Homework 2

Metamathematics II Math 503, Spring 2006

Solutions.

- 1. By computation one first shows that
 - (a) $\operatorname{Cantor}(a, b+1) = \operatorname{Cantor}(a, b) + a + b + 1$,
 - (b) $\operatorname{Cantor}(a+1,b) = \operatorname{Cantor}(a,b) + a + b + 2$

for all $a, b \in \mathbb{N}$. Now fix a number $n \in \mathbb{N}$, and consider the diagonal $D_n := \{(a, b) \in \mathbb{N}^2 : a + b = n\}$. The set D_n has n + 1 elements. We now show by induction on n that

Cantor
$$(D_n) = \left\{ \frac{n(n+1)}{2}, \dots, \frac{(n+1)(n+2)}{2} - 1 \right\}.$$

This will establish that Cantor is a bijection. By (a) and (b) we have Cantor(a + 1, b) = Cantor(a, b + 1) + 1

- 2. Show that if $m, n \in \mathbb{N}$ satisfy $n \ge (m+1)^{m+2}$, then $m! = n^m \operatorname{div} \binom{n}{m}$.
- 3. Let $(a_1, \ldots, a_n) \in \mathbb{N}^n$, n > 0, and $b \in \mathbb{N}$, $b \ge 3$, with $a_i < b$ for $i = 1, \ldots, n$, and let a be the cipher of the tuple (a_1, \ldots, a_n) to the base b. Define the b tuples

$$(d_{01}, \ldots, d_{0n}), \ldots, (d_{b-1,1}, \ldots, d_{b-1,n}) \in \mathbb{N}^n$$

as follows: for k = 0, ..., b - 1 and j = 1, ..., n let $d_{kj} = 0$ if $k \neq a_j$ and $d_{kj} = 1$ otherwise. Show that if $d_0, ..., d_{b-1} \in \mathbb{N}$ satisfy

$$\begin{cases} a = 0 \cdot d_0 + 1 \cdot d_1 + \dots + (b-1) \cdot d_{b-1} \\ d_0 + \dots + d_{b-1} = \text{Repeat}(1, b, c) \\ \text{Orthnorm}(d_k, d_l, b, c) \text{ for } 1 \leq k < l < b \end{cases}$$

then d_0, \ldots, d_{b-1} are the ciphers of the tuples $(d_{01}, \ldots, d_{0n}), \ldots, (d_{b-1,1}, \ldots, d_{b-1,n})$ to the base b, respectively.

In the next two exercises we discuss some algorithmically *solvable* diophantine problems. We let $n \in \mathbb{N}$, and by convention $\mathbb{N}^0 := \{0\}$.

4. Let us call a subset S of \mathbb{N}^n polynomial if there is a polynomial $P \in \mathbb{Z}[u_1, \ldots, u_n]$ such that

$$S = \{(a_1, \dots, a_n) \in \mathbb{N}^n : P(a_1, \dots, a_n) = 0\}.$$

(a) Show that the class of polynomial subsets of \mathbb{N}^n is closed under universal quantification, i.e., if $S \subseteq \mathbb{N}^{n+1}$ is polynomial then so is

$$S' := \left\{ (a_1, \dots, a_n) \in \mathbb{N}^n : \forall b \in \mathbb{N} \big((a_1, \dots, a_n, b) \in S \big) \right\}.$$

- (b) Use (a) to show that there is an algorithm which decides, for given $P, Q \in \mathbb{Z}[u_1, \ldots, u_n]$, whether $P(a_1, \ldots, a_n) = Q(a_1, \ldots, a_n)$ for all $(a_1, \ldots, a_n) \in \mathbb{N}^n$.
- 5. Let $P(u_1, \ldots, u_n, x) \in \mathbb{Z}[u_1, \ldots, u_n, x]$, and consider the diophantine set

$$S = \left\{ (a_1, \dots, a_n) \in \mathbb{N}^n : \exists x (P(a_1, \dots, a_n, x) = 0) \right\}$$

- (a) Show that S is decidable by giving an informal algorithm which, for a given n-tuple $(a_1, \ldots, a_n) \in \mathbb{N}^n$ decides whether it belongs to S or not. (It is unknown whether the same result holds if P is replaced by a polynomial in $\mathbb{Z}[u_1, \ldots, u_n, x_1, x_2]$ and S by the analogously defined diophantine subset of \mathbb{N}^n .)
- (b) Conclude that $\mathbb{N}^n \setminus S$ is diophantine.