\right) a^{2}=1 \quad \text { for some } z \in \mathbb{Q}
$$

7. Let $b, m, n \in \mathbb{N}, b \geqslant 2$. Show that

$$
n<m \quad \Longrightarrow \quad \alpha_{b}(n)<\alpha_{b}(m) .
$$

8. Let $b_{1}, b_{2}, q \in \mathbb{N}, b_{1}, b_{2} \geqslant 2, q>0$. Show that

$$
b_{1} \equiv b_{2} \quad \bmod q \quad \Longrightarrow \quad \alpha_{b_{1}}(n) \equiv \alpha_{b_{2}}(n) \quad \bmod q \quad \text { for all } n \in \mathbb{N} .
$$

