Homework 2
 Metamathematics II

Math 503, Spring 2006
Solutions.

1. By computation one first shows that
(a) Cantor $(a, b+1)=\operatorname{Cantor}(a, b)+a+b+1$,
(b) Cantor $(a+1, b)=\operatorname{Cantor}(a, b)+a+b+2$
for all $a, b \in \mathbb{N}$. Now fix a number $n \in \mathbb{N}$, and consider the diagonal $D_{n}:=\left\{(a, b) \in \mathbb{N}^{2}\right.$: $a+b=n\}$. The set D_{n} has $n+1$ elements. We now show by induction on n that

$$
\operatorname{Cantor}\left(D_{n}\right)=\left\{\frac{n(n+1)}{2}, \ldots, \frac{(n+1)(n+2)}{2}-1\right\}
$$

This will establish that Cantor is a bijection. By (a) and (b) we have Cantor $(a+1, b)=$ Cantor $(a, b+1)+1$
2. Show that if $m, n \in \mathbb{N}$ satisfy $n \geqslant(m+1)^{m+2}$, then $m!=n^{m} \operatorname{div}\binom{n}{m}$.
3. Let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}, n>0$, and $b \in \mathbb{N}, b \geqslant 3$, with $a_{i}<b$ for $i=1, \ldots, n$, and let a be the cipher of the tuple $\left(a_{1}, \ldots, a_{n}\right)$ to the base b. Define the b tuples

$$
\left(d_{01}, \ldots, d_{0 n}\right), \ldots,\left(d_{b-1,1}, \ldots, d_{b-1, n}\right) \in \mathbb{N}^{n}
$$

as follows: for $k=0, \ldots, b-1$ and $j=1, \ldots n$ let $d_{k j}=0$ if $k \neq a_{j}$ and $d_{k j}=1$ otherwise. Show that if $d_{0}, \ldots, d_{b-1} \in \mathbb{N}$ satisfy

$$
\left\{\begin{array}{l}
a=0 \cdot d_{0}+1 \cdot d_{1}+\cdots+(b-1) \cdot d_{b-1} \\
d_{0}+\cdots+d_{b-1}=\operatorname{Repeat}(1, b, c) \\
\operatorname{Orthnorm}\left(d_{k}, d_{l}, b, c\right) \text { for } 1 \leqslant k<l<b
\end{array}\right.
$$

then d_{0}, \ldots, d_{b-1} are the ciphers of the tuples $\left(d_{01}, \ldots, d_{0 n}\right), \ldots,\left(d_{b-1,1}, \ldots, d_{b-1, n}\right)$ to the base b, respectively.
In the next two exercises we discuss some algorithmically solvable diophantine problems. We let $n \in \mathbb{N}$, and by convention $\mathbb{N}^{0}:=\{0\}$.
4. Let us call a subset S of \mathbb{N}^{n} polynomial if there is a polynomial $P \in \mathbb{Z}\left[u_{1}, \ldots, u_{n}\right]$ such that

$$
S=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}: P\left(a_{1}, \ldots, a_{n}\right)=0\right\} .
$$

(a) Show that the class of polynomial subsets of \mathbb{N}^{n} is closed under universal quantification, i.e., if $S \subseteq \mathbb{N}^{n+1}$ is polynomial then so is

$$
S^{\prime}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}: \forall b \in \mathbb{N}\left(\left(a_{1}, \ldots, a_{n}, b\right) \in S\right)\right\} .
$$

(b) Use (a) to show that there is an algorithm which decides, for given $P, Q \in \mathbb{Z}\left[u_{1}, \ldots, u_{n}\right]$, whether $P\left(a_{1}, \ldots, a_{n}\right)=Q\left(a_{1}, \ldots, a_{n}\right)$ for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$.
5. Let $P\left(u_{1}, \ldots, u_{n}, x\right) \in \mathbb{Z}\left[u_{1}, \ldots, u_{n}, x\right]$, and consider the diophantine set

$$
S=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}: \exists x\left(P\left(a_{1}, \ldots, a_{n}, x\right)=0\right)\right\} .
$$

(a) Show that S is decidable by giving an informal algorithm which, for a given n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ decides whether it belongs to S or not. (It is unknown whether the same result holds if P is replaced by a polynomial in $\mathbb{Z}\left[u_{1}, \ldots, u_{n}, x_{1}, x_{2}\right]$ and S by the analogously defined diophantine subset of \mathbb{N}^{n}.)
(b) Conclude that $\mathbb{N}^{n} \backslash S$ is diophantine.

